
Determining satisfiability of 3-SAT in
polynomial time

Ortho Flint, Asanka Wickramasinghe, Jay Brasse, Chris Fowler

Abstract

In this paper, we provide a polynomial time (and space), algorithm
that determines satisfiability of 3-SAT. The complexity analysis for
the algorithm takes into account no efficiency and yet provides a low
enough bound, that efficient versions are practical with respect to to-
day’s hardware. We accompany this paper with a serial version of the
algorithm without non-trivial efficiencies (link: polynomial3sat.org).

1 Introduction

The Boolean satisfiability problem (or SAT), was the first problem to be
proven NP-complete by Cook in 1971 [1]. 3-SAT is one of Karp’s original 21
NP-complete problems [2]. At last count, there are over 3, 000 NP-complete
problems considered to be important. Any problem in NP can be presented
as a SAT problem. A SAT problem can be transformed into a 3-SAT prob-
lem, where any increase in the number of clauses is a polynomial bound. We
provide a deterministic polynomial time algorithm that decides satisfiability
of 3-SAT. We also provide in Big O notation the complexity of the algorithm
without efficiencies. The original serial version is called naive, by which we
mean, none of the efficiencies that could be used for dramatic reductions in
work are present. However, this version is quite useful for research, as we
can attest. There are many non-trivial efficiencies that can be incorporated.

Note well, that the intent of an informal presentation of the algorithm, is so
that many outside the math/computer science community might attempt a

1

read. For some of the mathematical objects used, we give a colloquial name,
in hope of creating conceptual permanence.

2 Preliminaries and Definitions

Definition 2.1. A 3-SAT is a collection of literals or variables (usually rep-
resented by integers), in groups called clauses where no clause has more than
3 literals, and at least one clause does have 3 literals. If it’s possible to select
exactly one literal from each clause such that no literal l, and its negation
−l (or denoted ¬ l, meaning not l), appear in the collection of chosen liter-
als, we say that the 3-SAT is satisfiable, otherwise we say it’s unsatisfiable.
For satisfiability, the collection of literals chosen is called a solution. Note
that the size of a solution set is smaller than the size of the collection, if the
collection had at least two clauses of which the same literal was chosen.

It is important to note, that our definition of a solution (definition 2.10), is
inextricably tied to our constructs for a collection of clauses.

When we think of literals (also called atoms), we can consider an edge joining
two vertices, each with an associated literal, if and only if, it’s not a literal
and its negation. Under no circumstance would a literal and its negation be
connected by an edge. There are also no edges between two literals from the
same clause. So conceptually, there exist edges that connect every literal to
every other literal with the two restrictions that were just stated. Then it
follows, that a collection of literals for some solution is such that, a literal
from each clause is connected to every other literal from that collection. In
graph theory, such a graph is called a complete graph Kn, n being the number
of vertices, which here it’s also the number of clauses. We shall denote this
graph as: KC where c is the number of clauses.

Definition 2.2. An edge-sequence is an ordered sequence with elements 1
and 0. The ordering is an ordering of the clauses, with indexing: C1, C2, C3,
. . . , Cc where a corresponding Ci has its literals ordered the same way for
each sequence constructed for a 3-SAT. An edge-sequence I, for an edge with
endpoints labelled x and y, where x 6= −y, the literals associated with the
endpoints, is denoted by Ix,y. The endpoints must always be from different

2

clauses. We call the positions in Ix,y that correspond to a clause Ci the cell
Ci. The cells Cj and Ck containing the endpoints, x and y for Ix,y have
only one entry that is 1 in the positions associated to x and y. When an
edge-sequence is constructed, a given position in Ix,y is 1 if the associated
literal is not −x or −y. The initial construction of Ix,y is subject to certain
rules defined in 2.8 and 2.9, which may produce more zero entries. Lastly,
removing one or more cells from Ix,y is again a (sub) edge-sequence, denoted
by Ix,y*, if the cells containing the endpoints for Ix,y remain.

Definition 2.3. We call a literal x, an edge-pure literal, if its negation does
not appear in an edge-sequence. ie. there are zero entries in the positions
associated with literal −x in the edge-sequence, or no −x exists. Note that
the literals associated to the endpoints are necessarily edge-pure literals.

Definition 2.4. We call a literal x, an edge-singleton, if it has only one
position in an edge-sequence. We say that only one position exists in each
endpoint cell which correspond with the endpoints. And we call a literal a
singleton, if it appears in only one clause for a given collection of clauses.

Definition 2.5. A loner cell contains just one 1 entry for some literal. And
a loner clause contains just one literal.

Definition 2.6. A vertex-sequence is an ordered sequence with elements 1
and 0. The ordering is an ordering of the clauses, with indexing: C1, C2,
C3, . . . , Cc where a corresponding Ci has its literals ordered the same way
for each sequence constructed for a 3-SAT. A vertex-sequence V , for a vertex
associated with literal x, is denoted by Vx. We call the positions in Vx that
correspond to a clause Ci the cell Ci. The cell Cj containing the vertex x
for Vx has only one entry that is 1 in the position associated to x. When a
vertex-sequence is constructed, a given position in Vx is 1 if the associated
literal is not −x. The initial construction of Vx is subject to certain rules
defined in 2.8 and 2.9, which may produce more zero entries. Removing one
or more cells from Vx is again a (sub) vertex-sequence, denoted by Vx*, if the
cell containing x remains.

Definition 2.7. When an entry 1 in an edge-sequence or a vertex-sequence,
becomes zero, we call it a bit-change. If a bit-change has occurred in an
edge-sequence or a vertex-sequence, we say the sequence has been refined, or
a refinement has occurred. A zero entry never becomes a 1 entry.

3

It’s worth noting here that if an edge-sequence Ia,b has a zero entry in some
position for a literal c, then there is no KC , using literals a, b and c together.
In fact, this is what a bit-change is documenting in an edge-sequence.

Definition 2.8. The loner cell rule, LCR, is that no negation of a literal
belonging to a loner cell can exist in an edge-sequence or vertex-sequence. If
such a scenario exists in an edge-sequence Ix,y or a vertex-sequence Vx where
z is the loner cell literal, then all positions associated with literal −z incur a
bit-change. If this action of a bit-change for −z, creates another loner cell
where the negation of the literal in the newly created loner cell is still present
in Ix,y or Vx the action of a bit-change for the negation is repeated. Hence,
to be LCR compliant may be recursive, but all refinements are permanent for
any edge or vertex sequence.

LCR compliancy is determined for an edge-sequence Ix,y or a vertex-sequence
Vx if either Ix,y or Vx is being constructed. LCR compliancy is determined
after any intersection between two of more edge-sequences is performed. LCR
compliancy is determined if an edge-sequence or vertex-sequence incurred any
refinement.

Definition 2.9. The K-rule is that no cell from an edge-sequence Ix,y or a
vertex-sequence Vx can have all zero entries. If this is the case, then Ix,y or
Vx, equals zero, and Ix,y is removed from its S-set, or Vx is removed from
the vertex-sequence table. Note that their respective removals, is a refinement.

K-rule compliancy is determined for an edge-sequence Ix,y or a vertex-sequence
Vx, if either Ix,y or Vx are being constructed. K-rule compliancy is determined
after any intersection between two of more edge-sequences is performed. K-
rule compliancy is determined if an edge-sequence or vertex-sequence incurred
any refinement. And finally, the K-rule is violated if all the vertex-sequences
associated with a clause, are zero. In such a case, it’s reported that the 3-SAT
is unsatisfiable.

Definition 2.10. A solution for a collection of c clauses must have a cor-
responding collection of edge-sequences, for some KC. More precisely, the
intersection of all the edge-sequences together, for a KC, does not equal zero.
ie. A solution KC exists if

⋂
i,j

Ii,j 6= 0, where i and j are every pair of end-

points from the collection of edge-sequences for a KC.

4

A KP , p < c, exists if the set of all sub edge-sequences P for KP are such
that the intersection of P does not equal zero. ie. A KP exists if

⋂
i,j

Ii,j* 6=

0, where i and j are every pair of endpoints from the collection of sub edge-
sequences for KP . It is to be understood that an edge-sequence for a KC or
KP , means the edge-sequence associated with the edge for a KC or KP .

Definition 2.11. A S-set is a collection of edge-sequences whose endpoints
are from two clauses, Ci and Cj where i 6= j. The number of constructed
edge-sequences to be a S-set is |Ci||Cj| minus the non edge-sequences of the
form: Il,−l. For 3-SAT, there can be at most 9 edge-sequences in a S-set.

Before we work through an example, we must define what it means to take
an intersection or union of two or more edge-sequences. No intersections or
unions are taken with vertex-sequences.

Definition 2.12. We take the intersection or union of two n length edge-
sequences, A and B, by comparing position i of A and B, using the Boolean
rules for intersections (denoted by ∩), and unions (denoted by ∪), for all
positions, i = 0, 1, 2, . . . , n−1.

Recall that the entry for position i of A and B, is either 1 or 0.

Then, for an intersection, we have:

1A ∩ 0B = 0A ∩ 1B = 0A ∩ 0B = 0. And 1A ∩ 1B = 1.

And for a union we have:

1A ∪ 0B = 0A ∪ 1B = 1A ∪ 1B = 1. And 0A ∪ 0B = 0.

In general, an intersection or union between two or more edge-sequences, is
a multi-edged sequence. There is one exception described in section 3, where
an intersection or a union of intersections of edge-sequences, always produces
an edge-sequence.

5

Example

Figure 1: A 3-SAT with 5 clauses

We believe it is useful to think of 3-SATs in terms of their corresponding
graphs. For example, Figure 1 (the only figure in the paper), depicts a 3-
SAT with five clauses. The clauses are numbered and each clause has three
literals. We say that a clause with three literals, thus three vertices, is size
3. For 3-SAT, clauses can only be of size 1, 2 or 3. Although there would be
an edge between any two literals not belonging to the same clause and not
between a literal and its negation, we have chosen to show just the edges for
a K5 from the solution set T = {x, b,−a, c} in Figure 1.

6

Of course, the challenge when presented with a 3-SAT is to find at least one
KC , when it’s a proper subgraph, or to determine that no KC exists.

This example is to demonstrate the construction of edge-sequences for a S-
set. We also provide one example of an intersection and another of a union
between two edge-sequences.

For a S-set with edge-sequences formed using clauses Ci, Cj, we write: Si,j.
Recall, that an edge’s endpoints are always labelled by their associated lit-
erals. Then, the edge-sequence I, for an edge with endpoints with labelling
a, b, is denoted by Ia,b. Below, we add sub-subscripts for our example (Fig-
ure 1), 3-SAT’s edge-sequences, to indicate which clauses the endpoints are
from. And, within the (ordered) sequences, the subscripts indicate which
literal received a zero or a one.

Our example has 10 S-sets and at most 9 edge-sequences in each. With
respect to the sub-subscripts, all the edge-sequences are unique. We will
show just the initial 8 edge-sequences (there is no Ia1,−a2 , a literal and its
negation), for S1,2. We will also construct Ib3,−c4 from S3,4 for the purpose of
showing intersections and unions of edge-sequences.

Then, the constructed edge-sequences for S1,2, before LCR and K-rule de-
termination is:

C1︷︸︸︷ C2︷︸︸︷ C3︷︸︸︷ C4︷︸︸︷ C5︷︸︸︷
Ia1,b2 : (1a, 0x, 0y | 0−a, 1b, 0c | 0−a, 1b, 1−c | 0−a, 0−b, 1−c | 0−a, 0−b, 1c)

Ia1,c2 : (1a, 0x, 0y | 0−a, 0b, 1c | 0−a, 1b, 0−c | 0−a, 1−b, 0−c | 0−a, 1−b, 1c)

Ix1,−a2 : (0a, 1x, 0y | 1−a, 0b, 0c | 1−a, 1b, 1−c | 1−a, 1−b, 1−c | 1−a, 1−b, 1c)

Ix1,b2 : (0a, 1x, 0y | 0−a, 1b, 0c | 1−a, 1b, 1−c | 1−a, 0−b, 1−c | 1−a, 0−b, 1c)

Ix1,c2 : (0a, 1x, 0y | 0−a, 0b, 1c | 1−a, 1b, 0−c | 1−a, 1−b, 0−c | 1−a, 1−b, 1c)

7

Iy1,−a2 : (0a, 0x, 1y | 1−a, 0b, 0c | 1−a, 1b, 1−c | 1−a, 1−b, 1−c | 1−a, 1−b, 1c)

Iy1,b2 : (0a, 0x, 1y | 0−a, 1b, 0c | 1−a, 1b, 1−c | 1−a, 0−b, 1−c | 1−a, 0−b, 1c)

Iy1,c2 : (0a, 0x, 1y | 0−a, 0b, 1c | 1−a, 1b, 0−c | 1−a, 1−b, 0−c | 1−a, 1−b, 1c)

Observe below, that after LCR and K-rule are applied, edges Ia1,b2 and Ia1,c2
will be zero. Since the loner cells C4 and C5 in Ia1,b2 negate each other, ap-
plying LCR to either cell (we apply to first encountered), causes the other
cell to be an empty cell which violates the K-rule. Similarly, the loner cells
C3 and C4 in Ia1,c2 negate each other, producing the same outcome.

Then, applying LCR to Ia1,b2 , we have:

LCR︷︸︸︷ All Zeroes︷︸︸︷
Ia1,b2 : (1a, 0x, 0y | 0−a, 1b, 0c | 0−a, 1b, 1−c | 0−a, 0−b, 1−c | 0−a, 0−b, 0c)

Now, we apply K-rule to Ia1,b2 , thereby Ia1,b2 = 0:

Ia1,b2 : (1a, 0x, 0y | 0−a, 1b, 0c | 0−a, 1b, 1−c | 0−a, 0−b, 1−c | 0−a, 0−b, 0c)

Applying LCR to Ia1,c2 , we have:

LCR︷︸︸︷ All Zeroes︷︸︸︷
Ia1,c2 : (1a, 0x, 0y | 0−a, 0b, 1c | 0−a, 1b, 0−c | 0−a, 0−b, 0−c | 0−a, 1−b, 1c)

Now, we apply K-rule to Ia1,c2 , thereby Ia1,c2 = 0:

Ia1,c2 : (1a, 0x, 0y | 0−a, 0b, 1c | 0−a, 1b, 0−c | 0−a, 0−b, 0−c | 0−a, 1−b, 1c)

8

The other 6 edge-sequences of S1,2 listed above, are LCR and K-rule com-
pliant. Thus, the construction of the edge-sequences resulted in only 6 edge-
sequences for S1,2. We note here that if a S-set had no edge-sequences after
construction where LCR and K-rule was applied, it would mean there is
no solution for the collection of clauses given. We show a K5 in Figure 1,
so all 10 S-sets must exist, because each S-set has an edge-sequence for a K5.

Below, we show the result of doing Ix1,c2 ∩ Ib3,−c4 and Ix1,c2 ∪ Ib3,−c4 .

The LCR and K-rule compliant edge-sequence Ib3,−c4 of S3,4 is:

Ib3,−c4 : (0a, 1x, 1y | 1−a, 1b, 0c | 0−a, 1b, 0−c | 0−a, 0−b, 1−c | 1−a, 0−b, 0c)

And, the LCR and K-rule compliant edge-sequence Ix1,c2 is:

Ix1,c2 : (0a, 1x, 0y | 0−a, 0b, 1c | 1−a, 1b, 0−c | 1−a, 1−b, 0−c | 1−a, 1−b, 1c)

The intersection, Ix1,c2 ∩ Ib3,−c4 is :

(0a, 1x, 0y | 0−a, 0b, 0c | 0−a, 1b, 0−c | 0−a, 0−b, 0−c | 1−a, 0−b, 0c)

Recall that we always determine LCR and K-rule compliancy after any in-
tersection. Thus, the intersection: Ix1,c2 ∩ Ib3,−c4 = 0, because at least one
cell violated the K-rule. Here, both C2 and C4 violated the K-rule.

The LCR and K-rule compliant union: Ix1,c2 ∪ Ib3,−c4 is:

(0a, 1x, 1y | 1−a, 1b, 1c | 1−a, 1b, 0−c | 1−a, 1−b, 1−c | 1−a, 1−b, 1c)

Observe that Ix1,c2 ∪ Ib3,−c4 is a multi-edged sequence. We remark that if a
collection of edge-sequences are LCR and K-rule compliant, then their union
must also be LCR and K-rule compliant, so compliancy is assured after a
union is performed. The reason is simply that there is no union of LCR and
K-rule compliant edge-sequences, that could create a new LCR scenario, or
cause a violation of the K-rule, via the Boolean rules.

9

3 Description of the algorithm

In this section we describe the basic algorithm. The description of the algo-
rithm will consist of describing pre-processing and how the ordered sequences
are compared with each other and what actions are to be taken based on those
comparisons. The section to follow proves the correctness of this scheme and
that it stops in polynomial time, when applied to any instance of 3-SAT.

Pre-processing

Pre-processing begins by building the first tables from a given DIMACS file.
While doing this, we learn of redundancies that might as well be eliminated.
However, it’s worth noting that the algorithm to process a 3-SAT does not
require any redundancies to be removed.

Definition 3.1. Let H be a given collection of clauses. We call a literal x,
a pure literal, if its negation −x, does not appear in H. ie. @ −x in H.

Definition 3.2. A clause of the form: (l,−l, x) or (l,−l) is called a quantum
clause. A quantum clause is a possible randomly generated clause.

To start, we order the literals represented by integers, within each clause.
If there exists among the given clauses, two or more clauses which are the
same clause, but the literals appear in a different order, it will be discovered.
Only one copy of each unique clause is required to process a given 3-SAT.
We learn if any clause has literal duplication: (a, a, a) or (a, b, b) or (a, a).
Randomly generated clauses could be of this form, which we reduce to: (a),
(a, b) and (a), respectively. When we have ordered the clauses, we have also
documented each literal and its negation, and to which clauses they are as-
sociated. At this point we will have discovered any pure literals. The clauses
containing one or more pure literals, can be removed, where one of the pures ,
represents its clause. We can remove a clause with a pure because any so-
lution found with the remaining clauses, can include all the pures , since no
solution includes their negations. We will also discover any quantum clauses,
and they can be removed because any solution for the remaining clauses can
always add a literal from a quantum. For example, let a quantum clause be

10

q = (l,−l, x), and there is a solution with the remaining clauses which may
use l or −l or neither. For neither, l or −l can be selected to be part of the
solution.

Removing pures and quantums can be recursive, as it was for our example.

If there exists among the collection of clauses given, one or more clauses
containing just one literal, we remove these clauses. Obviously, the single
literal is the only literal to represent the clause for any solution. And, since
these literals must be in every solution, their negations are removed from the
collection of clauses given. This action may also be recursive. If this action
empties a clause of all its literals, then there is no solution for the collection
of clauses given.

There is a possible redundancy that we ignore, which we call Global Inclusion.
Suppose among the given clauses, there exist two clauses: Ci = (a, b, x) and
Cj = (a, b). It’s clear that if a solution exists, then either literal a or b must
be part of that solution, thus Ci is redundant and could be removed. With
respect to Global Inclusion, in context of processing a 3-SAT, a cell Ck may
no longer have 1 entries for every literal of clause Ck. For example, let clause
Ck have three literals a, b and z. Now, suppose after some processing, that
the entry for z in cell Ck is zero, in all edge-sequences. Then, cell Ci can be
removed from all sequences. And, after all processing is complete, it can be
determined if a or b will be representing clause Ci.

Construction of the edge and vertex sequences

Let n ≤ 3c, where c is the number of remaining clauses and n is the sum of the
sizes, for the c clauses. Then, after pre-processing, the n vertex-sequences,
grouped by clause association, are constructed first, as outlined in definition
2.6, and then LCR and K-rule are applied. It would be common practice
to order the clauses, and the literals within each clause, and use this same
ordering for both the edge and vertex sequences.

After pre-processing, the remaining clauses not removed, have at most, 9
edge-sequences constructed from them pairwise. The edge-sequences are
constructed as outlined in definition 2.2, and then LCR and K-rule are

11

applied. Observe that the number of edge-sequences would be less than
(
n
2

)
.

It must always be less than, because we did not subtract the over count of
non-existent edges with i) both endpoints in the same clause or ii) the non
edge-sequences between a literal and its negation. Of course, if each clause
had just one literal and there was a solution, pre-processing would have pre-
sented the solution or pre-processing removed all literals from at least one
clause, establishing unsatisfiability. Either way, no edge-sequences would
have been constructed. Each pair of clauses from the collection of c clauses,
forms a S-set. Thus, the number of S-sets is

(
c
2

)
, where any S-set contains

at most, 9 edge-sequences. We shall denote a S-set with the indices of the
two clauses used to construct its edge-sequences. ie. Si,j has edge-sequences
whose endpoints are from clauses Ci and Cj.

Before we describe in detail the Comparing of S-sets, we list the refinement
rules. The refinement rules below, refer to a bit-change occurring, an edge re-
moved from its S-set, or a literal having a zero entry in every edge and vertex
sequence, all being the result of the Comparing of S-sets. Given a collection
of clauses, if any of these refinements occurred that were not the result of the
Comparing of S-sets, it was the result of LCR and K-rule compliancy, while
constructing the edge-sequences and vertex-sequences. We shall apply the
actions outlined in the refinement rules even when constructing the vertex
and edge-sequences. The example demonstrated that certain edge-sequences
were zero upon construction, as they failed LCR and K-rule compliancy. To
be systematic, we would first construct all the vertex-sequences as described
in definition 2.6. Then, apply LCR and K-rule to all of the vertex-sequences.
If the actions outlined in the refinement rules can be taken on any vertex-
sequence, we do so. Next, we construct all the edge-sequences as described
in definition 2.2. Then, apply LCR and K-rule to all of the edge-sequences.
If the actions outlined in the refinement rules can be taken on any vertex or
edge sequence, we do so. This process may be recursive.

It is to be understood that an edge-sequence Ix,y may be called just an edge
for simplicity and that a vertex may be referred to by its associated literal.

12

The Refinement Rules 1, 2, 3 and 4

When a refinement occurs and one of the rules 1, 2, 3 or 4 actions are to be
applied to an edge-sequence or a vertex-sequence, LCR and K-rule compli-
ancy must always be determined afterward. Note that the actions for the
refinement rules could be recursive and that all refinements are permanent.

Rule 1: a bit-change occurred

Let Iai,bj where i denotes cell i, and j denotes cell j, be an edge-sequence
where at least, one 1 entry for a position (occurrence) associated with literal
c became zero. Then, we change 1 entries to zero for all positions associated
with c in Iai,bj . If there was just one position for c, then no action is taken.

Now, we consider all edges Ia,b that are not Iai,bj . ie. at least one end-
point is not from either cell i or j. We will change a 1 to zero for every
occurrence of a literal who had at least one occurrence become zero in Iai,bj
for all edge-sequences labelled Ia,b. The result is all Ia,b which of course in-
cludes Iai,bj have the same set of literals whose corresponding entries are zero.

Rule 2: the follow up to a bit-change

If Ia,b has zero entries for c, then Ia,c will have zero entries for b, and Ib,c will
have zero entries for a. All three edge-sequences are documenting the same
fact, namely, that there is no solution with a, b and c together. So, if an
edge-sequence Ia,b for which at least one entry became zero, say for literal
c, we apply rule 1. Then, in Ib,c and Ia,c we make all 1 entries zero, that
correspond to literals a and b respectively.

Rule 3: Ixi,yj = 0, and was removed from its S-set Si,j

Let Ixi,yj be an edge that was removed from S-set, Si,j. The sub-subscripts
for the edge-sequence Ixi,yj indicate that one endpoint is from cell i, and the
other endpoint is from cell j. First, we remove all occurrences of Ixm,yn where
m+n 6= i+j, from their respective S-sets.

13

Next, we update all the vertex-sequences for literals x and y by: All the
vertex-sequences for x have all positions associated with y incur a bit-change.
And, all the vertex-sequences for y have all positions associated with x incur
a bit-change.

Recall, that any kind of refinement requires testing LCR and K-rule compli-
ancy, even on vertex-sequences. This in turn could cause the vertex-sequence
to equal zero. In such a case, we apply all actions outlined in rule 4.

We also ensure that all refined vertex-sequences for a literal x, have the same
set of literals whose corresponding entries are zero.

Now, all positions associated with y incur a bit-change, in Ix,# where # is
any literal that forms an edge with x. Then, all positions associated with x
incur a bit-change, in I%,y where % is any literal that forms an edge with y.

This whole process may cause another edge removal, in which case we apply
rule 3, recursively if need be. This in turn could cause a vertex-sequence to
equal zero. In such a case, we apply all actions outlined in rule 4.

Rule 4: a literal’s vertex-sequence equals zero

Let a literal x be such that its vertex-sequence violates the K-rule. Then its
vertex-sequence Vxi

, where x belongs to cell Ci is equal to zero.

If Vxi
is now zero, then all Vx vertex-sequences are now evaluated to be zero,

and all of them are removed from the vertex-sequence table.

When a vertex-sequence equals zero we do: All positions associated with x
incurs a bit-change in every vertex and edge sequence. This action in turn
causes all edge-sequences of the form: Ix,#, where # is any literal that forms
an edge with x, to equal zero.

This whole process may cause another edge-sequence (not of the form Ix,#),
to be removed, in which case we apply rule 3, recursively if need be. This in
turn could cause a vertex-sequence to equal zero. In such a case, we apply
all actions outlined here, in rule 4.

14

The Comparing of the S-sets

Essentially, the Comparing process is the algorithm. All data structures are
simply updated based on the outcome of Comparing S-sets with one another.

Definition 3.3. When every S-set has been Compared with every other S-
set, we say that a run has been completed. If c clauses are considered, then

there are
(
c
2

)
S-sets, thus the number of S-set comparisons for a run is

((c
2)
2

)
< c4.

Definition 3.4. A round is completed if the Comparing process stops be-
cause no refinement occurred during an entire run. We say that the S-sets
are equivalent when a round is completed.

We note that if the first round was not completed, it was the case that the
vertex-sequences associated to a clause, were evaluated to be zero, so they
were discarded. This violation of the K-rule stops all processing, as there is
no solution for the collection of clauses given.

To Compare, we take two S-sets and determine if an edge-sequence Ix,y
from one of the S-sets, can be refined by a union of the intersections between
Ix,y with each of the edge-sequences, from the other S-set. Either Ix,y the
edge-sequence under determination, is refined or it remains the same. This
is done for each edge-sequence from both of the S-sets, in the same manner.
As a matter of practice, we determine in turn, each edge-sequence from one
S-set first, and then we determine in turn, each edge-sequence from the other
S-set. Below, we construct two S-sets to describe in more detail all the steps
to be taken.

Let the S-set: Si,j contain 9 edge-sequences with endpoints from clauses: Ci

= (1, 2, 3) and Cj = (a, b, c) giving: I1,a, I1,b, I1,c, I2,a, I2,b, I2,c, I3,a, I3,b, I3,c

Let the S-set: Sk,l contain 9 edge-sequences with endpoints from clauses: Ck

= (4, 5, 6) and Cl = (d, e, f) giving: I4,d, I4,e, I4,f , I5,d, I5,e, I5,f , I6,d, I6,e, I6,f

If Si,j and Sk,l have 9 edge-sequences each, then there were no negations
between the literals in Ci and Cj, or between the literals in Ck and Cl, re-
spectively.

15

We say that determining all edge-sequences from one S-set first, is doing

one direction denoted by: Sk,l
1
⇀ Si,j. And, determining all edge-sequences

once, for both S-sets, is doing both directions, denoted by: Sk,l

1

2

Si,j

Suppose we determine I4,d of Sk,l first. Then we have:

(I1,a ∩ I4,d) ∪ (I1,b ∩ I4,d) ∪ (I1,c ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I2,b ∩ I4,d)∪
(I2,c ∩ I4,d) ∪ (I3,a ∩ I4,d) ∪ (I3,b ∩ I4,d) ∪ (I3,c ∩ I4,d) ≤ I4,d

The one efficiency present even in the original naive version with no refine-
ment rules, was eliminating any unnecessary intersections by one easy check.
After an edge-sequence is selected for determination, say Ixr,ys where xr ∈
Cr, ys ∈ Cs, the edge-sequences from the other S-set in the Comparing, that
do not have 1 entries for the endpoints xr and ys when intersected with Ixr,ys ,
will be zero. Recall, that the two cells containing the endpoints, only have
a single 1 entry corresponding to the two endpoints’ positions, in their re-
spective cells. Thus, if the other edge-sequence does not have a 1 entry for
those same positions, the intersection will be zero, due to K-rule violation.
So, after the selection of an edge-sequence to be determined, we select the
edge-sequences from the other S-set, if they have 1 entries in both positions
corresponding to the endpoints of Ixr,ys . Of course, we could also check to
see if there are 1 entries in Ixr,ys corresponding to the endpoints of the other
edge-sequence as well.

Let’s suppose then, that every edge-sequence in Si,j above, did have 1 entries
for both endpoints 4k and dl of I4,d. Now suppose 6 intersections become
zero, after the intersections were taken and LCR and K-rule was applied to
each intersection, and we now have:

0 ∪ (I1,b ∩ I4,d) ∪ 0 ∪ (I2,a ∩ I4,d) ∪ 0 ∪ 0 ∪ 0 ∪ 0 ∪ (I3,c ∩ I4,d) ≤ I4,d

which is equivalent to: (I1,b ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I3,c ∩ I4,d) ≤ I4,d

Now, we take their union. Of course, LCR and K-rule compliancy need not
be checked for any union, since it would not have been possible to create a
new loner cell scenario, nor a cell with all zero entries.

16

Then, to complete the determination of I4,d we need to compare position by
position, to see if I4,d has been refined.

More precisely, if we have: (I1,b ∩ I4,d)∪ (I2,a ∩ I4,d)∪ (I3,c ∩ I4,d) = I4,d, then
I4,d is unchanged, and we move on to the next edge-sequence to be deter-
mined. Or instead, we have: (I1,b∩I4,d)∪ (I2,a∩I4,d)∪ (I3,c∩I4,d) < I4,d, then
I4,d has been refined. We need to know which literals incurred a bit-change,
and then we apply the appropriate actions of the refinements rules, and as
always, followed by testing LCR and K-rule compliancy.

To summarize, an edge-sequence I4,d to be determined, has 4 possible sce-
narios.

1) I4,d 6= 0, and is unchanged.

2) I4,d 6= 0, and is refined. We determine which literals had a bit-change and
follow all appropriate refinement rule actions, recursively if need be.

3) I4,d = 0, because (I1,b ∩ I4,d) ∪ (I2,a ∩ I4,d) ∪ (I3,c ∩ I4,d) ≤ I4,d became
zero after an appropriate refinement rule action was taken, and then LCR
and K-rule was applied. In this case, edge-sequence I4,d is discarded, and
the actions stated in refinement rule 3 are taken, recursively if need be.

4) If each intersection: (I1,b ∩ I4,d), (I2,a ∩ I4,d) and (I3,c ∩ I4,d) had also been
zero at the outset, then I4,d = 0. And, as with 3), I4,d is discarded and the
actions stated in refinement rule 3 are taken, recursively if need be. When an
edge-sequence equals zero, it was the case that none of the edge-sequences
from a S-set could be part of a solution with the edge-sequence that was
being determined.

There are two observations worth noting with respect to the Comparing
process. First, that the result of an intersection with just the edge-sequence
to be determined, or the union of the intersections between the edge-sequence
to be determined, with each of the allowed edge-sequences, from the other
S-set, is never a multi-edged sequence. Whether no refinement took place
for the edge-sequence being determined, or a great deal of refinement took
place, it is still the edge-sequence that is being determined and it does indeed
represent an edge-sequence with two particular endpoints.

17

In section 2, we gave an example of an intersection and a union (from Fig-
ure 1), but neither was for an edge-sequence determination. Recall, that
the intersection violated the K-rule, thus equals zero, but the union was not
evaluated to be zero, and it’s properly defined as a multi-edged sequence.

The second observation is that the distributive law for unions and inter-
sections does not apply here. Otherwise, for example, we could say that:
(I1,b ∩ I4,d)∪ (I2,a ∩ I4,d)∪ (I3,c ∩ I4,d) = (I1,b ∪ I2,a ∪ I3,c)∩ I4,d which is not
true in general.

In the algorithm, we provide a Comparing between two S-sets that will do

more than once in each direction. If doing the second direction, Sk,l
2
↽ Si,j

results in one or more bit-changes, we will do Sk,l
3
⇀ Si,j again. And if one

or more bit-changes occur in Sk,l
3
⇀ Si,j we will do Sk,l

4
↽ Si,j again, and so

on until no bit-change occurs while doing a direction. An important note, is

that we don’t have to do this. If we only did Sk,l

1

2
Si,j no matter how many

bit-changes occurred while doing the second direction, it wouldn’t matter.

Suppose doing Sk,l
3
⇀ Si,j would have had a bit-change. Then, if that scenario

still exists in the next run, meaning that some other Comparing of S-sets
didn’t do the refinement in question prior to returning to these two S-sets
Comparing, a bit-change would still occur for Sk,l ⇀ Si,j. We are assuming

by doing more than just Sk,l

1

2

Si,j if prompted by a bit-change occurring

during Sk,l
2
↽ Si,j is an efficiency measure.

Recall definition 3.3, that after all pairs of S-sets have been compared with

each other, a run has been completed, which is
((c

2)
2

)
< c4, for c clauses.

Another run will commence if any refinement occurred. Eventually, a run
will incur no refinement, not even a bit-change, at which point a round has
been completed, and the S-sets are said to be equivalent. Or, the algorithm
stopped because unsatisfiability had been discovered during round 1. Dis-
covering unsatisfiability is when every literal from some clause is such that
their vertex-sequences equal zero.

18

An example of Comparing

The two Comparings shown in this example, produce the same outcome as
the action for refinement rule 2.

Let the S-set: Si,j contain 9 edge-sequences with endpoints from clauses: Ci

= (a, 2, 3) and Cj = (b, 4, 5) giving: Iai,bj , Ia,4, Ia,5, I2,b, I2,4, I2,5, I3,b, I3,4, I3,5

Now suppose we have clause: Ck = (c, 6, 7). Then, Iai,ck ∈ Si,k and Ibj ,ck ∈
Sj,k Further suppose that Iai,bj incurred a bit-change for literal c.

First we consider: Si,j

2

1

Si,k where we determine Iai,ck

Observe that all edge-sequences: I2,b, I2,4, I2,5, I3,b, I3,4, I3,5 have a zero entry
for ai, so they are not selected for the determination of Iai,ck , again because
their intersection would be just zero. Since, Iai,bj has zero entries for all oc-
currences of c, then Iai,bj ∩Iai,ck = 0. Thus, the only two edge-sequences from
Si,j to determine Iai,ck is: Ia,4 and Ia,5, both of which have a zero entry for
bj. Therefore, the determination of Iai,ck is a refinement where at least bj has
a zero entry. Then after refinement rule 1 is applied, all occurrences of lit-
eral b in Iai,ck are zero, assuming Iai,ck 6= 0, after LCR and K-rule compliancy.

Similarly, we consider: Si,j

2

1

Sj,k where we determine Ibj ,ck

Observe that all edge-sequences: Ia,4, Ia,5, I2,4, I2,5, I3,4, I3,5 have a zero entry
for bj, so they are not selected for the determination of Ibj ,ck . Since, Iai,bj
has zero entries for all occurrences of c, then Iai,bj ∩ Ibj ,ck = 0. Thus, the
only two edge-sequences from Si,j to determine Ibj ,ck is: I2,b and I3,b, both
of which have a zero entry for ai. Therefore, the determination of Ibj ,ck is a
refinement where at least ai has a zero entry. Then after refinement rule 1
is applied, all occurrences of literal a in Ibj ,ck are zero, assuming Ibj ,ck 6= 0,
after LCR and K-rule compliancy.

Summary: Pre-processing begins with a DIMACS file submission, provid-
ing clauses, where each clause is at most size 3. The pre-processing entails
ordering the literals within each clause (by any convention desired), and then
removing duplicate clauses or literals within a clause. Next, the clauses to
be removed have at least one pure literal, or they are quantum clauses. This

19

may be a recursive process. Finally, clauses of size 1, a loner clause, are re-
moved as are the negations of the literals from these clauses of size 1 from all
the other clauses that were given. This may also be recursive, as a negation
may have been in a clause of size 2, thus its removal created a new loner
clause. At this point, edge and vertex sequences are constructed from the
remaining clauses. The edge-sequences are grouped in their respective S-
sets and the vertex-sequences are grouped by their clause association in the
vertex-sequence table. When the vertex and edge sequences are LCR and
K-rule compliant, the Comparing process begins. The Comparing process
stops if: i) a clause was such that all its literals’ vertex-sequences are zero,
where it’s reported that the given collection of clauses has no solution. Or,
ii) one or more runs take place, where the last run had no refinement. This
signals the end of a round, and the S-sets are said to be equivalent.

Claim : If a 3-SAT G, with c clauses (after pre-processing), has a solution
KC , then the S-sets for G, will be equivalent at the completion of round 1,
where each edge-sequence Ix,y that appears, belongs to at least one solution.
Moreover, an edge-sequence Ix,y is such that any literal with a 1 entry in Ix,y
belongs to at least one KC with x and y. Lastly, if at least one clause is such
that all its literals’ vertex-sequences are zero, it means there is no solution for
the collection of clauses that were processed, thus unsatisfiability has been
discovered, which stops the processing of round 1.

In the next section we establish the claim. This is followed by proving that
attaining S-set equivalency is always achieved in polynomial time.

4 Proof of correctness and termination

Comparing and the Refinement rules

The actions of the refinement rules are taken if one of the four refinements
occurred, by the Comparing process. We assert that: 1) If by Comparing, a
bit-change occurred for one position of a literal x in some edge-sequence I,
the Comparing process will eventually cause a bit-change for every position
of x in I. 2) All edge-sequences Ix,y have the same set of literals with zero

20

entries via Comparing. 3) If by Comparing, an edge-sequence is evaluated to
be zero, then all edge-sequences whose endpoints have the same associated
literals, will be evaluated to be zero, by Comparing. And finally, 4) If by
Comparing, a literal’s vertex-sequence Vxi

is evaluated to be zero, then all
vertex-sequences for literal x belonging to other clauses, will be evaluated to
be zero, by Comparing. Note that we have already shown in the Comparing
example, that refinement rule 2 is done by Comparing.

Since we intend to prove the algorithm that does use the refinement rules,
then to determine if its actions are merely an efficiency isn’t warranted.
Moreover, the argument to use the actions of the refinement rules ensures
contradiction free edge-sequences. More precisely, if a bit-change occurred
for one occurrence of literal c in edge-sequence Ia,b by Comparing, then with
respect to literals, there is no solution using literals a, b and c together.
Therefore, if another occurrence of literal c exists in Ia,b it’s still the case
that there is no solution using literals a, b and c together. Thus, there would
be no purpose for other occurrences of c in Ia,b to have 1 entries. It follows,
that if there exists another Ia,b that belongs to another S-set, that there
would be no purpose for any occurrence of c to have 1 entries in this Ia,b.
And, if by Comparing, Ia,b = 0, then with respect to literals, there is no so-
lution using literals a and b together, so all edge-sequences whose endpoints
are associated with literals a and b should be zero to be contradiction free.
And finally, if a literal’s vertex-sequence Vxi

= 0, by Comparing, meaning
no solution exists using literal x, then with respect to literals, the vertex-
sequence for every occurrence of x should be zero to be contradiction free.
We would prefer to provide the proof of the assertion if there should be any
interest.

Another efficiency rule of note, but not part of our algorithm, is with re-
spect to the vertex-sequences. Suppose during the Comparing process, it is
determined that Vx = 0 say, and then at some later time in the Comparing
process, it is determined that V−x = 0. This implies that the 3-SAT G, being
processed is unsatisfiable. More precisely, should G have a solution that does
not use x or −x, it implies that there is also a solution that does use x and
another solution that does use −x, a contradiction. Therefore, G must be
unsatisfiable, so processing can stop.

21

Lemma 4.1. LetW be a collection of S-sets with LCR and K-rule compliant
edge-sequences of length c cells. Then, no edge-sequence from W, belonging
to a KC, is removed by the Comparing process.

Proof. Suppose there exists a KC , M. Then, there exists an edge-
sequence in each S-set of W , such that

⋂
i,j

Ii,j 6= 0, where i and j are every

pair of endpoints for the collection of edge-sequences ofM, by definition 2.10.
So, if we take any edge-sequence I, belonging to M, it will still exist after
the determination of I from every other S-set. The reason is that each S-set
Si,j, has an edge-sequence Ixi,yj , call it I ′, of M, and the intersection I ∩ I ′,
preserves all the 1 entries for every literal that is part of the solution, by
definition ofM. Thus, I ∩ I ′ will not equal zero after LCR and K-rule com-
pliancy, and the union of any additional intersections with I, for any given
determination, will be of no consequence. Additionally, I may be refined due
to refinement rules taken on it or on other edge-sequences, but this will not
effect the 1 entries for the literals that belong toM. That is, if any 1 entry in
I for a literal ofM, did incur a bit-change, it would imply that another edge
or endpoint ofM, equals zero, a contradiction. In other words, every deter-
mination of I with all the

(
c
2

)
− 1 S-sets will at most refine I, since there is an

edge-sequence belonging toM, in every S-set, and their intersection, I ∩ I ′,
preserves the 1 entries for every literal that is part of the solution M. And,
no 1 entry in I for a literal of M, is removed via the actions of the refine-
ment rules on any edge-sequence, otherwiseM did not exist, a contradiction.

Observe that the proof for lemma 4.1 establishes that if an edge-sequence
Ix,y and some literal z belong to a KC , then z does not incur a bit-change in
Ix,y by Comparing.

Lemma 4.2. Let X be a collection of equivalent S-sets with edge-sequences
of length c cells, for a 3-SAT G with c clauses. Suppose an edge-sequence
Ix,y from X , is such that its 1 entries correspond to just edge-singletons or
singletons, which includes x and y. Then, Ix,y belongs to at least one KC.

Proof. Let an edge-sequence be Ix,y. Observe, that if there is a collec-
tion Q of 1 entries, one from each cell, whose corresponding literals are such
that no literal and its negation appear, then there is a solution by definition

22

2.1. And, by lemma 4.1, the edges between those literals which did exist at
the outset, will not be removed by the Comparing process, thus there is a
corresponding KC . ie. a solution as defined in 2.10.

Let an edge-sequence Ix,y with c cells, that is LCR and K-rule compliant,
be such that its 1 entries correspond to just edge-singletons or singletons.

We shall construct a collection Q by first selecting the literals from all loner
cells. This sub-collection is non-empty since endpoints x and y are in loner
cells. Recall, that if Ix,y is LCR compliant, then the negations of the literals
in loner cells do not exist in Ix,y. Assume that the collection Q being con-
structed is not yet size c. Note that at this point, there are only cells with at
least two 1 entries, from which to select a literal. For selecting literals from
such cells, we make two cases to simplify the description of constructing a
collection Q.

Case i): For edge-sequence Ix,y there are no edge-pure literals in cells with
two or three 1 entries.

Step 1: We select any cell Ci and choose one of the literals, say a, to repre-
sent the cell. Next, we find the cell that contains the 1 entry for literal −a,
say Cj. If cell Cj has a 1 entry for the negation of a literal in Ci, which is not
representing Ci then step 1 stops. Suppose Cj does not. Then, there exist
one or two 1 entries for literals not −a, that are not the negations of any
literal with a 1 entry in Ci. Choose one of these literals to represent cell Cj

and find the cell Ck that contains the 1 entry for the negation of the literal
chosen to represent Cj. If cell Ck has a 1 entry for the negation of a literal in
Ci or Cj which is not representing Ci or Cj then step 1 stops. If this is not the
case, then continue step 1 as described above, until a cell is finally selected
which does have a 1 entry for a literal which is the negation of some literal in
a previously selected cell, that does not represent that cell. Should this never
occur, then the last cell selected is the cth cell, and there exists at least one
1 entry for a literal that is not the negation of any literal that represents a cell.

Step 2: Suppose step 1 stops and all c cells have not been selected. Then
the last cell selected has at least one 1 entry for literal z say, which is the
negation of some literal in a previously selected cell, that does not represent
that cell. The literal z will represent the last cell selected. Now, we will find

23

all cells not yet selected, that contain the negations of literals in previously
selected cells which did not represent their cells. These negations will be
chosen to represent the cells in which they were found. Of course, should
more than one negation belong to the same cell, we pick any one to represent
the cell. Next, after selecting the cells that contain the negations of literals
in previously selected cells, we check these cells to see if there are literals not
representing their cells, that are not the negations of any literal among the
cells selected thus far. If such literals exist, then we will find all cells not yet
selected, that contain the negations of these literals. These negations will be
chosen to represent the cells in which they were found. We repeat this part of
step 2 as just described, until there are no literals of this kind. At this point,
if all c cells have not been selected, then a closed circuit exists, meaning the
collection of selected cells (except the loner cells), contain a literal and its
negation. If this is the case, the collection of cells not yet selected, contain
a literal and its negation as well. Therefore, we apply step 1 again on this
remaining collection of cells which have no literal representing them. Ob-
serve that no literal from the cells of the closed circuit are contained in these
remaining cells. Step 1 may stop again before all c cells have been selected,
in which case, step 2 is applied. This may be recursive until each of the c
cells has a literal representing it, thus aQ of size c will have been constructed.

Case ii): For edge-sequence Ix,y there exist, one or more cells having two or
three 1 entries, that contain at least one edge-pure literal.

After selecting all literals from loner cells, we select all the edge-pure literals
from cells having two or three 1 entries. These literals will represent their cell
and if a cell has 1 entries for more than one edge-pure literal, any one can be
chosen to represent that cell. So, selecting cells with an edge-pure literal may
leave the cells with no representative as yet, with edge-pure literals among
them. Thus, this process may be recursive. If this recursive process is not
all c cells, then it is a closed circuit , otherwise the process would continue.
We are now in case i) again, so we begin with step 1 for the remaining cells
which have no literal representing them thus far. Again, all of the above may
be recursive until each of the c cells has a literal representing it, producing a
collection Q of size c. Since we were able to construct a collection Q of size
c for the two possible cases outlined above, it follows that Ix,y belongs to at
least one KC .

24

Note well that lemma 4.2 implies that if the stated scenario occurs, in a W
produced for a 3-SAT G, then the remaining processing can finish with a
linear time construction of a solution for G.

S-set collections and refinements

We claim that no KC−1 6⊂ KC for any collection of S-sets W with LCR
and K-rule compliant edge-sequences of length c cells, constructed from the
c clauses for a 3-SAT G, exists. Suppose otherwise. Then, let M be a
KC−1 6⊂ KC , and let clause Ci = (a, b, c) be the clause that does not contain
an endpoint for any edge of M. Then at most, only two negations of the
literals in Ci could be used for M, since all edge-sequences must be LCR
compliant. So, suppose −a and −b are endpoints for edges of M. Then,
there exists an edge-sequence I−a,−b for M. However, I−a,−b has a zero en-
try for every occurrence of literal −c, otherwise, I−a,−b would not be LCR
compliant, thus, by definition 2.10,M can’t use literal −c. Since, there were
edges between literal c ∈ Ci with every literal who is an endpoint for all the
edges of M, then by lemma 4.1, the edges between those literals which did
exist at the outset, will not be removed by Comparing. This implies that
M⊂ KC , contradicting the assumption thatM was not contained. Observe,
that the same argument holds, no matter which two literals of Ci had their
negations as endpoints for edges of M. Also, if a KC−1 uses only one or no
negation of a literal from the clause that does not contain an endpoint for
any edge of KC−1, then the KC−1 is contained in some KC , by lemma 4.1.

With respect to just literals, there is a scenario sometimes referred to as
atomica, which is: given a collection of m clauses, there is a solution for
any choice of m−1 clauses, but no solution for all m clauses. However, the
atomica scenario never occurs with any W , due to LCR compliancy of the
edge-sequences, as demonstrated above. ie. @ a KC−1 that uses the negations
of all the literals from the clause not containing an endpoint for the KC−1.
In other words, by construction, all KC−1 6⊂ KC scenarios are eliminated.

So, if a literal x is such that it does not belong to any KC for some W with
edge-sequences of length c cells, then by the claim above, it’s known that x
does not belong to any KC−1 of W , as well. Moreover, x does not belong to
any KP , p < c−1, if there exist two or more clauses not having endpoints for

25

any edge of the KP , where all together, they have no literal and its negation
among them. For example, suppose there are two clauses Ci = (a, b, c) and
Cj = (d, e, f), where the literals from Ci and Cj together, do not have a
literal and its negation. Now, consider a KP , so a KC−2 denoted L, that has
no endpoint for any of its edges in Ci or Cj. Suppose to the contrary that x
∈ L. Now, L can at most, only use two negations for the literals of Ci, and
at most, only two negations for the literals of Cj. Since, Ci and Cj together
do not contain a literal and its negation, there exists a K2 (an edge), be-
tween Ci and Cj for any possible choice of four negations of the literals from
Ci and Cj which implies that L ⊂ KC−1 ⊂ KC =⇒ x ∈ KC , a contradiction.

Note that every collection of nine or more clauses after pre-processing, have
at least a pair of clauses with no literal and its negation among their literals.

Refinement Claim : Suppose a collection of S-setsW incurred one or more
bit-changes called refinement R, by Comparing, at some stage in the Com-
paring process. Now suppose we imposed in an arbitrary fashion, bit-changes
to the edge-sequences ofW , and call it refinement S, prior to any Comparing.
Then, the same refinement R, would still occur by the Comparing of W , or
R is fully or partly subsumed by S.

Proof: We first note that refinements are due to the relationships between
the edge-sequences and conversely, refinements cause relationships between
the edge-sequences. So, if a collection of edge-sequences cause a bit-change
for a literal c, in some edge-sequence Ia,b during some order of Comparing,
then imposing a bit-change to any of the edge-sequences involved, prior to
any Comparing, will still result with no possibility of a KC , using literals
a, b and c together. More precisely, suppose an edge-sequence Ia,b incurs a
bit-change for a literal c by some order of Comparing. Now suppose that
before any Comparing, we imposed any arbitrary refinement S. There are
three cases to consider.

The first case is that refinement S, played no role in the bit-change of c in
Ia,b. So, proceeding with the same order of Comparing, still results in a bit-
change for c in Ia,b.

The second case is when the refinement S, does play a role, where during
the same sequence of Comparing, S causes the bit-change of c in Ia,b to oc-

26

cur sooner, during the same order of Comparing. The refinement S may
have also caused other refinements, including to Ia,b during the same order
of Comparing.

The third case is when the refinement S, does play a role by subsuming
some or all of R. The most extreme would be that S causes Ia,b = 0, dur-
ing the same order of Comparing, which is the ultimate refinement of an
edge-sequence. If Ia,b = 0, then there is no possibility of a KC , using lit-
erals a, b, thus no KC , using literals a, b and c. ie. the bit-change to c in
Ia,b was subsumed. The only note of interest for the third case is suppose
an edge-sequence Ix,y did play a role in the refinement of Ia,b with no im-
posed bit-changes. ie. no S. Now suppose that with S, Ix,y = 0, during
the same sequence of Comparing. In such a case, at least the bit-change of
c in Ia,b still occurs during the same order of Comparing, because Ix,y was
just one edge-sequence that was part of a union of edge-sequences from its
S-set that refined either Ia,b or it refined another edge-sequence which re-
fined another, and so on, until some union of edge-sequences then refined
Ia,b. More generally, the remainder of the union of edge-sequences where Ix,y
= 0, determining an edge-sequence I when Comparing, will still refine I, if
the union that included Ix,y had. Or, it is the case that the remainder of the
union of edge-sequences determining an edge-sequence I, can now refine I,
because Ix,y = 0. The case being considered for Ia,b above, is the former. In
summary, refinements do not prevent other refinements, unless one is sub-
sumed by another.

Additionally, it should be clear that if sub edge-sequences of length p cells
for someW with edge-sequences of length c cells, were to be Compared using
just the

(
p
2

)
S-sets and a refinement R incurred, that increasing the length of

those sub edge-sequences to c cells, prior to the same order of Comparing, will
not prevent refinement R, to occur, while processing the same S-sets. This
of course, assumes that some or all of refinement R, was not subsumed while
performing the same order of Comparing, due to the addition of k = c−p
cells. ie. if the additional k cells played no role wrt. refinement R. The
reason is simply that the refinements were due to the relationships between
the first p cells for those same edge-sequences, regardless of the size of k.

27

Recall that even a single bit-change always eliminates at least one KC possi-
bility. So, if an edge-sequence Ia,b incurs a bit-change in some position for a
literal c, then there is now, no KC possible, using literals a, b and c together,
by definition 2.10. Equally important to remember, is that the bit-change
for c in Ia,b does not necessarily eliminate a KC possibility that does not use
literals a, b and c together.

Theorem 4.1. Let a collection of equivalent S-sets X with edge-sequences of
length c cells, be the result of Comparing a collection of S-sets W. Then, an
edge-sequence Ix,y from X , is such that a literal with a 1 entry in Ix,y belongs
to at least one KC with x and y.

Recall that there is no collection of equivalent S-sets if unsatisfiability is de-
termined, which is discovered during the first round.

Proof. The proof is by induction on the number of clauses c, and the
base case shall be c = 3.

Let c = 3. Observe that the combinations of clause sizes, for three clauses
are: i) 3, 3, 3 ii) 3, 3, 2 iii) 3, 2, 2 iv) 3, 3, 1 v) 3, 2, 1 and vi) 3, 1, 1.

A 3-SAT with three clauses could have as many as 27 edge-sequences, nine in
each S-set constructed or as few as 7 edge-sequences for vi) above. Note that
pre-processing would eliminate iv), v) and vi) due to the loner clauses, nor
could 27 edge-sequences be possible without the existence of pure literals.
However, we exclude the pre-processing routine from the proof.

So, after the application of the LCR and K-rule to the newly constructed
edge-sequences, and any applicable action of the refinement rules, the edge-
sequences that remain will have one of the three possible forms:

1. Ix1,y2 : (1x, 0, 0 | 1y, 0, 0 | 1, 0, 0)

2. Ix1,y2 : (1x, 0, 0 | 1y, 0, 0 | 1, 1, 0)

3. Ix1,y2 : (1x, 0, 0 | 1y, 0, 0 | 1, 1, 1)

28

WLOG, we can assume that the edge-sequence Ix,y has its endpoints in the
first and second cell. The third cell must have one, two or three 1 entries,
to be K-rule compliant. In 1, literals x1 and y2 belong to one K3 with some
literal having a 1 entry in the third cell, and in 2, x1 and y2 belong to a K3

with each of the two literals in cell three having a 1 entry. In 3, literals x1 and
y2 belong to a K3 with each of the three literals in cell three having a 1 entry.

Claim: If the three S-sets having edge-sequences with 3 cells, require no
more actions from the refinement rules to be taken and are LCR, K-rule
compliant, then the S-sets are already equivalent. ie. Only one run occurs.

Proof: Let literal x be associated to cell C1, y to cell C2 and z to cell C3.
Suppose Ix1,y2 has a 1 entry for z3. Then, let Ix1,z3 have a 1 entry for y2 and
Iy2,z3 have a 1 entry for x1. Now, suppose instead that Ix1,z3 has a 0 entry
for y2. Then, by the action of refinement rule 2, Ix1,y2 will have a 0 entry for
z3 and Iy2,z3 will have a 0 entry for x1. Since, the edge-sequences were such
that no actions of the refinement rules applied, it can not be the case. Then,
it is the case that Ix1,y2 ∩ Ix1,z3 ∩ Iy2,z3 6= 0, thus, these three edge-sequences
belong to a K3. Therefore, an edge-sequence Ix,y belonging to a collection
of three equivalent S-sets X , is such that any literal with a 1 entry in Ix,y
belongs to at least one K3 with x and y.

Suppose now that c > 3 is an integer for which the statement of the theorem
is valid. We consider cases 1, 2 and 3.

Case 1i): Let a 3-SAT G, with c+1 clauses have a non-singleton literal x
that does not belong to any KC+1. ie. there is no solution using literal x.

Let G ′ be the 3-SAT formed with the clauses of G less one clause containing
literal x. Let W ′ be the collection of S-sets for G ′. If we apply Comparing
to W ′, either we determine unsatisfiability in which case, x belongs to no
solution, or a collection of equivalent S-sets X ′, is produced where the hy-
pothesis holds. If X ′ contains edge-sequences with an endpoint associated
to literal x, then x belongs to a KC K, for G ′, thus x would also belong to
a KC+1 for G, using x from the (c+1)th clause. This is true since there are
edges between one occurrence of literal xi say, used in K and all the other
literals of K, so there must also be edges between any xj and all the other
literals of K (except the literal in cell j that was replaced with xj), due to

29

the refinement rules. Therefore, x does not appear in any edge-sequence or
vertex-sequence for G ′ which implies x does not appear in any edge-sequence
or vertex-sequence for G as well. This is so, since the same refinement would
occur or be subsumed by another refinement when Comparing is applied to
a collection of S-setsW , for G producing a collection of equivalent S-sets X .

Case 1ii): Let a 3-SAT G, with c+1 clauses have a singleton literal x that
does not belong to any KC+1.

Let G ′ be the 3-SAT formed with the clauses of G less one clause of the form:
(y, l1, l2), where literal y is a non edge-singleton wrt. Ix,y of G. Let W ′ be
the collection of S-sets for G ′. If we apply Comparing to W ′, either we de-
termine unsatisfiability in which case, literal x belongs to no solution, or a
collection of equivalent S-sets X ′, is produced where the hypothesis holds.
Suppose there is an edge-sequence Ix,y from X ′. If X ′ contains edge-sequence
Ix,y, then x belongs to a KC K, for G ′, so x would also belong to a KC+1

for G, using y from the (c+1)th clause. As in 1i), there must be edges be-
tween any y, so in particular y from (c+1)th clause and the literals for K,
due to the refinement rules. It follows then, that Ix,y does not appear in
X ′ which implies it also does not appear in a collection of equivalent S-sets
X for G. Again, because the same refinement would occur or be subsumed
by another refinement when Comparing is applied to a collection of S-sets
W , for G producing X . If we construct other 3-SATs with the clauses of G
less one clause with the property of containing at least one literal # that is
a non edge-singleton wrt. Ix,# of G, eventually all edge-sequences with one
endpoint associated to x is of the form: Ix,% where % is an edge-singleton or
just a singleton, and every position associated to a non edge-singleton has
a zero entry, due to the actions of refinement rule 3. And, by lemma 4.2, if
Ix,% is such that its 1 entries correspond to just edge-singletons or singletons,
including x and %, then it belongs to at least one solution. Since x does not,
then there is no Ix,% in X , so it follows that Vx = 0.

Case 2i): Let a collection of S-sets W , for G, with c+1 clauses have an
edge-sequence Ix,y that does not belong to any KC+1 where y is a non edge-
singleton wrt. Ix,y.

Assume that x and y do belong to (different) solutions, otherwise we are in
Case 1. Let G ′ be the 3-SAT formed with the clauses of G less one clause

30

of the form: (y, l1, l2), where y is a non edge-singleton wrt. Ix,y of G. Let
W ′ be the collection of S-sets for G ′. If we apply Comparing to W ′, either
we determine unsatisfiability in which case, Ix,y belongs to no solution, or a
collection of equivalent S-sets X ′, is produced where the hypothesis holds.
Suppose there is an edge-sequence Ix,y from X ′. If X ′ contains edge-sequence
Ix,y then y belongs to a KC K, for G ′, so Ix,y would also belong to a KC+1 for
G, using y from the (c+1)th clause, just as we saw for Case 1i). So, it also
follows that Ix,y does not appear in X ′ which implies it also does not appear
in a collection of equivalent S-sets X for G. Because, the same refinement
would occur or be subsumed by another refinement when Comparing is ap-
plied to a collection of S-sets W , for G producing X .

Case 2ii): Let a collection of S-sets W , for G, with c+1 clauses have an
edge-sequence Ix,y that does not belong to any KC+1 and x and y are edge-
singletons wrt. Ix,y.

Again, we assume that x and y do belong to different solutions, otherwise
we are in Case 1. Let G ′ be the 3-SAT formed with the clauses of G less
one clause not containing x or y, of the form: (z, l1, l2), where literal z is a
non edge-singleton wrt. Ix,y. Let W ′ be the collection of S-sets for G ′. If we
apply Comparing to W ′, either we determine unsatisfiability in which case,
an edge-sequence Ix,y belongs to no solution, or a collection of equivalent
S-sets X ′, is produced where the hypothesis holds. Suppose there is an edge-
sequence Ix,y from X ′. If X ′ contains edge-sequence Ix,y with a 1 entry for z,
then Ix,y also belongs to a KC+1 for G, using the literal z from the (c+1)th

clause, contradicting that Ix,y /∈ any KC+1. So if Ix,y appears in X ′ it must
have a zero entry for literal z, and it follows that the same refinement would
occur or be subsumed by another refinement when Comparing is applied to
a collection of S-sets W , for G producing X . If we construct other 3-SATs
with the clauses of G less one clause not having x or y, with the property
of containing at least one non edge-singleton wrt. Ix,y for G, eventually all
that could remain having a 1 entry in Ix,y are edge-singletons or singletons
and every position associated to a non edge-singleton has a zero entry due
to the actions of refinement rule 3. And, by lemma 4.2, if Ix,y is such that
its 1 entries correspond to only edge-singletons or singletons, then it belongs
to at least one solution for G, a contradiction. Therefore, Ix,y does not exist
in X . ie. by Comparing Ix,y = 0.

31

Claim: Let a collection of S-sets W , for a 3-SAT G, with c+1 clauses have
an edge-sequence Ix,y. If, by the Comparing process Ix,y incurs zero entries
for some literal z and for its negation −z, Comparing will produce Ix,y = 0.

Proof: Suppose that Comparing produced the edge-sequences Ix,y with zero
entries for literal z and its negation −z, where y is a non edge-singleton wrt.
Ix,y. If we follow the same process as described in Case 2i), for this G, and
suppose we have that Ix,y belongs to at least one KC+1 for G, because Ix,y
belonged to a KC for G ′, then a contradiction results. Since, it is assumed
that by the Comparing process Ix,y will incur zero entries for z and −z, then
Ix,y belongs to a KC+1 M, not using z or −z. This of course implies that
Ix,y can also belong to a KC+1 using z or −z. Since the edges between literal
z say, and the literals for some KC ⊂ M, must have been there from the
outset for G, then by lemma 4.1, they were not removed, contradicting that
the 1 entries for z in Ix,y of G, were turned to zero entries (bit-changes), by
Comparing. So, there could be no Ix,y in X ′ for G ′, which implies that Ix,y = 0.

Suppose now that Comparing produced the edge-sequences Ix,y with zero
entries for literal z and its negation −z, where x and y are edge-singletons in
Ix,y. If we follow the same process as described in Case 2ii), for this G, and
suppose we have that Ix,y belongs to at least one KC+1 for G, then the same
contradiction results. Therefore, Comparing will produce Ix,y = 0.

Case 3: Suppose an edge-sequence Ix,y from a collection of equivalent S-sets
X , for a 3-SAT G, with c+1 clauses, belongs to at least one KC+1.

First, consider any non edge-singleton literal s that’s not x or y, in Ix,y. Let
G ′ be the 3-SAT formed with the clauses of G less one clause of the form:
(s, l1, l2). Let W ′ be the collection of S-sets for G ′. If we apply Comparing
toW ′, a collection of equivalent S-sets X ′, is produced where the hypothesis
holds. We know that X ′ with Ix,y will be produced because X for G, was
produced with the same collection of clauses plus (s, l1, l2), where Ix,y exists
in X . So, if X ′ contains edge-sequence Ix,y with a 1 entry for s, then Ix,y also
belongs to a KC+1 for G, using the literal s from the (c+1)th clause. If to the
contrary, Ix,y appeared in X ′ with a zero entry for literal s, it would follow
that the same refinement would occur, or be subsumed by another refinement
when Comparing is applied to a collection of S-sets W , for G producing X ,
where literal s would instead, have a zero entry.

32

Next, consider the cases where both x and y are non edge-singletons each
occurring at least twice in Ixi,yj or only x is a non edge-singleton which occurs
at least three times in Ixi,yj , where we follow the same process as described
in Case 1i). For example, suppose x and y are non edge-singletons each oc-
curring twice in Ixi,yj . Then, there exists two clauses Cm and Cn containing
x and y, respectively. Note that m, n, i and j are distinct cells. We shall
construct G ′ = G − {Cm} and G ′′ = G − {Cn} and follow the process as out-
lined in 1i). For G ′ = G − {Cm}, we are able to determine the entries for all
cells except cells m and i, when examining Ixi,yj and Ixi,yn . And, for G ′′ =
G −{Cn}, we are able to determine the entries for all cells except cells j and
n, when examining Ixi,yj and Ixm,yj . However, all together, every cell had its
entries determined at size c, where the hypothesis holds, which implies the
entries are also known at size c+1, for these edge-sequences.

Now, suppose that x is a non edge-singleton which occurs three times in Ixi,yj

and y is an edge-singleton wrt. Ixi,yj . Then, there exists three distinct cells
Cm, Cn and Ci containing x. We shall construct G ′ = G − {Cm} and G ′′ =
G−{Ci} then, follow the process as outlined in 1i). For G ′ = G−{Cm}, we are
able to determine the entries for all cells except cell m, when examining Ixi,yj

and Ixn,yj . And, for G ′′ = G − {Ci}, we are able to determine the entries for
all cells except cell i, when examining Ixn,yj and Ixm,yj . Again, all together,
every cell had its entries determined at size c, where the hypothesis holds, so
it follows that the entries are also known at size c+1 for these edge-sequences.

The Ix,x edge-sequences: Observe that the edge-sequences whose end-
points correspond to the same literal such as Ix,x, are never removed by
Comparing, if x belongs to at least one solution. Moreover, each instance
of x from any two clauses, xi and xj, will have the same vertex-sequences
outside cells i and j. Therefore, if a literal z, with a 1 entry in Ix,x belongs to
at least one solution with x, then the edge-sequence Ix,z must exist, which is
a Case 2 scenario (assuming both x and z belong to solutions). Conversely, if
Comparing produces Ix,z = 0, then there will be a zero entry corresponding
to z in Ix,x due to the actions of refinement rule 3.

For the remainder of Case 3, assume that literals x, y and z (all non-pure
literals), are edge-singletons wrt. Ix,y, the edge-sequence under considera-
tion. Or, that just y is a non edge-singleton occurring exactly twice in Ixi,yj .

33

ie. there exists a yk where j 6= k. And, let literal z belong to at least one
solution for G.

The edge-pure literal: From the last claim in case 2, the implication is
that an edge-pure literal z can not be removed by the Comparing process, if
the edge-sequence Ix,y belongs to a solution. That is, if the Comparing pro-
cess produced bit-changes for −z in Ix,y followed by producing bit-changes
for z in Ix,y then Comparing will eventually produce Ix,y = 0. This further
implies that if literals x, y and w together, belong to a solution (w has 1
entries in Ix,y), then x, y , w and z together, belong to a solution as well. Of
course, if a literal is pure because its negation appeared in no clause for the
given 3-SAT, then it too can belong to a solution with x, y and w together.
So, either Comparing produces edge-pure literals in edge-sequences, or by
construction of the edge-sequences, or it is the case that the negations for
some literal occur only in the cells containing x and y where both are sin-
gletons or edge-singletons. Note that we could have established the theorem
statement for edge-sequences with edge-pure literals as a separate case.

Finally, let a collection of S-sets W , for G, with c+1 clauses have an edge-
sequence Ix,y such that every solution using x and y together, also uses −z.
Recall that x, y and z are non-pure literals and edge-singletons wrt. Ix,y.

Now, let G ′ be the 3-SAT formed with the clauses of G less clause Ci =
(−z, a, b). Let W ′ be the collection of S-sets for G ′. Next, we impose a bit-
change to each −b of Iz,−a, each −a of Iz,−b and to each (possible), z of I−a,−b.
For this final case, after the Comparing process is applied toW ′, a collection
of equivalent S-sets X ′, is produced because a collection of equivalent S-sets
X , was produced. It also follows that Ix,y from X ′ exists. Suppose that there
is a 1 entry associated to z in Ix,y from X ′. So, there is no solution using
literals z, −a and −b together, because we imposed bit-changes eliminating
such a solution for G ′. ie. @ a K3 using z, −a and −b together. Then, if there
is a solution for G ′ using literals x, y and z together, it implies that either a or
b can be part of that solution, again because −a and −b together with z can
not. However, this contradicts the assumption that there is no solution using
x, y and z together, for G, since one of a or b can be used from Ci producing
a KC+1 (by lemma 4.1), that does use x, y and z together. Therefore, it must
be the case that imposing bit-changes to −b, −a and z of Iz,−a, Iz,−b and
I−a,−b respectively, forces a bit-change to z in Ix,y via the Comparing of W ′.

34

Observe that if a and b were pure literals, no bit-changes would be imposed
on W ′, since no negations for a and b exist. And note as in the other cases,
it follows that the same refinement would occur or be subsumed by another
refinement when Comparing is applied to a collection of S-sets W , for G
producing X . Note well that a G ′ could have been formed where the (c+1)th

clause is any clause not containing either endpoint for Ix,y or the clause con-
taining literal z, with the appropriate bit-changes applied to its W ′, again,
forcing a bit-change to z in Ix,y through Comparing. Additionally, if Ix,y
had an edge-pure literal r, then continuing the Comparing process with the
cell containing the edge-pure literal, removed from all edge-sequences, would
properly determine which positions in the remaining cells have 1 entries for
edge-sequence Ix,y. With respect to Ix,y this is equivalent to forming a G ′ with
the (c+1)th clause containing literal r, and where all positions associated to
−r in Ix,y of W ′, have bit-changes imposed, before Comparing commences.
ie. Ix,y will have the same 1 entries when equivalency of the initial S-sets
W ′, is reached. The 1 entries in the cell/s containing r will also correspond.
For two or more cells containing r, in turn, each of these cells can be the one
removed (and selected as the (c+1)th clause). If there is only one occurrence
of rk in Ix,y, then cell k must have zero entries for the other two positions
not associated to r. Otherwise, a solution existed with x and y not using r,
implying a solution with x, y and −r does exist, a contradiction. This can
be established by not selecting clause Ck to be the (c+1)th clause.

We conclude that the inductive statement is valid at c+1 which completes
the proof of the induction step, and so the result follows.

By theorem 4.1, if a literal x, does not belong to any KC for a 3-SAT G, with
c clauses (after pre-processing), then x has zero entries for every occurrence,
in every edge-sequence and its vertex-sequence Vx equals zero. It follows that
if every literal for some clause Ci does not belong to any KC then cell Ci has
all zero entries, and the vertex-sequences associated to clause Ci are equal
to zero. Therefore, G is unsatisfiable, which is always discovered during the
first round. Otherwise, the collection of S-sets X , are equivalent, where it is
known that G is satisfiable at the completion of round 1, without necessarily
having a known solution. There are 3-SATs where a solution is produced at
the completion of round 1, and others during pre-processing, like the example.

35

Corollary 4.1. The algorithm applied to any 3-SAT G, determines satisfia-
bility in polynomial time.

Proof. The scenario which stops the Comparing process is either: no
refinement occurring for an entire run, or the vertex-sequences for literals
from a clause, are zero. Theorem 4.1 establishes that when no refinement
occurs for a run, what remains are equivalent S-sets, which implies a solu-
tion exists. Otherwise, if during the first round, the literals for a clause Ci

have vertex-sequences that equal zero, the run is stopped. ie. The literals
of Ci do not belong to any solution, and G is reported as unsatisfiable. To
make the complexity analysis straightforward for determining satisfiability,
we take into account no efficiencies. Further, the worst case scenario assumes
redundancies that no 3-SAT would have through processing.

Let n be the sum of the sizes for all c clauses, that remained after pre-
processing, for a given 3-SAT G. Then, c ≤ n ≤ 3c. We shall assume that it
always took an entire run to produce just one bit-change. We shall further
assume that to determine satisfiability, it was required that every position
in every edge-sequence incurred a bit-change, which of course, would never
occur.

The number of edges is ≤
(
n
2

)
. Thus, the total number of positions:(

n

2

)
n =

(
(n)(n− 1)

2

)
n =

(
n2 − n

2

)
n < n3

.

Recall, that the number of S-sets =
(
c
2

)
. And a run would be:

((c
2

)
2

)
=

(
c
2

)2 − (c
2

)
2

=

(
c2−c
2

)2

−
(

c2−c
2

)
2

< c4 ≤ n4

Now, we need to determine the complexity for a comparison between two
S-sets. First, we point out that if only one bit-change was supposed to have
occurred for each run, implies that for all Compares of two S-sets, Si,j and

36

Sk,l just Si,j

1

2

Sk,l occurred. ie. every edge in Si,j was determined by the

edges of Sk,l and every edge in Sk,l was determined by the edges of Si,j and
no more was done between those two S-sets. Of course, one Comparing did
have a bit-change occur. In this case, at most, one more determination of ev-
ery edge in Si,j was done with the edges of Sk,l again, because the bit-change

could have occurred during: Si,j
2
↽ Sk,l. The worst case for Comparing in

one direction: Si,j ⇀ Sk,l would be that every edge-sequence in Sk,l have 1
entries for both endpoints of every edge in Si,j. If we assume 2n steps are
required to compare position by position, two sequences of length n, then all
of the intersections and unions needed to process one edge is 36(n). And, if
all 9 edges are the same scenario, then it takes 324(n) steps for one direction.
Assuming we have the same scenario comparing in the other direction, it
would be a total of 648(n) steps. Let m be the constant for the work m(n)
to do LCR compliancy. LCR is clearly linear, since the work is a look-up
and bit-changes for the negations of loner cell literals. K-rule compliancy is
known during the 2n steps to compare positions, as is the discovery of new
loner cells. Now, let M be the constant 648 + m, where the 648, is for the
648(n) steps for all Compares less one which might have used an additional
324(n) steps. Then, the work for comparing two S-sets with no bit-change

is M(n). The additional work for: Si,j
3
⇀ Sk,l would be for an entire run.

However, we could choose to make M equal to 648 + 324 + m, which says

every Comparing of two S-sets, did Si,j
3
⇀ Sk,l. It is important to note that

the algorithm would produce the same result if only Si,j

1

2

Sk,l was done

regardless if bit-changes occurred. The only computational difference is that
it may cause more runs to occur, because no follow up Compares were done
in the current run. However, if another bit-change would have occurred say

doing: Si,j
3
⇀ Sk,l then that scenario awaits to be done in the next run,

as explained in section 3. But with respect to worst case, this is irrelevant,
because we are assuming that the maximum number of runs possible, were
done.

Finally, taking the product for: the work of comparing two S-sets (Mn), with
the number of S-sets compared per run (n4), and the most runs possible
(n3), is the worst case. This gives a complexity ofO(Mn8), in Big O notation.

37

It’s straightforward to show that a solution can be constructed with complex-
ity O(Mn9). Just take any edge-sequence Ix,y at the end of round 1, remove
the cells containing an x, y and a third literal z, who had a 1 entry in Ix,y.
Then, make all positions for −z a zero. Next, reconstruct a new 3-SAT with
clauses matching the 1 entries in the remaining cells in Ix,y and apply the
algorithm again. There will be equivalent S-sets where again we can select
an edge-sequence and repeat the above. This can only be done at most c

3

times. Thus, we have at most (n8)(c
3
) < n9. However, it’s been established

that an algorithm can construct a solution, also with complexity O(Mn8).

The most important empirical observation with respect to efficiency, is after
processing many 3-SATs considered to be hard instances, our original ver-
sion which had no efficiencies including the actions for the refinement rules,
never exceeded n7 to construct a complete solution, where n is the number of
clauses! Thus, we expect any version with one or more non-trivial efficiencies
added, to do better than the bound observed empirically. That is why we ex-
pect that efficient versions will be practical with respect to today’s hardware.
Still, it would be reasonable to expect that on average the bound should be
n6. However, there are numerous schemes that allow processing of a round
to be much less work, than the work done by the algorithm presented. Of
course, it had to be established first, that a general method exists, namely,
the Comparing of the S-sets until equivalency is reached.

5 Final comments

Most of our research was devoted to finding efficiencies for both general pur-
pose solving and for specific classes of SATs. We have found dozens so far,
and it’s clear many more can be developed.

We observed empirically, that with respect to constructing a solution, the
combined work done in subsequent rounds was only a fraction of the work
done in round 1. Note that this observation is not why the worst case bound
remains unchanged for constructing a solution.

One powerful efficiency that was developed, constructs a solution while dis-
pensing with completing rounds altogether, so in particular round 1.

38

The algorithm described herein does not make use of all the information that
is determined while Comparing S-sets, that if used, would only increase the
space complexity by adding at most n3 for lookup tables, while reducing the
number of runs and dramatically reducing the number of edge-sequence in-
tersections performed. We are assuming that always doing a lookup is less
work than performing every intersection when n is sufficiently large.

Additionally, well known efficiency schemes could take on new relevance with
respect to processing edge-sequences, by providing analysis at relatively no
cost. They will also become non-trivial efficiency schemes for many classes
of 3-SATs.

There is a natural extension of the algorithm described in this paper for SAT
in general. This can be exploited for efficiency purposes in cases where pos-
sibly the conversion to 3-SAT reaches a prohibitive number of objects.

We have developed a way for parallel implementation that requires no com-
munication between the nodes that is not the master node, and at that, it
only requires passing information to update the sequences, at specific times.

A lot of time was dedicated in the last few years for pre-processing analysis,
to determine the best initial choices for Comparing S-sets. We experimented
by choosing certain S-sets to Compare first, which in many cases had a dra-
matic effect on efficiency, and it was these observations that inspired one of
our most powerful efficiency schemes.

Lastly, note that code with a few of the non-trivial efficiencies employed, has
a complexity less than Ω(n4) for 3-SATs of semi-primes.

Example re-visited

The 3-SAT below is Figure 1 with all its edges shown, prior to any appli-
cation of LCR and K-rule to the corresponding edge-sequences. The blue
edges correspond to the brown edges for the K5 depicted in Figure 1. The
edges in red (which will fail to be LCR and K-rule compliant), are those

39

between the vertex associated to literal a and a vertex associated to some
other literal that is not literal −a.

References

[1] Cook, Stephen
The complexity of theorem proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting. pp. 151-158, 1971.

[2] Karp, Richard M.
Reducibility Among Combinatorial Problems.
Complexity of Computer Computations. New York: Plenum.
pp. 85-103, 1972.

40

	Introduction
	Preliminaries and Definitions
	Description of the algorithm
	Proof of correctness and termination
	Final comments

