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                                                               Abstract 

In this article we derive an anomalous result that with curved space time transformations have to be 

linear. Technical difficulties with infinitesimal space time coordinates as tensors are exposed. Analysis 

with the Taylor series brings out a stupendous fact that it considers only such functions as are linear in 

the independent variables. 

                                                          Introduction 

Considering infinitesimal space time separations as tensors is a fact appreciated in General Relativity 

where space time transformations are ,in general, not linear in the rectangular Cartesian system. 

Consequently the Christoffel symbols and the Riemannian curvature tensor are not zero valued. But a 

simple investigation reveals that the transformation between the coordinates of space and time are 

linear or approximately linear. It has been clearly analyzed that considering infinitesimal space time 

separations as tensors is a flawed concept. Finally we derive that the Taylor series applies only to linear 

functions. 

                                                                The Anomalous Result 

We start with the result[1] 

𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼   (1) 

From (1) 

�̅�𝜇 = ∫
𝜕�̅�𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼

𝑥𝛼

0

  (2) 

 

⇒ �̅�𝜇 = 𝑥𝛼 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

 (3) 

 

Taking differentials on either side of (3) , we have, 
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𝑑�̅�𝜇 = 𝑑𝑥𝛼 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

+ 𝑥𝛼𝑑 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

 (4)  

With 𝑥𝛼 → ∞, the product 𝑥𝛼𝑑 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

→ ∞ unless 𝑑 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

→ 0.  

The right side of (4) and consequently 𝑥𝛼𝑑 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

 has to be an infinitesimal and not just a finite 

quantity ,let alone an infinitely large quantity.  

But  

𝑑 [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

→ 0 ⇒ [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

for large 𝑥𝛼. But at any point we can make 𝑥𝛼 sufficiently large by shift of origin of the space –time 

coordinates. Interestingly, 

[
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒
𝜕�̅�𝜇

𝜕𝑥𝛼
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (5) 

 that transformations should be linear like the Lorentz Transformations. That would mean that the 

Riemann curvature tensor and the Ricci tensors are null tensors and the Ricci scalar is zero. 

[NB: Δ𝐹 = 𝑓(𝑥)Δ𝑥, Δ𝐹  will be an infinitesimal provided 𝑓(𝑥)is not unbounded.] 

 We might consider the following option . Differentiating both sides of (3) with  respect to proper time 

we haven 

We now have , 

𝑑�̅�𝜇

𝑑𝜏
=

𝑑𝑥𝛼

𝑑𝜏
[
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

+ 𝑥𝛼
𝑑

𝑑𝜏
[
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

 (6) 

With 𝑥𝛼 tending to infinity the right side of (7) blows up. To save the situation we set 
𝑑

𝑑𝜏
[

𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

=

0 ⇒ [
𝜕�̅�𝜇

𝜕𝑥𝛼]
𝑚𝑒𝑎𝑛

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒
𝜕�̅�𝜇

𝜕𝑥𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Thus we have a linear transformation like the Lorentz 

transformations of flat space time. The curvature elements become zero. The Riemannian curvature 

tensor and the Ricci tensors become null tensors. The Ricci scalar becomes zero. 

NB: Proper speed components can exceed the speed of light without violating modern relativity but with 

(6), �̅�𝜇 = 𝑚0
𝑑�̅�𝜇

𝑑𝜏
 is becoming dependent on position and time coordinates given by 𝑥𝛼 and hence on 

�̅�𝜇 = �̅�𝜇(𝑥𝛼) 

 

This type of an anomaly[as expressed in the discussion so far] is emerging from relation (1) which is 

purely a mathematical one. Therefore it would be important to investigate the validity/accuracy of (1) 
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                                                            The Technical Issue 

We rewrite (1) 

𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼  

By definition we take 𝑑𝑥𝛼 = ∆𝑥𝛼 ; 𝑑�̅�𝜇 is defined by (1). 

𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼  (7) 

 

Let us consider the inverse transformation 

𝑑𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
𝑑�̅�𝜇  (8) 

If with the right side of (6) we consider, by definition, 𝑑�̅�𝜇 = ∆�̅�𝜇 then a contradiction may be derived in 

the following manner. 

𝑑𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
∆�̅�𝜇 (9) 

Since 𝑑�̅�𝜇 = ∆�̅�𝜇we may write (1) as  

∆�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼   (10) 

Indeed by Taylor expansion[] we have, 

�̅�𝜇(𝑥𝛼 + ∆𝑥𝛼) = �̅�𝜇(𝑥𝛼) +
1

1!

𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼 +

1

2!

𝜕2�̅�𝜇

𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽 +

1

3!

𝜕2�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾

+ ⋯
1

𝑟!

𝜕𝑟�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼 … .
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾 … . + ⋯ .. 

�̅�𝜇(𝑥𝛼 + ∆𝑥𝛼) − �̅�𝜇(𝑥𝛼)

=
𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼 +

1

2!

𝜕2�̅�𝜇

𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽 +

1

3!

𝜕2�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾

+ ⋯
1

𝑟!

𝜕𝑟�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼 … .
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾 … . + ⋯. 

∆�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼 +

1

2!

𝜕2�̅�𝜇

𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽 +

1

3!

𝜕2�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾

+ ⋯
1

𝑟!

𝜕𝑟�̅�𝜇

𝜕𝑥𝛾𝜕𝑥𝛽𝜕𝑥𝛼 … .
∆𝑥𝛼∆𝑥𝛽∆𝑥𝛾 … . + ⋯. 

∆�̅�𝜇 ≠
𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼   (11) 
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Alternatively we consider (1) again 

𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
𝑑𝑥𝛼  

where by definition is considered as 𝑑𝑥𝛼 ≡ ∆𝑥𝛼 ⇒ 𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼 ∆𝑥𝛼 

 

With the inverse transformation (8) 

𝑑𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
𝑑�̅�𝜇 

𝑑�̅�𝜇 on the right side of (8)is defined by 𝑑�̅�𝜇 on the left side of (1)[as opposed to what we did earlier]. 

We may rewrite (8) as 

𝑑𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
𝑑�̅�𝜇 =

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼
∆𝑥𝛼 

By contraction on 𝜇 in the term 
𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼 we obtain a consistent result  

𝑑𝑥𝛼 = ∆𝑥𝛼   (12) 

       Now by Taylor expansion, 

∆𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
∆�̅�𝜇 +

1

2!

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ 

[Each index like 𝜇, 𝜈, 𝜌 on the right run over all independent variables. Again on the right side 𝛼 runsover 

all variables on the right side.] 

Using the above result with �̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼 ∆𝑥𝛼 we obtain  

𝑑�̅�𝜇 =
𝜕�̅�𝜇

𝜕𝑥𝛼
[
𝜕𝑥𝛼

𝜕�̅�𝜇
∆�̅�𝜇 +

1

2!

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ . ] 

𝑑�̅�𝜇 = [
𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕𝑥𝛼

𝜕�̅�𝜇
∆�̅�𝜇 +

1

2!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ . ] 

𝑑�̅�𝜇 = [∆�̅�𝜇 +
1

2!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ . ] 
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𝑑𝑥𝛼 =
𝜕𝑥𝛼

𝜕�̅�𝜇
𝑑�̅�𝜇 =

𝜕𝑥𝛼

𝜕�̅�𝜇
[∆�̅�𝜇 +

1

2!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ . ] 

𝑑𝑥𝛼 = ∆�̅�𝜇 +
1

2!

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜈𝜕�̅�𝜇 +

1

3!

𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇
𝜕�̅�𝜌𝜕�̅�𝜈𝜕�̅�𝜇 + ⋯ ..   (13) 

In the above we cannot contract on 𝛼 and write 
𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼 = 1 since the third factor [for example
𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇in 

𝜕�̅�𝜈𝜕�̅�𝜇 𝜕𝑥𝛼

𝜕�̅�𝜇

𝜕�̅�𝜇

𝜕𝑥𝛼

𝜕2𝑥𝛼

𝜕�̅�𝜈𝜕�̅�𝜇] contains 𝛼 as an index[dummy index]. Therefore from (13).[We cannot also 

contract on 𝜇] 

 

𝑑𝑥𝛼 ≠ ∆�̅�𝜇 (14) 

Relations (14) and (12) stand in contradiction to each other. 

With the first alternative we have taken 𝑑𝑥𝑖 = ∆𝑥𝑖 for all frames of reference. All frames of reference 

have been considered equivalent as demanded by modern relativity. And we have obtained a 

contradiction. 

With the second alternative we have considered 𝑑𝑥𝑖 = ∆𝑥𝑖  with one particular frame of reference . 

With other frames of reference 𝑑�̅�𝜇 ≠ ∆�̅�𝜇. Thus here we do have a preferred frame of reference which 

is of a suspicious nature. And again, we have arrived at a contradiction. 

Since relation (1) is not an accurate one unless we are in flat space time where the higher order 

derivatives vanish we did obtain an anomalous result. 

The definition of space time infinitesimals as tensors as expressed through (1) and (8) has technically 

issues of difficulty as indicated. 

 

                                                            Taylor Series Issues 

First we consider the Taylor series in a single variable 

 

𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥)+𝑓′(𝑥)∆𝑥 +
1

2!
𝐹′′(𝑥)(∆𝑥)2 +

1

3!
𝐹′′′(𝑥)(∆𝑥)3 + ⋯ . +

1

𝑟!
𝐹(𝑟)(𝑥)(∆𝑥)𝑟 + ⋯.  (15) 

∆𝑥 is chosen so that the right side is convergent 

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥) = 𝑓′(𝑥)∆𝑥 +
1

2!
𝐹′′(𝑥)(∆𝑥)2 +

1

3!
𝐹′′′(𝑥)(∆𝑥)3 + ⋯ . +

1

𝑟!
𝐹(𝑟)(𝑥)(∆𝑥)𝑟 

𝑑𝑓 = 𝑓′(𝑥)∆𝑥 +
1

2!
𝐹′′(𝑥)(∆𝑥)2 +

1

3!
𝐹′′′(𝑥)(∆𝑥)3 + ⋯ . +

1

𝑟!
𝐹(𝑟)(𝑥)(∆𝑥)𝑟 + ⋯  (16) 
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We sum up each term of the above series on the interval (𝑎, 𝑏) 

∑ 𝑑𝑓 − ∑ 𝑓′(𝑥)∆𝑥 = ∑
1

2!
𝐹′′(𝑥)(∆𝑥)2 + ∑

1

3!
𝐹′′′(𝑥)(∆𝑥)3 + ⋯ . + ∑

1

𝑟!
𝐹(𝑟)(𝑥) (∆𝑥)𝑟 + ⋯ 

If ∆𝑥 is the same for each partition on the interval , then, 

∑ 𝑑𝑓 − ∑ 𝑓′(𝑥)∆𝑥

=
1

2!
∆𝑥 ∑ 𝐹′′(𝑥)∆𝑥 + ∆𝑥 ∑

1

3!
𝐹′′′(𝑥)(∆𝑥)2 + ⋯ . +∆𝑥 ∑

1

𝑟!
𝐹(𝑟)(𝑥) (∆𝑥)𝑟−1 + ⋯ 

 

∑ 𝑑𝑓 − ∑ 𝑓′(𝑥)∆𝑥

∆𝑥
=

1

2!
∑ 𝐹′′(𝑥)∆𝑥 +

1

3!
∆𝑥 ∑ 𝐹′′′(𝑥)(∆𝑥)2 + ⋯ . +

1

𝑟!
∆𝑥 ∑ 𝐹(𝑟)(𝑥) (∆𝑥)𝑟−1 + ⋯ 

𝑙𝑖𝑚∆𝑥→0

∑ ∆𝑓 − ∑ 𝑓′(𝑥)∆𝑥

∆𝑥

=
1

2!
𝑙𝑖𝑚∆𝑥→0 ∑ 𝐹′′(𝑥)∆𝑥 + 𝑙𝑖𝑚∆𝑥→0∆𝑥

× 𝑙𝑖𝑚∆𝑥→0 [∑
1

3!
𝐹′′′(𝑥)∆𝑥 + ⋯ . +

1

𝑟!
∑ 𝐹(𝑟)(𝑥) (∆𝑥)𝑟−2 + ⋯ ] 

𝑙𝑖𝑚∆𝑥→0

∑ ∆𝑓 − ∑ 𝑓′(𝑥)∆𝑥

∆𝑥
=

1

2!
𝑙𝑖𝑚∆𝑥→0 ∑ 𝐹′′(𝑥)∆𝑥 

𝑙𝑖𝑚∆𝑥→0 ∑
∆𝑓

∆𝑥
− 𝑙𝑖𝑚∆𝑥→0 ∑ 𝑓′(𝑥) =

1

2!
𝑙𝑖𝑚∆𝑥→0 ∑ 𝐹′′(𝑥)∆𝑥  (17) 

∑ 𝑓′(𝑥) − ∑ 𝑓′(𝑥) =
1

2!
∫ 𝐹′′(𝑥)𝑑𝑥

𝑏

𝑎

 

∫ 𝐹′′(𝑥)𝑑𝑥

𝑏

𝑎

= 0 (18) 

Since a and b are arbitrary real numbers [a<b], we have  

𝐹′′(𝑥) = 0  (19) 

𝐹′(𝑥) = 𝐶[𝑜𝑛𝑠𝑡𝑎𝑛𝑡] 

𝐹(𝑥) = 𝐶𝑥 + 𝐷  (20) 

[In the above, 𝐹(𝑥) ↔ 𝑥 ,represents a linear transformation in one variable] 

The above in general is not true since F(x) could be any arbitrary function [continuous and 

differentiable] 
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If we consider a many variable Taylor expansion in ‘n’ variables   we might hold n-1variables constant 

and arrive at the same conclusion. 

Integrating along curves along which 𝑡, 𝑦 and 𝑧 are constant we obtain 

𝐹(𝑡, 𝑥, 𝑦, 𝑧) = 𝐴𝑥 + 𝐷1(𝑡, 𝑦, 𝑧) + 𝐶1 (21) 

Integrating along curves along which 𝑡, 𝑥 and 𝑧 are constant we obtain 

𝐹(𝑡, 𝑥, 𝑦, 𝑧) = 𝐵𝑦 + 𝐷2(𝑡, 𝑥, 𝑧) + 𝐶2  (22) 

Integrating along curves along which 𝑡, 𝑥 and 𝑦 are constant we obtain 

𝐹(𝑡, 𝑥, 𝑦, 𝑧) = 𝐶𝑧 + 𝐷3(𝑡, 𝑥, 𝑦)+𝐶3 (23) 

Integrating along curves along which 𝑡, 𝑥 and 𝑦 are constant we obtain 

𝐹(𝑡, 𝑥, 𝑦, 𝑧) = 𝐷𝑡 + 𝐷4(𝑥, 𝑦, 𝑧) + 𝐶4  (24) 

 

The last four relations imply  

𝐹(𝑡, 𝑥, 𝑦, 𝑧) = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷𝑡 + 𝐾  (25)   

In place of  𝐹(𝑡, 𝑥, 𝑦, 𝑧) we may consider 𝐹𝜇(𝑡, 𝑥, 𝑦, 𝑧); 𝜇 = 0,1,2,3 

We are left with linear relations as concluded in the first section, “The Anomalous Result”. 

                                                                         Conclusion 

The strange difficulties with infinitesimal separations as tensors leading to the fact that transformations 

in the most general context have to be linear deserve attention. It is quite stupendous that the Taylor 

series considers only such functions as are linear in the independent variables. It is important to take 

stock of such a situation in view of mathematics and its applications like physics. 
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