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Abstract

Newton did not invent or use the so-called Newton’s gravitational constant G. Newton’s original gravity
formula was F = Mm

r2
and not F = GMm

r2
. In this paper, we will show how a series of major gravity phenomena

can be calculated and predicted without the gravitational constant. This is to some degree well known, at least
for those that have studied a significant amount of the older literature on gravity. However, to understand gravity
at a deeper level, still without G, one needs to trust Newton’s formula. It is first when we combine Newton’s
observation that matter and light ultimately consist of hard indivisible particles with new insight in atomism
that we can truly begin to understand gravity. This leads to a quantum gravity theory that is unified with
quantum mechanics where there is no need for G and even no need for Planck’s constant. We claim that two
mistakes have been made in physics, which have held back progress towards a unified quantum gravity theory.
First, it has been common practice to consider Newton’s gravitational constant almost holy and untouchable.
Thus we have neglected to see an important aspect of mass, namely the indivisible particle that also Newton
held in high regard. Second, we have built our version of quantum mechanics around the de Broglie wavelength,
rather than the Compton wavelength. We claim the de Broglie wavelength is merely a mathematical derivative
of the Compton wavelength.
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1 Newton neither invented nor used G

In his book, the Principia [1], Newton mentions the gravitational force formula (see Appendix) that is equivalent
to

F =
Mm
r2

(1)

However, he does not make a single mention of any gravitational constant (with the notation of G or through
any other notation), nor does he ever use such a constant himself (This appears to be something that few
physicists today know or acknowledge). In the Principia, Newton’s focus is on relative masses, although he
actually mentions the word ”mass“” only once in the Principia, but it is clear that he means mass is an amount
of matter. Based on easily observable gravitational observations, such as the orbital time of satellites (moons
and planets) he find the relative mass (weight) of Saturn, Jupiter, the Earth, and the Sun, see also Cohen [2]
for much detail on this. Cohen also points out that Newton’s focus is on relative masses:‘That is, since Newton
is concerned with relative masses and relative densities, the test mass can take any unity“”.

The kg definition of mass was invented more than 100 years after he published the Principia and thus came
into being long after Newton’s death. Newton was, in several of his texts, clear on the idea that matter (and
energy) at the deepest level is based on indivisible fully hard particles with spatial dimension. He took this
idea from atomism, a source that he refers to several times in his work [3, 4]. Newton was focused on atomism
before his started to publish his work; this is evident from his unpublished notebook. He was also clear on this
in Principia, and in particular in his later book Opticks. Newton thought that the amount of mass was related
to the quantity of indivisible particles in the chosen mass. He even assumed that light was made up of such
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indivisible particles. He knew that it was impossible to find the number of indivisible particles in any observable
mass at that time, an assertion that he mentions in Principia. It was therefore natural for him to focus on
relative masses when he worked with gravity. In short, to find the relative mass of two heavenly objects, Newton
utilized satellite orbital time and the distance from the satellite to the center of the mass of which he wanted to
find the relative mass; this is a method we return to shortly.

Newton also explained that weight is proportional to mass. In other words, twice the mass gives twice the
weight in relation to two masses located the same distance from the gravitational object.

The kg definition of mass was most likely first introduced likely in 1796. In 1798, Henry Cavendish [5]
measured the weight and density of the Earth using a Cavendish balance. Earlier, Newton had found the
relative density between planets, and for this no Cavendish apparatus or similar was needed. However, when
we want to find the density of the Earth relative to a given substance - water or iron, for example, that we
need to know the gravity properties of a mass that we know is formed uniformly of the chosen substance. The
Cavendish balance was needed to measure the gravitational e↵ect on a small practical mass, namely the chosen
kg, that had suddenly become the standard definition for mass. So, the Earth’s mass is still a relative mass,
but now it is relative to a practical small mass, namely the kg. This small practical mass will constitute the
same amount of a substance, for example water, iron, or gold, by weight. Even Cavendish does not mention a
gravitational constant, but the kg definition of mass made it necessary to introduce a gravitational constant to
perform gravity predictions. This, as we will see, is because the kg definition of mass is an incomplete definition
of mass that needs G to become a complete mass measure.

The gravitational constant is mentioned for the first time (to our knowledge) in a footnote by the French
physicists Cornu and Baille [6] in1873. Their footnote mentions the gravity force formula in the form F = fmm0 :
r2, where f is the gravitational constant. The fact that they are the first to mention the gravitational constant
directly and they chose to mention it only in a footnote could indicate that they were uncertain how this would
be received in the scientific community. If they were certain that the gravitational constant was important and
would be easily accepted among leading scientists, then they would likely have mentioned it in the main text
and developed the description of it more completely. One can expect scientists back then to have great respect
for Newton, and since Newton had not mentioned a gravitational constant, it was not obvious that one could
introduce such a thing with confidence.

However, the idea took hold and in 1894, the gravitational constant was first called G (rather than f) by
Boys [7] in a proceeding at the Royal Society that followed shortly after he published in the prestigious journal
Nature. To switch the notation from f to G is simply cosmetic1. Although Max Planck still used the notation f
for the gravity constant in 1899, 1906, and 1928 [8–10], the use of G continued and by the 1930s, G had become
the standard notation for the gravitational constant. Keep in mind that it took two hundred years from the
publication of Newton’s gravitational theory to the first mention of the gravitational constant, thus is was, to
some degree a breakthrough, but from another perspective, it could also be seen as a disaster, as it led to an
inferior definition of mass.

2 Demonstration that Newton’s gravity formula; F =
M̃m̃
r2 can

perform all the gravity predictions that F = GMm
r2 can!

As the original Newton formula is not compatible with the kg definition of mass (without adding a gravitational
constant), we will call the Newton mass M̃ to distinguish it from the modern kg definition of mass M . We will
later explain why the mass we obtain from the original Newton formula is superior to the kg definition of mass.

The centripetal force in the Newtonian theory is given by m̃v2

r . For a planet or moon to be in equilibrium
within their orbit, the centripetal force must balance with the gravitational force, so under the original Newton
theory we must have

m̃v2

r
� M̃m̃

r2
= 0 (2)

Solved with respect to v, this gives an orbital velocity of

v =

s
M̃
r

(3)

As we can see, this is quite di↵erent from the modern orbital velocity formula that is v =
q

GM
r . The

di↵erence is the Newton gravitational constant G, which, as we have noted, Newton himself never used. We can
then ask, “Does the formula work without the Newton gravitational constant¿‘” And, in fact, it does. Newton
used the square of the orbital time and the distance between two masses to find the relative masses of heavenly
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objects. The orbital time is the circumference of the orbiting object (for example the Moon) divided by the
orbital velocity. In other words,

L
v

=
Lq
2M
r

T =
Lq
2M
r

(4)

This formula we can then solve with respect to mass, and we get

M =
L2r
T 2

M =
(2⇡r)2r

T 2

M =
4⇡2r3

T 2
(5)

Assume we decide to measure orbital time in days (as Newton did) and distance in km (although naturally
Newton used a di↵erent length measure). The distance to the Sun can be found by parallax, and it is about
149.6 million km. The time it takes for the Earth to orbit the Sun is 365 days. So now we can calculate the
mass of the Sun as

Ms =
4⇡21496000003

3652
⇡ 9.92⇥ 1020 km3/days2

As we can see, the mass has very strange notation and does not seem to be very recognizable or intuitive,
but this is partly due to the fact that we are accustomed to thinking of mass in terms of kg (or pounds). Next,
let us calculate the mass of the Earth; for this we will use the orbital time of the Moon, which is about 27.3
days. The distance from the Earth to the Moon is about 384,400 km. The mass of the Earth must therefore be

ME =
4⇡23844003

27.32
⇡ 3⇥ 1015 km3/days2

Again, this seems to be a strange mass that is hard for us relate to, but the mass of the Sun relative to the

Earth is now 9.92⇥1020

3⇥1015
⇡ 329, 750. This is a number many of us do recognize; it is the mass of the Sun relative

to the Earth that we also obtain if we look at the modern kg definitions of the Sun and the Earth. The 4⇡2 will
even cancel out in the relative mass formula, which can be described by

r31
T2
1

4r32
T2
2

(6)

Further, if the satellites were orbiting the objects we wanted to find the mass of at the same distance r1 = r2,
then the relative mass is simply the orbital time squared divided by each other. This is very similar to Newton’s
reasoning in the Principia. As Newton pointed out, one could use any units one wanted (for distance or time)
when the focus was on relative masses. When we say the Sun’s mass is 329,750 times that of the Earth, then
we have chosen the Earth as the unit mass. We could just as well have used the Earth mass as the unit mass
when handling small objects on Earth. However, the mass of the Earth is enormous compared to any object
we handle in our daily lives and so it would be hard to conceptualize it. Therefore, in order to have a better
intuition on the mass, it makes sense to choose a smaller unit mass. The kg is a unit mass that is an arbitrary
chosen mass, but it is practical – not so small so that it was hard to measure on an old fashioned scale, and
yet not so big that it could not be carried around. Weights, we must remember, were important to standardize
trade, for example. So, we can say an almost arbitrary amount of weight (mass) was chosen as a kg. When we
deal with a small practical mass, we can also quite easily know what substance it consists of – we can make a
lead ball, gold ball, or iron ball, or we can simply fill a container with water. When we deal with planets, we
know they likely consist of many types of elements, and it is harder to say for certain what their cores consist of
completely.

Now to find the mass of the Earth in kg, we must first find a method to test gravity’s e↵ect on small practical
masses, e.g., where we already know the kg mass of the object in question. Remember to find the mass of the
Sun, Newton needed something orbiting the Sun, but obviously there are plenty of planets to choose from. To
find the mass of the Earth, he needed something that orbited the Earth, and indeed, the Moon fit the bill.
However, in order to measure a small practical mass, we need something “orbiting“”2 that is also very small

2
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(very small compared to planets, but still massive compared to atoms and molecules). This was a di�cult task
and many attempts were undertaken, but it was first done accurately in 1798 by Henry Cavendish through what
is known today as a “Cavendish apparatus“” and consists of some small balls (made of lead or gold, for example)
“orbiting“” some larger (but still small) balls. Interestingly, the mass of a large lead ball in the Cavendish
apparatus will have a Newton mass of

M̃ =
2⇡2Lr2✓

T 2
(7)

where T is the oscillation time, and ✓ is the equilibrium angle when the balance has been stabilized and r is
the distance from the small lead ball to the large lead ball, and L is the distance between the two small balls.
This formula is quite similar to the formula we used before, but it has the angle parameter. In the previous
example of measuring the Earth, when we are looking at the Moon’s orbital time we do not need to look at the
entire orbit - we can, for example, look only at the quarter of the orbital time, although we will need to adjust
the formula 5 with an angle ✓ to

M̃ =
4⇡2r3✓
T 2

(8)

We know how to find this Newtonian type mass with the torsion balance, formula 7. We do not need to
know its kg mass or any other mass measure for this. However, we can find its kg mass by comparing it with the
kg standard by using a scale calibrated to kg. This now gives us a connection between the mysterious Newton
mass and the kg (or pound). We can now also find the kg mass of the Earth, and the density of the Earth in
terms of kg. The Cavendish apparatus, which was said to first indirectly find the gravitational constant is both
true and not true. Cavendish never mentioned a gravitational constant, and it is actually not needed under any
circumstances, as we soon will see. The reason the Cavendish apparatus was required then was because one
needed a way to measure the Newtonian type mass of a small object, so one could use the small unit as unit
mass instead of the Earth, for example. The Cavendish apparatus also made it possible to accurately find the
density of the Earth, not because of any gravitational constant, but because a small practical mass can be made
of one substance where the density (weight) is known relative to other substances (e.g., gold versus water). In
this way, one could find the density of the Earth very accurately relative to a given substance. If one had known
a planet in our solar system consisted of a homogenous substance, take iron, for example, then there would have
been no need for a Cavendish apparatus to find the density of the Earth relative to material objects. But we
know of no such planet consisting of only one substance, and it would also be hard to check if that was really the
case, even if it could be imagined. So the breakthrough of the Cavendish apparatus was actually that one could
find the gravity (Newtonian mass) of even a small practical mass. Naturally we can find the relative densities of
di↵erent substances simply by using a scale.

Still, what we call the Newtonian mass, M̃ , is di�cult to fully understand, although it is no stranger than
the kg. Up until now, we have used arbitrary units such km for length, and Earth days as time. As we will see,
it is when we first switch to more fundamental units and then explore the quantum world that we truly see the
beauty of Newton’s formula.

Switching to more fundamental units

At this stage we can still choose any time unit we want ? years, days, hours, or seconds. More important
than the choice of time interval (time unit) is to link both time and length to something very fundamental in
nature. This is light. We know from the writings of Aristotle (in his work De sensu) that the Greek philosopher
Empedocles about 2,500 BC understood or at least assumed that the speed of light had a finite limit:

Empedocles says that the light from the Sun arrives first in the intervening space before it comes
to the eye, or reaches the Earth. This might seem to be the case. For whatever is moved through
space, is moved from one place to another, hence, there must be a corresponding interval of time also
in which it is moved from one place to the other.

In 1676 ,Ole Christensen Rømer was likely the first to make a quantitative measurement of the speed of light
and he concluded that it was finite. In 1704, in his book Opticks [11], Newton reported Rmer’s calculations of
the finite speed of light and gave a value of “”seven or eight minutes“” for the time it would take for light to
travel from the Sun to the Earth, an estimate that is not far from its real speed. So, Newton could have linked
length to time through the speed of light, even if his calculations and predictions would have been somewhat
inaccurate. In 1728, (one year after Newton’s death) the English physicist James Bradley estimated the speed
of light in a vacuum to be approximately 301,000 km per second, which is quite close to today’s value.

Here we will choose seconds as the time unit, and will link this to length through the speed of light. Our
length unit will be the distance light travels in any given time unit, here we choose the second; this is a well-
known unit distance in modern physics, known as light-second (length). Now time and length units are suddenly
related to something very fundamental. From modern physics, the speed of light is considered to be the same
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in every reference frame; it is known as c and per definition exactly 299,792,458 meters per second. But here we
have chosen the length unit that represents how long light travels in one second, so the speed of light will then
be 1 light-second per second in this unit system. In other words, we can set c = 1, something that is often done
in modern physics. What is important is that time and length are linked through something very fundamental,
namely the speed of light.

Now the distance to from the Earth to the Sun will be about r = 149, 600, 000, 000 m/299, 792, 458 m/s = 499
light-seconds. The circumference of the orbit of the Earth around the Sun is therefore about L = 2⇡⇥ 499 light
seconds. Further, we can find the mass of the Sun

MS =
4⇡2r3✓
T 2

=
4⇡24993

(365⇥ 24⇥ 60⇥ 60)2
⇡ 4.93⇥ 10�6 Light-seconds (9)

This looks like a very unfamiliar mass, but soon we will see it makes much more sense than expressing the
mass of the Sun in kg. (The Sun’s mass in kg is approximately 1.98⇥ 1030).

Similarly, for the Earth we can use the Moon orbital time to find the mass of the Earth. The orbital time of
the Moon is about 27 days, or 27⇥ 24⇥ 60⇥ 60 seconds. The distance to the Moon is about 1.28 light-seconds.
The mass of the Earth must therefore be

ME =
4⇡21.283

(27⇥ 24⇥ 60⇥ 60)2
⇡ 1.52⇥ 10�11 Light-seconds (10)

This means the mass of the Sun relative to the Earth must be approximately 1.52⇥10�11

4.93⇥10�6 ⇡ 324, 342. This is
close to the actual accepted number.

Next let us use the orbital velocity formula v =
q

M̃
r to predict the orbital velocity of Saturn. The distance

from the Sun to Saturn is about 1.434 billion km, which is about 4783.3 light-seconds. The mass of the Sun we
have estimated to be 4.93⇥ 10�6 light seconds, and inputted in the formula, we get

v =

r
4.93⇥ 10�6

4783.3
⇡ 3.21⇥ 10�05 Light-seconds per second

That is, the orbital velocity is now on the dimensionless form; it is identical to v
c . In order to obtain meters

per second, we need to multiply by c and this gives us about 9,625 meters per second, which is the same as
is observed in experiments. That our orbital velocity can actually be seen as v

c means it is a dimensionless
number. For example, Langacker [12] in his book Can the Laws of Physics Be Unified? (2017) indicates that
such dimensionless units as v

c are more fundamental.
Actually, the mass we find in this way without depending on or knowingG is identical to half the Schwarzschild

radius in meters divided by the speed of light. In other words, this is the Schwarzschild radius in light-seconds.
We would propose that the Schwarzschild radius (divided by the speed of light) could be a much better model of
mass than the kg defined mass. However, no one should be fully convinced that light seconds are a better mass
measure than kg just yet. It is first when we get to the quantum aspects that this becomes clear. As explained
previously, we have demonstrated that we can predict relative masses, we can find the density of planets, and
we can perform orbital velocity predictions, all with no knowledge of the gravitational constant. We will expand
further on this before returning to look at the light-second mass from a quantum perspective.

3 Escape velocity and such things as time dilation

Leibniz suggested the kinetic energy was given by mv2 a formula that “soon“” was empirically confirmed by
Gravesande [13] around 1720. We know today this should be corrected to 1

2mv2. The escape velocity in Newton’s
formula can be derived in the following way

1
2
m̃v2 � M̃m̃

r2
(11)

and when we solve with respect to v, this gives

v ⇡

s
2M̃
r

(12)

We can also find expected gravitational time dilation by taking into account that the time of a clock at
distance r2 must move faster than the clock at a distance of r2 = r1 + h from the center of the gravity object by
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T2p
1� v22

=
T1p
1� v21

T2q
1� 2M̃

r2

=
T1q

1� 2M̃
r1

T2 = T1

q
1� 2M̃

r2q
1� 2M̃

r1

(13)

Assume the clock T1 is at sea level and clock T2 is 2,000 meters above sea level, which corresponds to
r1 ⇡= 6, 371, 000/c = 0.0212514 light-seconds and r2 = (6, 371, 000 + 2, 000)/c = 0.0212580 light-seconds. For
every second at the ocean level, the following number of seconds will go by as observed from the mountain level

T2 = 1

q
1� 2⇥1.52⇥10�11

0.0212514q
1� 2⇥1.52⇥10�11

0.0212580

= 1.00000000000022 s (14)

which is the same as predicted by general relativity theory. The point is that here we have done it without any
knowledge of G. What is even more important is our mass. The mass of the Earth, as we have said, is about
1.52⇥10�11 light-seconds. We can convert this to meters by multiplying by c = 299792458 m/s. This means the
mass of the Earth is 1.52⇥ 10�11 ⇥ c = 0.0046 m. This is actually half of the Schwarzschild radius of the Earth,
which is no coincidence. From Newton’s formula, one finds that the mass is half the Schwarzschild radius of the
Earth (when using length units linked to how far light travels in the arbitrary chosen time unit, here seconds).
One naturally gets the Schwarzschild radius by rs = GM

c2
; however, modern physics has not recognized that the

Schwarzschild radius (half of it) actually is a better definition of mass.

4 Getting down to the quantum level

Any rest-mass in terms of kg can be expressed as

m =
h̄

�̄

1
c

(15)

where h̄ is the Planck constant, �̄ is the reduced Compton length [14], and c is the well-known speed of light.
This formula can describe any rest-mass in terms of kg, including both subatomic and cosmological objects. The
Planck constant is indeed a constant, and so is the speed of light. The only factor that di↵ers between masses of
di↵erent sizes (weights) is then the Compton wavelength of the mass. The Compton wavelength has only been
measured for fundamental particles such as the electron. However, even larger masses that don’t have their own
Compton wavelengths still consist of a series of subatomic particles that must have Compton wavelengths. The
Compton wavelengths of elementary particles are additive based on the following formula

�̄ =
nX

i=1

=
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

+++ 1
�̄n

(16)

This means that the formula 15 can be used for composite masses and even astronomical objects like the Sun
or the Moon. But what does the formula truly represent? The Planck constant is linked to the quantization of
energy. Some will find it strange that the speed of light is embedded in the mass formula. We are all familiar
with E = mc2, but few physicists are familiar with the idea that the speed of light is integrated in the mass at a
deeper level. This indicates something inside a fundamental particle a mass is linked to the speed of light, and
also to composite masses, as they consist of fundamental particles. But how? Mass is known at the quantum
level to be a wave-particle duality. But what is a wave-particle duality exactly? Newton assumed light consisted
of indivisible particles; later, the view that light was a wave evolved from some experiments strongly indicating
wave behavior. Then Einstein introduced his photoelectric e↵ect and again showed that light had particle- like
properties, and light was redefined as having a mystical wave-particle duality. Not mystical in the terms of the
math, but in terms of the interpretation of the math. Then Louis de Broglie [15, 16] suggested that matter, in
addition to having particle-like properties, also likely had wave-like properties, and he suggested that the matter
wave was given by the following formula �B = h̄

mv� , where � = 1r
1� v2

c2

. Einstein quickly endorsed the idea,

and some years later it was confirmed that masses such as electrons had wave properties. This was considered
almost a proof that the de Broglie hypothesis was rooted in reality. Next, in a series of steps, an entire quantum
wave theory emerged from this line of thought, based on the important work of Heisenberg, Schrodinger, Klein
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Gordon, Pauli, and Dirac, among others. Further, the quantum mechanical theory fit experiments extremely
well. And just before this development, gravity theory had evolved into Einstein’s general relativity theory.
Since then, for more than 100 years, many of the world’s most brilliant physicists have tried to unify gravity
with quantum mechanics into a quantum gravity theory without much success.

However, in our rest-mass formula, m = h̄
�̄

1
c we do not have the de Broglie wavelength, but the Compton

wavelength. Compton was more of an experimental researcher than de Broglie and he had measured the wave-
length of an electron around the same time that de Broglie had presented his hypothesis of the matter wave.
That is, the Compton wavelength has been measured. There is a very simple mathematical relation between the
Compton wavelength and the de Broglie wavelength, namely �̄ = �̄B

v
c . However, if v = 0, then the de Broglie

wavelength is infinite when v = 0 and the corresponding Compton wavelength is zero. An infinite matter wave
for a subatomic particle is, to put it mildly, a bizarre prediction. We will claim, as we have done in other papers,
that the de Broglie wavelength is not a physical wavelength; it should be seen as a mathematical derivative of the
true physical Compton wavelength. In short, the de Broglie wavelength is more or less simply a mathematical
artifact. A theory built around the de Broglie wavelength will, in general, give a series of correct predictions,
but the interpretations will often be absurd, as one has not discerned what matter is directly linked to the
Compton wavelength and what is linked to the de Broglie wavelength. Why does modern physics have two
di↵erent types of wavelengths for mass - one being the experimentally observed Compton wavelength, the other
being the hypothetical de Broglie wavelength? Well, this is a topic for another time.

Let’s return to our mass definition in kg in terms of the Compton wavelength. The formula can be rewritten
as

h̄

�̄

1
c
=

c
�̄
c
h̄

1⇥c

(17)

We can see that the kg of the mass in question simply is the Compton frequency of the mass in question
divided by the Compton frequency of one kg. That is, the kg definition of mass at a deeper quantum level is a
frequency ratio. At each Compton time we will claim there is a Planck mass event. Such Planck mass events
consist of two indivisible particles colliding. Such indivisible particles, when not colliding with other particles,
move at the speed of light over the Compton length. For example, an electron will then have the following
number of Planck mass events per second

fe =
c

�̄e
⇡ 7.76⇥ 1020 (18)

Each Planck mass event is 10�8 kg, but the Planck mass event only lasts for one Planck second, so this gives
a mass in kg for the electron of

me =
c

�̄e
⇡ 7.76⇥ 1020 ⇥mptp =

c
�̄
c
h̄

1⇥c

= 10�31 kg (19)

However, this mass definition that indeed is a collision ratio does not tell anything about how long each
collision lasts; it disappears in the equation, as the Planck length will cancel out between the Planck mass in
terms of kg and the Planck time. The standard kg definition of mass is a collision ratio, and that is all we need
when working with most observable phenomena. An exception to this is gravity. Gravity is not some magical
force; all mass is also gravity. That is, gravity is the collisions between the indivisible particles that existing in
matter. The collision only lasts for a Planck second, as we can find from gravity observations. This is, however,
not embedded in today’s mass definition, and it has to come from somewhere in the gravity models to make
the gravity formulas predict correctly. This is where the gravity constant comes in. The so-called Newton’s
gravitational constant adds to the formula what is missing in the kg definition of mass. Luckily what is missing
is only something that is constant, namely the Planck length, and also, we need to take something out, namely
the Planck constant. The Planck constant is the units of energy relative to the collision ratio in a kg. That is,
the Planck constant is the amount of energy in an indivisible particle in the form of a collision ratio where the
collision ratio is relative to the collisions in one kg per second.

The quantum aspects of this theory and a unified quantum gravity theory is explained in much more detail
in [17–19]. Just as important is the fact that one can find the Planck length (and other Planck units such as
the Planck time and the Planck mass) totally independent on any knowledge of G, see [20, 21]. The Newton
gravitational constant that Newton never invented or used is at a deeper level a composite constant of the form

G =
l2pc

3

h̄ as described by Haug in some of the working papers just mentioned as well as in [22, 22, 23].
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5 The Newton Mass from a quantum perspective, the true
mass and the Newton God particle

Let us look closer at what the “mysterious“” mass we get out of the original Newton formula actually represents
from a quantum particle perspective. The mass of the Earth, for example, we predicted (using Newton’s original
formula) to be 1.52 ⇥ 10�11 Light-seconds. We believe that we can find the mass of the Newton’s indivisible
particle from this and claim it must be given by the following formula (a formula we have already shown is
directly linked to the Planck length, [21])

m̃i =
p

M̃ �̄ (20)

where �̄ is the Compton wavelength of the Newtonian mass M̃ of the Earth, for example, (e.g., the gravity object
of which we have observed the mass). How can we find the Compton wavelength of the Earth? We can measure
the Compton wavelength of an electron without knowing the mass of the electron. The reduced Compton
wavelength of an electron can be found by Compton scattering and it is about 3.86 ⇥ 10�13 m. Therefore, it
is about 1.28 ⇥ 10�21 light-seconds. This can be measured without knowing the mass of the electron first, see
[24]. Further, the Compton wavelength of a proton can be found by simply checking the cyclotron frequency of a
proton relative to an electron, [25, 26]. The well-known (measured) ratio is about 1836.15247. Now we just need
to know the number of protons in the Earth, which, we could count hypothetically, even if this is impossible
directly in practice, but we will soon look at indirect methods to do so). In any case, there are about 3.57⇥1051

protons in the Earth (we assume neutrons have approximately the same mass as protons). The Compton length
of the Earth is then given by

�̄E =
nX

i=1

=
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

+++ 1
�̄n

=
1

3.57⇥ 1051 1
�̄e/1836.15

= 1.96⇥ 10�76 light-seconds (21)

The mass of Newton’s indivisible particle we can now calculate

m̃i =
p

M̃ �̄ =
p

1.52⇥ 10�11 ⇥ 1.96⇥ 10�76 ⇡ 5.46⇥ 10�44 light-seconds (22)

Some will recognize this number; it is the Planck time, which is 5.46⇥10�44 seconds. This is the case because
we have chosen seconds as our time scale, but remember this is also directly linked to our length scale. The
ultimate subatomic mass is a collision between two indivisible particles; this collision lasts for approximately
5.46⇥10�44. Our interpretation is that two indivisible particles spend this amount of time in collision (standing
still) during the period in which one non-colliding indivisible particle (moving at the speed of light) travels the
same distance.

This is explained in more detail, but from a slightly di↵erent perspective in our two collision space-time
unified quantum gravity papers, see [18, 19].

Keep in mind we never relied on the so-called Newton gravitational constant (that Newton never invented),
but that was invented to fit the arbitrary mass, and the mass definition of kg (pounds); as we have said, at a
deeper level this is just a collision ratio. Nor do we need the Planck constant to find the Planck time. One
can naturally criticize this approach and say that it is impossible to count the number of protons in the Earth
directly. Still, we can do this indirectly. This is when a Cavendish apparatus comes handy. Here we can find the
Newton gravitational mass of a small practical mass like a lead ball. Then we can count the number of protons
in that object (also a challenge, but not impossible). All we need to know is the weight of a lead atom, and we
can compare the large lead ball in the apparatus with that weight. Then we will know the number of protons in
the lead ball. When we know the Newton mass (light-seconds) of the ball, we can easily find the Newton mass
of the Earth relative to that. We have that

M̃ = GM =
lp2c3

h̄
⇥ h̄

�̄

1
c
=

lp
c
lp
�̄

(23)

which is the collision time of that mass over the shortest possible time interval it can be observed, as described
by Haug in his unified quantum gravity theory. Again, the collisions between indivisible particles last for one
Planck second (the Planck time); this is given by

lp
c and multiplied by how often these collisions happen

lp
�̄
.

The part
lp
�̄

can also be seen as a frequency probability when lp < �̄, when observed over the shortest possible
time interval, which is the Planck time. Be aware that for anything that has been measured in relation to the
Newton formula, one of the masses in the derivations for what one wants to predict will always cancel out; we
are always operating with just GM in any observable prediction and never GMm. Modern physics appears to
have missed the point that their invented GM is actually identical to the mass in the Newton formula.

Why on Earth would the universe invent something that is length cubed divided by time and kg. Of course,
the universe never invented such a thing. Modern physics invented a gravity constant to fit their misinterpreted
mass view onto Newton’s formula, which was needed to get their ill-specified mass model to fit experiments.
Newton never mentioned a gravitational constant himself. He calculated relative masses based on orbital time
squared (and adjusted for distance between the gravity objects, that is the masses.).
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6 Conclusion

As we have seen, it is by using Newton’s original formula that we obtain the correct unit measure of mass. The kg
definition of mass is a man-made, arbitrary unit of mass that has caused great confusion in modern physics. The
kg definition and similar man-made arbitrary units (such as the pound) are why the gravitational constant had
to be invented. Nature does not work in kg; it has its own more fundamental units. Arbitrary incomplete units
have added an unnecessarily layer of complexity to modern physics, and Newton’s original theory is superior
in many ways. Naturally, the theory was not complete in terms of quantum mechanics and relativity theory.
However, if the field of physics had stayed with Newton’s original formula, it is possible that a full understanding
of mass and a unified quantum theory might have been developed much earlier.
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Appendix: Some quotations from Newton

Below are some quotations from Newton on gravity

If there be several bodies consisting of equal particles whose forces are as the distances of the places
from each, the force compounded of all the forces by which any corpuscle is attracted will tend to the
common centre of gravity of the attracting bodies; and will be the same as if those attracting bodies,
preserving their common centre of gravity, should unite there, and be formed into a globe. p 236

I say, that the whole force with which one of these spheres attracts the other will be reciprocally
proportional to the square of the distance of the centres. The force with which one of these attracts the
other will be still, by the former reasoning, in the same ratio of the square of the distance inversely.
Cor. 3. The motive attractions, or the weights of the spheres towards one another, will be at equal
distances of the centres as the attracting and attracted spheres conjunctly; that is, as the products
arising from multiplying the spheres into each other. p. 223.

Cor.2 The force of gravity towards several equal particles of any body is reciprocally as the square
of the distance of the places of the particles. p. 393.

Cor.2 The force of gravity which tends to any one planet is reciprocally as the square of the distance
of places of that planet’s center. p. 393.

That all bodies gravitate towards every planet; and that the weights of bodies towards any the same
planet, at equal distances from the centre of the planet, are proportional to the quantities of matter
which they severally contain. p. 394, book 3.

If two spheres mutually gravitating each towards the other, if the matter in places on all sides
round about and equidistant from the centres is similar, the weight of either sphere towards the other
will be reciprocally as the square of the distance between their centres.

Wherefore the absolute force of every globe is as the quantity of matter which the globe contains; but
the motive force by which every globe is attracted towards another, and which, in terrestrial bodies, we
commonly call their weight, is as the content under the quantities of matter in both globes applied to the
square of the distance between their centres (by Cor. IV, Prop. LXXVI), to which force the quantity
of motion, by which each globe in a given time will be carried towards the other, is proportional. And
the accelerative force, by which every globe according to its quantity of matter is attracted towards
another, is as the quantity of matter in that other globe applied to the square of the distance between
the centres of the two (by Cor. II, Prop. LXXVI): to which force, the velocity by which the attracted
globe will, in a given time, be carried towards the other is proportional.

That there is a power of gravity tending to all bodies, proportional to the several quantities of
matter which they contain. p. 397.

Newton only uses the word “mass“ once in his book:

The quantity of matter is the measure of the same, arising from its density and bulk conjunctly.
It is this quantity that I mean hereafter everywhere under the name of body or mass.

In other words, mass is the quantity of matter.
In the Principia, Newton is also clear on the idea that the smallest particles of all bodies have spatial extension

and are hard (indivisible) and can move. And he follows up with the comment, “”And this is the foundation of
all philosophy.“”
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Since every particle of space is always and every indivisible moment of duration is everywhere,
certainly the Maker and Lord of all things cannot be never and no where. p. 505.

and thence we conclude the least particles of all bodies to be also extended, and hard and movable,
and endowed with their proper vires inertia. And this is the foundation of all philosophy.

In his book Optica he is even more clear on that he think matter consist of fully hard forever lasting particles,
that is indivisible particles

All these things being consider’d it seems probable to me, that Godin the Beginning form’d Matter in
solid, massy, hard, impenetrable, movable Particles, of such Sizes and Figures, and in such Proportion
to Space, as most conduce to the End for which he form’d them; and that these primitive Particles
being Solids, are incomparably harder than any porous Bodies compounded of them; even so very
hard, as never to wear or break in pieces; no ordinary Power being able to divide what God himself
made one in the first Creation. While the Particles continue entire, they may compose bodies of one
and the same Nature and Texture in all Ages; But should they wear away, or break in pieces, the
Nature of Things depending on them, would be changed. Those minute rondures, swimming in space,
from the stu↵ of the world: the solid, coloured table I write on, no, less than the thin invisible air
I breathe, is constructed out of small colourless corpuscles; the world at close quarters looks like the
night sky – a few dots of stu↵, scattered sporadically through and empty vastness. Such is modern
corpuscularianism.

There are many more references showing that Newton believed that the smallest particles were indivisible,
even though he also said it would be hard to prove. This seems to be a view he held from the time of his
unpublished notebook, to his published works Opticks and Principia. He wrote more about this in unpublished
draft versions than he did in published versions. Keep in mind that even to talk about atomism for hundreds
of years had been forbidden in most of Europe. Giordano Bruno was burnt at the stake in 1600 mainly for
talking openly about atomism. As another example of the suppression and persecution taking place in that
era, in1624, the Paris Parliament decreed that a person maintaining or teaching atomism would be liable for
the death penalty. Lancelot Law Whyte, who claimed to have worked with Albert Einstein on the unified field
theory, noted

The aggressive rise of physical atomism as an adequate explanation of the universe... provoked a
crusade (1660-1700) against it.

In addition, recent research has shown that the Galileo a↵air may have been related to the fact that he
openly talked about atomism, see [27]. In England, the climate for discussing atomism was slightly more relaxed
than in continental Europe, but even Newton probably had to be careful, especially if he was considering the
possibility of visiting France, for example.


