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We discuss the existence of an envelope of a function from a certain subclass
of function space. Here we restrict ourselves to considering the model space
L1
loc(D) of functions locally integrable with respect to the Lebesgue measure

λ in an open connected subset, i. e., domain D from the d-dimensional Eu-

clidean space Rd, where d ∈ N = {1, 2, . . . }, and R is the real line. Let H be
a subset in L1

loc(D), and F : D → R±∞ := {−∞}∪R∪{+∞} be a extended
numerical function belonging to L1

loc(D). We say that there exists a lower

envelope for F with respect to H if there is a function h ∈ H such that h ≤ F
on D. Denote by sbh (D), C(D), and Ck(D) with k ∈ N∪{∞} the classes of
subharmonic, continuous, and k times continuously di�erentiable functions

on D, respectively [1]. The class sbh (D) contains the minus-in�nity function
−∞ : x 7→ −∞ identically equal to −∞; sbh∗(D) := sbh (D) \ {−∞}.

The Alexandro� compacti�cation of Rd is denoted by Rd
∞ := Rd ∪ {∞}.

Given a subset S of Rd
∞, the closure closS and the interior intS will always

be taken relative Rd
∞. For S

′ ⊂ S ⊂ Rd
∞ we write S ′ b S if closS ′ ⊂ intS.

Let Borel (S) be the class of all Borel subsets in S ∈ Borel (Rd
∞). We

denote by Meas (S) the class of all Borel signed measures on Borel (S);
Meascmp(S) is the class of measures µ ∈ Meas (S) with a compact sup-

port suppµ b S; Meas+(S) := {µ ∈ Meas (S) : µ ≥ 0}, Meas+cmp(S) :=
Meascmp(S) ∩Meas+(S).

De�nition (of linear and a�ne balayage of measures [2, De�nition 7.1], [3],
[4]). Let H ⊂ sbh(D), ν ∈ Meas+(D), andM ⊂ Meas+(D). We say that a
measure µ ∈ M is a linear balayage of the measure ν with respect to H in

M and write ν�H,Mµ if∫
D

hdν 6
∫
D

hdµ for all functions h ∈ H.
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Let c ∈ R, and 1 : x 7→ 1 be the function identically equal to 1 on D 3 x. We
say that an a�ne function µ+ c := µ+ c · 1 ∈M+R1 is an a�ne balayage

of the measure ν with respect to H inM+ R1, and write ν 2H,M µ+ c, if∫
h dν 6

∫
h dµ+ c for all functions h ∈ H.

Proposition ([2, Proposition 8.1], [4, Proposition 7.1]). Let ∅ 6= H ⊂
sbh∗(D), M ⊂ Meas+cmp(D), and 0 6= ν ∈ Meas+cmp(D) be such that −∞ <∫
D
hdν for all h ∈ H. Let the restriction of F to each compact subset K b D

is µ
∣∣
K
-measurable for every measure µ ∈ M, where µ

∣∣
K

is the restriction

of µ to K. If there exists a lower envelope h ≤ F on D for F with respect to

H 3 h, then

−∞ < inf

{∫
D

F dµ : ν �H,M µ

}
, (1lin)

−∞ < inf

{∫
D

F dµ+ c : ν 2H,M µ+ c

}
. (1a�)

This Proposition is somewhat reversible if H is convex. For simplicity and
brevity, we formulate such an almost inverse statement only for F ∈ C(D).

Theorem (general case in [2, Theorem 6], special case in [4, Theorem 7.1]).
Let F ∈ C(D), R1 ⊂ H ⊂ sbh∗(D), 0 6= ν ∈ Meas+cmp(D), supp ν ⊂
U0 b D, where U0 is a domain, M :=

{
µ ∈ Meas+cmp(D \ U0) : dµ =

mdλ, where m ∈ C∞(D)
}
. Suppose that one of the following two conditions

is ful�lled:

[H1] for any locally bounded from above sequence of functions (hk)k∈N ⊂ H,

the upper semi-continuous regularization of the upper limit lim supk→∞ hk
belong to H provided that lim supk→∞ hk 6≡ −∞ on D;

[H2] H is sequentially closed in L1
loc(D).

[L] If H is convex cone, and the condition (1lin) is ful�lled, then there

exists a lower envelope h ≤ F on D for F with respect to H 3 h.
[A] If H is convex set, and the condition (1a�) is ful�lled, then there

exists a lower envelope h ≤ F on D for F with respect to H 3 h.
In our review [2], this Theorem is proved in a much more general form

for arbitrary functions F ∈ L1
loc(D) without condition R1 ∈ H. Special

cases of this Theorems and corollaries from it have been successfully applied
in our articles [5]�[10] to study the distribution of zero sets of holomorphic
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functions under restrictions on their growth. Research on the application of
this Theorem in complex analysis will be continued. More general abstract
forms of our Theorem from [2] and [3] can �nd applications in other functional
spaces far from the space L1

loc(D) since they are given for projective limits of
vector lattices or topological projective limits of Frechet lattices (see [2, Ch.
1], [3] and bibliography in them).
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