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Abstract

This paper proposes mass interaction principle (MIP) as: the particles will be subjected
to the random frictionless quantum Brownian motion by the collision of space time
particle (STP) prevalent in spacetime. The change in the amount of action of the
particles during each collision is an integer multiple of the Planck constant h. The
motion of particles under the action of STP is a quantum Markov process. Under
this principle, we infer that the statistical inertial mass of a particle is a statistical
property that characterizes the difficulty of particle diffusion in spacetime. Within
the framework of MIP, there are three novel and important works in this paper: 1.
We prove that the number of generations of lepton can not be over three. 2. We
prove the principle of entropy increasing for noninteracting systems, and clarify the
physical origin of entropy at absolute zero. 3. We solve a world class puzzles about
the anomalous magnetic moment of muon, and give a self-consistent explanation to
the lifetime discrepancy of muon at the same time.

Under the MIP framework of interaction between STP and matter particles, the rel-
ativistic, quantum mechanic, electromagnetic, spin, thermodynamics and gravitation
properties are all interpreted self-consistently, which shows that they all have the
common origin.
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1 Introduction

1.1 Spacetime Fluctuation, STP and MIP

We believe the energy fluctuations of spacetime are universal, which are defined
as STP. In this picture, particles are classified into two groups: one is matter
particles which interact with STP, another one is massless particles which freely
move in spacetime. Matter particles change their states by all the collisions with
STP. The underlying property of mass is a statistical property emerging from
random impacts in spacetime. Different particles have different effects of impact
by STP, which can be defined as some kind of inertia property of particles. This
property corresponds to mass dimension (Following we will prove it happens to
be the inertial mass from Schrödinger’s equation ). Matter particles develop
a Brownian motion due to random impacts from spacetime. We strongly sug-
gest that all the probabilistic behaviours of quantum mechanics come from the
Brownian motion, which is exactly the origin of quantum nature. In the frame-
work of MIP, the photon represents itself as a Hopf link exicitation made of the
2+1-dim gauge field and its Hodge dual partner. On the other hand, under the
MIP framework, photons not only exchange electromagnetic interactions, they
also exchange spin information. It just explains that the annihilation condition
of positive and negative electrons is not only the opposite of charge, but also the
opposite of its spin. In modern physics, the spin and charge of matter particles
are independent quantum properties. However, the spin has a magnetic mo-
ment and indicates that the spin and electromagnetic interactions are related.
Under the MIP framework, this apparent contradiction can be self-consistently
explained.

We believe the quantum behaviours of matter particle come from spacetime fluc-
tuation. The energy fluctuation of spacetime is quantised. We call the quantised
energy as space-time particle. It is a massless and spinless scalar particle. The
exchange of energy between particle and STP is not strictly random, which leads
to a unique Brownian-like motion. Once the time interval of impact is fixed, the
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exchange of energy has to be quantised, which indeed is the quantum nature of
particles. Therefore, all quantum nature of particles is a faithful representation
of spacetime quantised fluctuation.

Definition 1:

Matter particles will perform random fluctuation motion in spacetime because
of stochastic interactions between STP and matter particles, within which the
energy exchange can not be achieved instaneously. For free matter particles,
we define the product of exchanged characteristic energy and the corresponding
time interval as the change of action in the collision process.

According to the above two fundamental propositions: 1. spacetime fluctuations
are universal; 2. spacetime fluctuations are quantised, we propose a MIP: Any
particle with mass m will involve Brownian-like motions without frictions, due
to random impacts from spacetime. Each impact changes the amount nh (n
is any integer)for an action of the particle. The motion of a particle under
the action of STP is a random motion of a quantum Markov process (quantum
Brownian motion).

The MIP is absolutely essential to mass, spin, all quantum properties as well as
relativity properties of matter particles. We will prove two important results.
At first, within the framework of MIP, fundamental results of special and general
relativity are natural inferences. Secondly, many important principles of modern
quantum mechanics can be derived from MIP. Within this framework, MIP
plays the role of the zeroth interaction, which dictates all quantum behaviours.
Moreover, it will be shown that modern quantum field theory is compatible with
MIP in the sense of quantum statistical partition functions.

1.2 Inertia Mass is a Statistical Property

Until now, our knowledge of mass, a fundamental concept of physics, mainly
comes from Newton’s laws of motion especially the first and second laws. The
definition of mass in physics is a basic property of particles. The amount of
matter contained in object is called the mass of object. The mass is related to
the inertial nature of the object’s original motion state.

The first law states that in an inertial reference frame, an object either remains
at rest or continues to move at a constant speed, unless acted upon by a force.
However according to the MIP, free particle has to do Brownian-like motions
in spacetime, which is a Markov process. The mass of particle, in order to be
sensed by spacetime, has to be collided randomly by STP. Mass cannot be well
defined within the interval of two consecutive random collisions. In other words,
mass is not a constant property belonging to the particle itself, but a discrete
statistical property depending on dynamical collisions of spacetime. We will
derive from MIP straightforwardly that mass must be a statistical term which
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has its own means and fluctuations.

Moreover, we prove the uncertainty relation asserting a fundamental limit to the
precision regarding mass and diffusion coefficient. This implies that both mass
and diffusion coefficient of any particle state can not simultaneously be exactly
measured. Newton’s Second law states that in an inertial reference frame, the
vector sum of the forces F on an object is equal to the mass m of that object
multiplied by the acceleration of the object. This connects the concept of mass
and inertia and in principle defines a fundamental approach to measure the
mass of any particle experimentally. However, according to the MIP, forces on
a particle are changed constantly by the random impact of STP. Therefore, we
are no longer able to take constant mass for granted. In conclusion, we believe
that mass as a statistical property is much more natural within the framework
of modern science, which completely overrules Newton’s concept of mass based
on Mathematical Principles of Natural Philosophy first published in 1687.

1.3 Realistic Interpretation of Quantum Mechanics

The main idea of Copenhagen interpretation is that the wave function does not
have any real existence in addition to the abstract concept. In this article we do
not deny the internal consistency of Copenhagen interpretation. We admit that
Copenhagen′s quantum mechanics is a self-consistent theory. Einstein believed
that for a complete physical theory, there must be such a requirement: a com-
plete physical theory should include all of the physical reality, not merely its
probable behaviour. From the materialistic point of view, the physical reality
should be measured in principles , such as the position q and momentum p of
particles. In the Copenhagen interpretation, the particle wave function Ψ(q, t)
or the momentum wave function Ψ(p, t) is taken to be the only description of
the physical system, which can not be called a complete physical theory, at
most a phenomelogical effective theory. Therefore, in this paper, we propose
a MIP where the coordinate and momentum of particles are objective reality
irrespective of observations . With the postulation of MIP, quantum behaviour
will emerge from a statistical description of spacetime random impacts on the
experimental scale, including Schrödinger′s equation, Born rule, Heisenberg′s
uncertainty principle and Feynman′s path integral formulation. Thus, we be-
lieve that non-relativistic quantum mechanics can be constructed under the
MIP. Born rule and Heisenberg′s uncertainty relation are no longer fundamen-
tal within our framework.

1.4 MIP and Statistical Properties of Spin

In modern quantum field theory, the spin properties of particles reflect the trans-
form properties of particles under relativistic Lorentz transformation. The spin
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is a representation of the Lorentz group. The algebraic representation theory,
simplifies the mathematical definition of spin, however it hides the fundamental
physical properties of spin. Within the framework of MIP, particle spin has
a complete new origin. It is a topological order, which describes a topologi-
cal phase transition between the two STP vortices living on Hodge dual 2+1
dimensional space-time, respectively.

Within the framework of MIP, a careful observation of properties near the singu-
larity at the center of the STP vortex, drive us to a new perspective of particle
spin. We noticed there are not only energy divergence at the singularity on
the center of the STP vortex, there also exists a disorientation property for a
direction vector. To describe the disorientation, we introduce the torsion based
on the cotangent vielbein field. The torsion tensor actually drives the cobor-
dism topological phase transition between STP vortices on tangent space and its
dual normal space. By the cobordism topological phase transition, we combined
vortices on the 2+1 dimensional tangent space and normal space into a 3+1 di-
mensional instanton. The cost of this cobordism topological phase transition, is
to calculate the corresponding topological order. By cohomological theory, we
calculated the incomplete angle due to the cobordism topological phase transi-
tion, which concludes that the incomplete angle is an integer times π,this angle
contributes to the STP vortex around matter particle a factor eiNπ. When ro-
tating the particle a circle, the factor changed the signature of the wave function.
This inveals the origination of particle spin is a topological phase transtion be-
tween STP vortices around the matter particle. Within the framework of MIP,
particle spin describes the topological order of this cobordism phase trantion of
STP vortices.

1.5 MIP and Electromagnetic Theory

Within the framework of MIP, STP spread over spacetime, and its energy spec-
trum distribution is consistent with scalar particles. It can therefore be thought
of as an excitation of a scalar field. The influence of material particles on its
spacetime is local, so on the 2+1-dimensional time-space slice, the influence of
material particles on spacetime can be regarded as a potential energy.

In modern quantum field theory, an important point is that microscopic energy
can be non-conservative, and it can fluctuate to form pairs of virtual positive and
negative particles. Within the framework of MIP, the fluctuation of spacetime
energy is itself STP. The number of STP particles is not conserved locally, but
globally, the energy of STP is conserved. So the picture of STP as a free particle
is restored on a large scale. This just shows that STP has some local symmetry,
which is broken at large scale. In essence, when the domain symmetry of the
authority is U(1), STP is the excitation of a complex scalar field.

On the other hand, the spacetime can be regarded as 2+1-dimensional around
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the spacetime in which the material particles are located. On this 2+1-dimensional
spatiotemporal slice, STP is the excitation of the complex scalar field, which is
accompanied by the excitation of the gauge field. The material particle produces
a local non-perturbative potential energy in the surrounding space and time.
The existence of this potential energy can cause the STP to spontaneously form
a stable vortex solution. If the STP is not accompanied by a gauge field, then
the vortex solution will cause the problem of energy divergence in the vortex
center. The gauge field just eliminates the problem of local energy divergence.

The existence of a vortex solution also provides a possibility of duality, namely
Hodge duality. The Hodge duality will extend the dynamics of the 2+1 dimen-
sional gauge field to the 3+1 dimension. In the sense of Lagrangian, the 3+1-
dimensional gauge field just describes the electromagnetic field theory. That is
to say, the 3+1-dimensional equation of motion is Maxwell’s equation. There-
fore, we derive the classical electromagnetic theory from the vortex dynamics of
STP.

In the MIP framework, the photon is essentially a topological excited state of two
2+1-dimensional gauge fields with their field strengths being Hodge’s dual, and
its topological configuration is a Hopf chain. Physically, photons transfer phase
changes of material particles. Its equation of motion is the Maxwell equation.

On the other hand, the two topological circles of the photon, of which topolog-
ical configuration Hopf link correspond to the topological subspace of the local
spacetime. The Hopf links just represent the Lorentz representation of spin 1,
which is a vector representation. Therefore, within the framework of MIP, the
spin 1 of zero-mass photon is also self-consistently explained.

1.6 Muon anomalous magnetic moment under the MIP
framework

On April 7, 2021, FermiLab performs a new muon anomalous magnetic moment
experiment. The experimental value differs from the theoretical value predicted
by the Standard Model with 4.2σ standard deviation. The probability of this
deviation comes from statistical fluctuations is 1 in 40000, which implies possible
physics beyond the Standard Model. The new massless scalar STP required by
the MIP is a key step beyond the existing standard model. Introducing only one
parameter, the interaction strength between STP and lepton, not only perfectly
solves the world-class problem of the anomalous magnetic moment of muons in
the latest experiment, but also explains the muon lifetime discrepancy between
theory and experiment. It can be seen that this is a triumph for applications of
MIP in modern particle physics.

Last and most importantly, we derived the generation for charged leptons. This
is a completely new result and one can not derive this law in current quan-
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tum field theory framework. Within the MIP framework, by invoking the STP
vortices, the generation is a direct inference.

1.7 MIP and Special Relativity

From the MIP point of view, the state change of free material particles can
only be achieved by the impact of STP. We can say that when the microscopic
properties of a particle of matter (such as its phase or spin eigenstate) change,
the particle that propagates the information is a gauge particle. From MIP, we
have obtained the classical electromagnetic theory in section 9 of this paper. It
is a theory that is invariant under the transformation of the inertial reference
system. In particular, the speed of light as a constant does not change under
the transformation of inertial reference frame. Therefore, the assumption that
the speed of light does not change is no longer a hypothesis, but a basic law.

On the other hand, the interaction of STP on particles causes the particles to
perform random fluctuations. The speed of this kind of fluctuation movement
is very different from the classic speed. It is essentially a relative speed that is
constant under a time reversal. This random Markov fluctuation is not related
to the classical motion and is therefore invariant under the transformation of the
inertial reference frame. Therefore, the equivalence between inertial reference
systems is no longer an assumption, but a natural inference under the MIP
framework. We can naturally derive some basic results from the special theory
of relativity. Under the framework of MIP, the effects of ”mass enhancement”,
”time dilation” and ”length contraction” all have new physical meanings.

1.8 MIP and Newton’s Universal Gravity

In the 3+1 dimension Minkowski spacetime, STP is a real scalar field. We con-
sider the interaction between STP and matter particles. With the tree diagram
approximation of quantum field theory, the interaction among matter particles
induced by STP is finally embodied as the inverse square law and proportional
to the product of mass of matter particles. We show that Newton’s theory of
gravity is an effective theory within the framework of MIP.

Furthermore, we can judge from the overall perspective of modern physics that
the inertia mass of fermions must be equal to the gravitational mass. We have
obtained the equivalent principle. Both inertial mass and gravitational mass are
no longer the basic physical quantities. The two are indeed equivalent, which
come from the statistical mass of STP collisions.
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1.9 The principle of entropy in MIP framework

Starting from MIP and recalling the mathematical property of Markov random
collision, we obtained the principle of entropy of non-interacting particle nat-
urally. It is important to emphrase that in modern physics, the principle of
entropy is still a empirical law. It does not have an explanation from the first
principle. What we explained in this article, reveals the deep meaning of the
principle of entropy. Most importantly, within the MIP framework, the princi-
ple of entropy originates from the statistical effect of random collision between
matter particle and STPs. The collision naturally leads to the increasing en-
tropy of matter particles. This principle is a cornerstone of modern physics,
which is also irreplaceable.

1.10 Outline

In summary, MIP provides quantum mechanics, special and general relativity,
electromagnetic theory, spin, electric charge, generation of leptons and entropy
principle a materialistic basis, where an intuitive physical picture can be con-
structed. In this picture, mass is a statistical property which emerges when a
large number of STP collisions occur. The spin represents the statistical prop-
erties of the interaction of the particle with the STP around it. Charges interact
with each other through the topological excited state of gauge field in 2+1-dim
and its Hodge dual partner, i.e. photon. Within the framework of MIP, Born’s
probability interpretation, Heisenberg’s uncertainty principle no longer are ba-
sic principles, but only the natural consequences of MIP. The main results and
conclusions of this paper are as follows:
In Section 2, we propose MIP and the fundamental definition 1, and obtain the
energy spectrum distribution of the STP.

In Section 3, based on MIP from the general random motion process, we derive
the universal spacetime diffusion coefficients of particles.

In Section 4, within the framework of MIP, we derive the spacetime diffusion co-
efficient and introduce a non-relativistic mass, which does not only describe the
inertia, but also a statistical property. It is especially important that statistical
inertial mass is a measure of how easily particles diffuse in spacetime, which is
therefore a statistical property. It can be inferred that there is an uncertainty
relationship between statistical inertial mass and spacetime diffusion coefficient,
The most fundamental coordinate-momentum uncertainty relationship of quan-
tum mechanics can be derived from this uncertainty relationship. Therefore,
the wave-particle duality and the Heisenberg’s uncertainty relationship are the
characteristics of the STP colliding particles within the framework of MIP.

In Section 5, we point out that the motion of particles in spacetime is a Markov
process, which will emerge as a quantum wave, which satisfies the Schrödinger
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equation. Within the framework of MIP, we reinterpret the Born’s rule.

In Section 6, we reinterpret the Feynman path integral and construct a sys-
tem of non-relativistic quantum mechanics from materialist epistemology. We
demonstrate the principle of quantum mechanics and the compatibility of path
integrals. Based on the path integral and MIP, we derive the path integral of
the free particle, wave function in the potential field and the steady state wave
function.

Section 7 of this paper provides an explanation of the quantum measurement
within the framework of MIP. The effects of the measurement leading to wavepacket
collapse can be well understood. EPR can also be well explained within the
framework of MIP.

In Section 8, we consider the 2+1-dimensional dynamics of a complex scalar
field. The existence of matter particles causes the STP to form a vortex structure
solution around the material particles. The existence of this solution extends the
2+1 dimensional gauge field to the 3+1 dimension and derives Maxwell’s equa-
tions. The photon appears as a Hopf chain solution of two three-dimensional
selfdual gauge fields, which is a topological invariant configuration. We show
that the existence of a spacetime ANOZ vortex solution can explain the origin
of the charge and electromagnetic interaction. A most important result in this
chapter is that we also derived the generation for leptons, which says in 3+1
dimensional space-time, there are at most three kinds of flavor for all leptons.
This firstly resolves the flavor in modern physics is a natural result in MIP.

In Section 9, by introducing STP scalar field, we considered the 1-loop correc-
tions by interaction between STPs and leptons in two important physics: one is
the muon anomalous magnetic moment, the other is muon decay. The interac-
tion between STPs and muon(electron) not only explains the difference between
FNAL experiment and theory on muon anomalous magnetic moment , but also
preicts a more precise muon lifetime.

In Section 10, by investigating the topological phase transition of two vortices
on dual 2+1 dimensional spaces, we found the origination of particle spin within
the framework of MIP. Particle spin is the topological order for the cobordism
topologcial phase transition which concatenating the two 2+1 dimensional vor-
tices into a 3+1 dimensional instanton.

In Section 11, we derive three important results of the special theory of relativity
from MIP, which are mass enhancement, time dilation and length contraction.
These effects can be self-consistently explained within the framework of MIP.

In Section 12 , we derive Newtonian gravitational forces between two matter
particles from MIP.

In Section 13, we derive the principle of entropy of non-interacting particle from
MIP.
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Finally, in Section 14 we summarize and explore the future of research directions.

2 Mass Interaction Principle

2.1 Proposing the MIP

Particles moving in spacetime interact with STP. The generation of STP itself
should be regarded as a microscopic random excitation of local spacetime energy.
We can assume the following two self-consistent ideal STP models. First, the
spacetime itself is discrete, and each of the smallest spacetime units can act
on the particle to change the particle’s motion . However this spacetime unit
acts as a random force on the particles, the motion of the particles in spacetime
under the action of STP will also be random. Secondly, the energy distribution
of STP is Gaussian, therefore, when they were scattering with matter particle,
the force is random.

Furthermore, we propose in each interaction between matter particle and STP,
the exchanging action should be nh, with n integer and h the Planck constant.
According to this, we can define the MIP accurately. Suppose STP begin to
collide with matter particle at time t1 and end it at at time t2 to exchange
energy E. Without the collision of STP, the action of particle at the same
interval will be

S =

ˆ t2

t1

E0dt (2.1)

With the collision of STP, the action of particle at the same interval will be

S′ =

ˆ t2

t1

E(t)dt (2.2)

Therefore the change of action in Definition 1 is

δS = S′ − S =

ˆ t2

t1

[E(t)− E0]dt ≡
ˆ t2

t1

f(t)dt (2.3)

By definition, integral function f(t) is a monistic increasing function f(t) with
following property

f(t1) = 0, f(t2) = E (2.4)
According to Mean value theorems for integrals, there exists one point t∗ at the
interval satisfying ˆ t2

t1

f(t)dt = f(t∗)(t2 − t1) (2.5)

Setting exchange of energy be E∗ = f(t∗) at this point, we have 0 < E∗ < E.
So the exact formula of the change of action is

δS = E∗δt (2.6)
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where δt ≡ t2− t1. Therefore we are sure that, it is this characteristic exchange
energy E∗ not the energy of STP itself corresponding to the change of action.
With MIP δS = nh, it’s impossible to interact instantaneously, since the ex-
change energy E∗ will blow up.
In our MIP framework, there are no instant interactions between matter parti-
cle and STP, in other words, the interaction takes time to transfer the energy.
If the scattering STP has an extremely low energy such that in ∆t, the trans-
fered action is less then h , we conclude that in ∆t, the STP cannot collide
the particle. We argue that such a collision is still in process, the particle as
well as the STP are in a bound state, not a scattering state. This is similar to
a completely inelastic collision in classic mechanics. While in such a process,
the conservation of energy and momentum can not be satisfied simultaneously.
Because of conservation of energy and momentum, the bound state actually is
not a stable state. This observation leads to an important point: there exists a
minimal energyEmin in ∆t so that

Emin∆t = const. (2.7)

In physics , the product of energy and time will have the dimension of action.
It is natural to suggest such a constant with action dimension is the Planck
constant, so we have

Emin∆t = nh, n ∈ Z. (2.8)

At a certain moment, particle can be scattered by many STP with different
momenta and energies. In ∆t, we assume there are effectively N collisions. The
state of the motion will depends on the net effect of the N times collision. This
is a principle of superposition. We can use in total N vectors to superposite
whole changes of the state of motion, which means if at time t the particle was
at position ~X(t), with speed ~V0, then at the moment t+∆t, its position will be
~x(t+∆t) = ~X(t) +

∑N
i=1 ∆Xi, and speed~V0 +

∑N
i=1 ∆

~Vi. This simple analysis
tells us in ∆t, the ultimate state of motion of the particle can be separated as
N different paths. This is the effect of separation of paths. While the weights of
these paths, aka the probability distribution of universal diffusion, highly rely
on the energy distribution of STP. Collisions by STP with different energies end
up with different changes of the state of motion.

2.2 The Nature of Spacetime within the framework of MIP

At the beginning of the 20th century, the null result of the Michaelson-Morley
experiment ended the ether theory. Within the framework of MIP, the concept of
spacetime looks very similar to that of ether, but it is fundamentally different.
To clarify this, let us first review the concept of ether. The ether is a gas
medium filled in Newton’s absolute static time and space. Its definition directly
introduces a reference frame of God’s perspective, which is Newton’s static
spacetime system. The earth and this frame of reference are relatively moving,
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so they will feel the ether wind blowing, which is the experimental basis of
the Michaelson-Morley experiment. But spacetime is not a gaseous medium
filled with absolute time and space. It is the fluctuation of time and space.
From a large scale, the fluctuation of spacetime does not have significant effects.
Spacetime seems to be smooth and differentiable, and the differential geometry
theory of general relativity can effectively describe the physical properties of
large-scale spacetime. However, on the microscopic scale, the fluctuation of
spacetime indicates that spacetime itself does not have continuous property.
There is no absolute static spacetime reference frame in the above discussion,
so the STP within the framework of MIP is not etheric.

The null result of the Michaelson-Morley experiment actually promoted Ein-
stein’s most important hypothesis of the theory of relativity, which is the con-
stant speed of light. In the theory of relativity, the constant speed of light is
the only absolute assumption, and the relativity of all other speeds remains.

Within the framework of MIP, the energy fluctuation of spacetime forms STP.
If you think of spacetime as a peaceful lake, then STP is the splash of water
on the surface of the lake. When it falls on the surface of the lake, it will form
ripples. Therefore, the emergence of STP is always accompanied by the spread
of ripple. The propagation speed of ripple is the characteristic propagation speed
in spacetime. Forming a STP means that fluctuation of spacetime will spread
to a certain spatial distance within a certain period of time, so the spacetime
around the STP is also changed. We now know that the smallest scale of time
is the Planck scale, and the smallest scale of space is the Planck length. In the
Planck time STP has to spread a Planck length of space, so the propagating
speed of STP is the same as light speed.

From the spacetime view of MIP, any physical observable event in spacetime will
inevitably accompany the fluctuation of spacetime energy, which will profoundly
affect the spacetime after the event. Under such a view of spacetime, the current
spacetime is actually the result of the joint influences of all events in the history.

2.3 Energy spectrum of STP

To consider the collision between STP and particle, it will be ambiguous if the
energy spectrum of STP is not clear at first. In this subsection, we deal with
this problem.

Let us consider a cubic with volume L3, which we call a system. If there are
in total N systems in spacetime, we can classify the N systems by states. We
label a state by j so that there are Nj systems with energy Ej . The total energy
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of the ensemble(collection of N systems) is denoted as E , we have

N =
∑
j

Nj (2.9)

E =
∑
j

NjEj , (2.10)

for constant E and N , the possible total number of states in whole spacetime
will be Ω = N !∏

j Nj !
. Physical reality is required by the maximum of Ω. There is

a distribution {Nj} maximizing Ω, so that

lnΩ = N lnN −N −
∑
j

Nj lnNj +
∑
j

Nj · · · (2.11)

the question is under constraints (2.9,2.10), how to maximize lnΩ . With the
method of Lagrangian multiplier,

∂ lnΩ

∂Nj
− λ1

∂
∑
j Nj

∂Nj
− λ2

∂
(∑

j NjEj

)
∂Nj

= 0 (2.12)

we can derive

− lnNj − λ1 − λ2Ej = 1⇒
Nj = e−1−λ1−λ2Ej (2.13)

hence the probability of being at state j

Pj =
Nj
N

=
e−λ1−λ2Ej∑
j e

−λ1−λ2Ej
=

e−λ2Ej∑
j e

−λ2Ej
≡ e−λ2Ej

Z
(2.14)

and the average energy of the ensemble

E =
E
N

=
∑
j

EjPj = −
∂

∂λ2
lnZ (2.15)

In L3 , suppose there are n~p = 0, 1, 2, · · · STP have momentum ~p, for giving
distribution {n~p}, the energy in L3 is

E =
∑
{
n~p

}n~pE~p (2.16)

with E~p = c|~p| = cp. Here STP are massless as proposed. We have

Z =
∑
{
n~p

} e−λ2E =
∏
~p

(
1 + e−cλ2p + e−2cλ2p + · · ·

)
=

∏
~p

1

1− e−cλ2p
(2.17)
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and the average energy of a system is

E = − ∂

∂λ2
lnZ =

∂

∂λ2

∑
~p

ln
(
1− e−cλ2p

)
=
∑
~p

pe−cλ2p

1− e−cλ2p
=
∑
~p

cp

ecλ2p − 1
(2.18)

when L→∞, summation becomes integration as follow∑
~p

→ L3

8π3

ˆ
d3~p

from which we see
E =

L3

2π2

ˆ
dp

p3

ecλ2p − 1
=
π2L3

30λ42
(2.19)

so the density of STP will be

εST =
π2

30λ42
(2.20)

Recover c and ~ in above equation, we obtain

εST =
π2

30c3~3λ42
. (2.21)

Now consider the physical meaning of λ2, which determines the constraint that
represents energy distribution of STP. While the multiplier λ1 which determines
the constraint represents the number distribution of STP has no affects on
the dynamics of STP. This means we can classify STP arbitrarily, except to
satisfy the total energy constraint. For example, the action of particle changed
kh, k ∈ Z in a certain collision by STP. In physics we can not distinct one STP
collision or many STP collision, since neither from energy spectrum of STP nor
from the change of status of the particle can distinct them. From dimensional
analysis and MIP, we have

λ2 =
g

EST
(2.22)

where g is a dimensionless coupling constant, and EST is the characteristic
energy of STP. In the limit of extreme relativity, the colliding of STP can not
be seen as perturbations, but strong disturbances.

3 Random Motion and Spacetime Diffusion Coefficient

Let mST be the statistical mass of the particle . We will prove the spacetime
interaction coefficient of a mST mass particle will be universally given as

< =
h

2mST
. (3.1)
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Within the framework of random motion[1], or Wiener process in mathematics
[2], this spacetime induced random motion is equivalent to the Markov process,
moreover, the spacetime interaction coefficient is nothing but the diffusion co-
effient [3]. In this section, we will start our journey from propability theory of
random motion[3, 4], and then give a concrete proof that for the random motion
induced by MIP, the spacetime interaction coefficient is given exactly by (3.1).
The last two subsections discussed two spacetime models in order to investigate
the origin of the spacetime interaction coefficient. From both we obtained the
coefficient reading as < = w`

2 , in which w is the average speed of the particle
and ` the mean free path.

3.1 Langevin Equation

The space-time background can be seen as a fluctuation environment, and the
particles move in this fluctuation environment. This is a Markov process. The
position of the particle ~q is a random quantity. From a strict mathematical point
of view, it can be decomposed into a super random part and a superimposable
function

~q(t) = ~q0(t) + ~ω(t) (3.2)
where ~q0(t) is the differential part of position and ~ω(t) represents random mo-
tions of particles. The whole motion of particle can be described by Langevin
equation as

δqi(t)

δt
=
dq0,i(t)

dt
+
δωi(t)

δt
= Ui(q(t)) + νi(t) (3.3)

In spacetime, particles are subjected to the impact of STP. But if some of the
impact is relatively weak, then the change of the state of motion can only be
regarded as a perturbation. Under perturbation, the velocity of the particles
changes which can be seen as smoothly and continuously. The non-perturbative
impacts of STP on the particles instantaneously change the motion state of the
particles, leading to the completely random motion. Each impact should be
treated as a sum of a differential impact and a random impact. A microscopic
impact does not change the classic trajectory of the particle, but it will cause the
trajectory to be superimposed on the motion of an envelope. This is precisely
the “differentiable velocity function” U(q(t)) expressed by the first term in the
three velocities decomposition of the Langevin’s equation. Therefore, the true
velocity of the particle V(t) should contain three contributions, which is

V(t) = v(t) + u(q(t)) + ~ν(t) (3.4)

Where v(t) is the classic statistical velocity, u(q(t)) is the quantum envelope
velocity of the particle, and ~ν(t) is the diffusion velocity representing random
motion. U(q(t)) denotes the union of the first and the second term in eq.(3.4)

U(q(t)) = v(t) + u(q(t)) (3.5)
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.

For a Markov process, the average contribution of white noise vanishes. How-
ever, because of its Gaussian nature, its variation is not zero. We have

〈νi〉ν = 0, 〈νi(t)νj(t′)〉ν = Ωδi,jδ(t− t′), t ≥ t′ (3.6)

here the δi,j in the later equation can be obtained from the spacetime homoge-
neous property, while δ(t − t′) is determined from the Markov property. For a
Markov process, only conditions at the very moment determine the dynamics
of the system, and all information from future or past are irrelevant. We can
write down the basic correlation function by introducing a probability measure
[dρ(ν)],which is given as

[dρ(ν)] :=

(√
1

2πΩδ(t− t′)

)D
[dν] exp

(
− 1

2Ω

ˆ
dt
∑
i

ν2i

)
(3.7)

It is easy to see that

〈νi(t)〉ν ≡
w
νi(t)[dρ(ν)] = 0 (3.8)

〈νi(t)νj(t′)〉ν ≡
w
νi(t)νj(t

′)[dρ[ν]] = Ωδi,jδ(t− t′) (3.9)

Here Ω describes the strength of spacetime interaction on the particle. Notice
δ(t− t′) has the inverse dimension of time t , as

∞w

0

δ(t− t′)dt = 1.

However, from the definition of measure (3.7), we can see, νi have the unit of
m/s, so Ω will have the unit of m2/s. From previous analysis, each collision
leads to a change of an action h. h has the unit of angular momentum, kg ·m2/s.
From this we can define a quantity with mass unit, it is

mST ≡
h

Ω
. (3.10)

The mass mST has the meaning such that it is the mass collided by STP and
is a statistical property. Accordingly, the collision parameter Ω = h

mST
reflects

a physical realistic viewpoint: an object in our real nature, the larger its mass
means the smaller its quantum effect.

Langevin equation generates a timedependent probability such that

P[q, t; q′, t′] = 〈
D∏
i=1

δ[qi(t)− q′i(t′)]〉ν , t ≥ t′ (3.11)

which means for an operator O[q], its average value at time t will be:

〈O[q(t)]〉ν ≡
w

P[q, t; q′, t′]O[q]dq (3.12)
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Using the probability distribution (3.11), one can immediately verify equation
(3.12). Actually, the distribution (3.11) can be seen as an evolution process,
which says

P[q, t; q′, t′] =

¨
q(t)e−(t−t′)H(p,q)q′(t′)dDp (3.13)

here the evolution Hamiltonian is the famous Fokk-Planck Hamiltonian, as we
will derive its formalism in next subsection.

3.2 Fokk-Planck Equation

Given the Langevin equation (3.3), we can derive the corresponding Fokk-Planck
equation, as well as the Fokk-Planck Hamiltonian [3].

We consider the time segment from t to t + ε, ε → 0, and have the Langevin
equation as:

qi(t+ ε)− qi(t) = εUi(q(t)) +
t+εw

t

νi(τ)dτ +O(ε2) (3.14)

its related propability distribution is

P[q, t+ ε; q′, t] = 〈δ(q− q(t+ ε))〉ν (3.15)

According MIP, everytime the STP collided with the particle, the action of
particle will change nh, n ∈ Z. To obtain the Fokk-Planck equation, we define
following discreterization

ν̄i ≡
1√
ε

t+εw

t

νi(τ)dτ (3.16)

so that the discrete Langevin equation is

qi(t+ ε)− qi(t) = −
1

2
εfi(q(t)) +

√
εν̄i +O(ε2) (3.17)

Notice here the time has been discreterized as

(t− t′)/ε ∈ Z+.

Now the Gaussian distribution and the property of Markov progcess determins
the average value of discrete white noises νi, and we have

〈ν̄i〉ν = 0, 〈ν̄i(t)ν̄j(t′)〉ν =
~

mST
δi,jδt,t′ (3.18)
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When ε → 0, the Fourier transformation of the probability distribution (3.15)
is

P̃[p, t; q′, t′]|t=t′+ε =
w
e−ip·qP[q, t;q′, t’]dDq|t=t′+ε

= 〈e−ip·q′(t−ε)〉ν

= 〈e−ip·(q′(t)−ε δq′(t)
δt −O(ε2))〉ν

= 〈exp(−ip · (q′(t)− εU(q′)))〉ν

×

〈
exp

[
+ip �

tw

t−ε
ν(τ)dτ

]〉
ν

×
〈
exp

(
O(ε2)

)〉
ν

= exp [−ip � (q′ − εU(q′))]

×

〈
exp

[
+ip �

tw

t−ε
ν(τ)dτ

]〉
ν

(3.19)

Notice that the last average value can be evaluated out by Gaussian integration,
which reads,

(√
h

2π

)D w
[dν] exp

(
−mST

2h

w
dt

D∑
i

ν2i

)
exp

[
+ip �

tw

t−ε
ν(τ)dτ

]

=

(√
h

2π

)D w
[dν] exp

(
−mST

2h

w
dt
∑
i

ν2i + ip �
tw

t−ε
ν(τ)dτ

)

=

(√
h

2π

)D w
[dν] exp

(
−mST

2h

w
dt
∑
i

ν2i + i
√
εp � ν̄

)

× exp
(
−ε h

2mST
p � p + ε

h

2mST
p � p

)

=

(√
h

2π

)D w
[dD

(
−νi −

ih

2mST

√
εpi

)
]

× exp

(
−mST

2h

w
dt

D∑
i=1

(
νi +

√
ε

ih

2mST
pi

)2

− ε h

2mST
p � p

)
= exp (−εhp � p/(2mST )) (3.20)

here we obtain the probability distribution under Fourier transformation ,

P̃[p, t+ ε; q′, t] = e−εh/2mST p·p+iεp�f(q′)/2−ip·q′
(3.21)

for ε→ 0, expanding (3.21) will end up with

P̃[p, t+ ε; q′, t] = e−ip·q′
(1− εHFP (p,q′) +O(ε2)).
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Here we obtained the Fokk-Planck Hamiltonian

HFP (p,q) = −
h

2mST
p · p− ip · f(q)/2 (3.22)

From which we can read off the diffusion coefficient induced by collisions between
STP and the particle, is exactly < = h/2mST . Later we will see in deriving the
Schrödinger equation of free particle in spacetime, the spacetime mass mST =
2πm will be identified as the inertial mass, in the framework of non-relativistic
quantum mechanics.

3.3 From spacetime scattering to spacetime diffusion
coefficient

3.3.1 From Discrete Spacetime to the Spacetime Diffusion Coefficient

Beginning with MIP, we want to investigate the origin of spacetime interaction
coefficient. Within the framework of discrete spacetime, spacetime diffusion co-
efficient < = h

2mST
should be derived in terms of parameters of discrete space-

time. Let us consider the simplest discrete model (see Fig.3.1), where the length
union of discrete space is `. P (j, t) is the probability of a particle at lattice site
j at time t.

Fig. 3.1: Random jumping model on one dimensional lattice

Because of the discrete nature of the space, all jumpings can only happen be-
tween nearest pair of positions. Given the rate of jumping between the nearest
neighbour ζ and the isotropy of frictionless space, the evolution of probability
should be

∂tP (j, t) = ζ(
1

2
P (j − 1, t) +

1

2
P (j + 1, t)− P (j, t)) (3.23)

the first two terms of RHS of (3.23) describe the fact that jumping forward and
backward from neighbors j − 1 and j + 1 positions respectively, have the same
probability, which is 1/2, the third term remarks the probability from j position
to neighbors. Introducing the fundamental spacing of the lattice `, the eq.(3.23)
goes to

∂tP (j, t) =
ζ`2

2
(
P (j+1,t)−P (j,t)

` − P (j,t)−P (j−1,t)
`

`
) (3.24)
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In the continum limit of spacetime, which says `→ 0, and ζ →∞, but keeping
the quantity ζ`2 unchanged, the probability P (j, t) now becomes the proba-
bility density ρ(x, t), and the RHS of (3.23) becomes the definition of second
derivative. Thus we have

∂tρ(x, t) =
ζ`2

2
∂2xρ(x, t). (3.25)

It is straightforward to generalise above equation to three dimension case, we
have,

∂tρ(~r, t) =
ζ`2

2
∇2ρ(~r, t) (3.26)

Comparing with diffusion equation in Einstein’s paper[6]

∂tρ(~r, t) = <∇2ρ(~r, t) (3.27)

the microscopic origin of spacetime diffusion coefficient will be

< =
ζ`2

2
(3.28)

Furthermore, we can also discrete time with union τ = `
w , where w is the average

speed of particle. With ζ = 1
τ , we obtain

< =
w`

2
(3.29)

Combining the microscopic structure of discrete spacetime with the MIP, we
have

< =
w`

2
=

h

2mST
(3.30)

3.3.2 From Spacetime Scattering to the Spacetime Diffusion Coefficient

Particles will be scattered randomly from the STP with the speed of light, which
leads to the probability distribution of speed f(~v), the number of partials within
v → v + dv is f(v)d3~v. Therefore, all the particles cross the section area dA
during time dt will be inside the cylinder (see Fig.3.2).

The volume of this cylinder is

V = vdt cos θdA (3.31)

in which the number of particles is

N = f(~v)d3~vvdt cos θdA (3.32)
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dA

θ

v dt

Fig. 3.2: Probability distribution of spacetime scattering

Because of the isotropy of space, we have f(~v) = f(v). From left to right, the
number of particle cross the unit area per unit time is

Φ =
w

vz>0

N

dAdt

=

π
2w

0

dθ cos θ sin θ
2πw

0

dϕ

+∞w

0

f(v)v3dv

= π

+∞w

0

f(v)v3dv (3.33)

where vz > 0 means 0 < θ < π
2 . The average speed reads

w =

r +∞
0

f(v)vd3v
r +∞
0

f(v)d3v
=

4π

ρ

+∞w

0

f(v)v3dv (3.34)

where the density of particle number is ρ =
r +∞
0

f(v)d3v. Correspondingly, the
number of particle cross the unit area per unit time will be

Φ =
1

4
ρw (3.35)

Let mean free path of particles be `, i.e. the average distance traveled by the
particle between successive impacts from spacetime. The net flux Jz through
the z plane will be (see Fig.3.3)

Jz =
1

4
ρ(z − `)w − 1

4
ρ(z + `)w = −1

2
`w∂zρ (3.36)

With the equation of continuity

∂tρ+∇ · ~J = 0 (3.37)
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z-l z+lz

ρ v
4
1（z-l） ρ v

4
1（z+l）

Fig. 3.3: mean free path and scattering flux

and the isotropy of space, we have

∂tρ =
1

2
`w∇2ρ (3.38)

Combining the kinetics of spacetime scattering with quantum nature induced
by STP, we obtain

< =
w`

2
=

h

2mST
(3.39)

which is consistent with eq.(3.30).

3.4 Statistical mass of fundamental particles

Let’s consider the electron at first. The mass of an electron is me = 9.104 ×
10−31kg . So its static energy is

Ee = mec
2 = 9.104× 10−31 × 9× 1018J = 8.1936× 10−12J

This energy, according to MIP, comes from "effective" collisions between STP
and the electron. In our MIP theory, the electron is not a point-like particle. It
is finite size, statistically. Because of symmetry, its shape is a ball with a sphere
boundary. The effective collisions are considered as the number of STP which
coming into and going out cross the sphere. Assume every effective collision
gives energy, which numerically equals to Planck constant. Hence the times of
effective collisons (TEC) can be calculated as follow

Ne = Ee/h = 1.2347× 1020[s−1]

The statistical mass of electron can be written in form of TEC

me =
h

c2
Ne (3.40)

The ratio of mass and TEC is

kst ≡
h

c2
= 7.37× 10−51kg · s (3.41)
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It has the unit of [mass] · [time]. The fluctuation of the density of STP, around
the electron, denoted as ∆ρest, can be written as

∆ρest ≡ ρe − ρ0 =
mec

2

4
3πr

3h
(3.42)

For proton, it is easy to calculate exactly the same as the electron, we have

Np =
mp

kst
= 1.6726× 10−27/7.37× 10−51 ' 2.227× 1023[s−1] (3.43)

The radius of proton is
rp ' 8.735× 10−16m (3.44)

from which we obtain the mean free path of a proton in the STP sea around it.

lst =
3

√
4

3
πr3p/Np ' 2.3× 10−23m

3.5 Momentum and energy within the framework of MIP

The time scale of physics spans many orders of magnitude. Cosmology studies
the age of the universe at about 4×1017 seconds. Newtonian mechanics studies
the low-velocity motion of macroscopic objects, and the time scale is usually
on the order of seconds. The basic system of quantum mechanics is a hydro-
gen atom. When the electrons outside the hydrogen nucleus are in the ground
state, the electrons move around the nucleus for about 1.5×10−15 seconds. The
first excited state of the hydrogen atom transitions to the ground state emitting
light with a wavelength of 121 nm, corresponding to a time period of 4× 10−16

seconds. Modern physics believes that considering the principles of general rel-
ativity, special relativity and quantum mechanics, the smallest physical time
scale is Planck time about 5× 10−44 seconds, which is the smallest measurable
time interval. According to academic consensus today, any changes during this
time interval cannot be measured or detected.

Under the MIP framework, the average number of STP hitting electrons within
one second is 1020. That is to say, the theory derived from MIP in this paper
has a typical time scale of 10−20 seconds. For electron, this time scale is 10,000
times shorter than quantum mechanics1. Therefore, energy conservation and
momentum conservation in quantum mechanics are not constant conservation
laws, but statistical average conservation under the MIP framework. The mo-
mentum and energy we define below are the results of statistically averaging the
random effects of STP.

1 In the field of particle physics, short lifetime such as the Higgs boson is about 1.5×10−22

seconds. For the Higgs boson, the average number of STP hitting a Higgs particle in a second
is 1025 times. Its typical time scale is a thousand times smaller than quantum field theory.



3 Random Motion and Spacetime Diffusion Coefficient 27

In the time interval of 10−20 seconds, we call the momentum of particle 2 as
instant momentum. According to MIP, instant momentum is defined as

~Pi = mi
~V (3.45)

Where mi is the mass of the particles in the time interval of 10−20seconds, which
we call as instant mass. ~V is the true velocity of the particle

~V = ~u+ ~v + ~ν (3.46)

Similarly, we define the instant kinetic energy of the particle as

Ei =
1

2
miV

2 (3.47)

The mass observed in modern physical experiments is the statistical mass of
the particles, which is the inertial property at intervals greater than ×10−16

seconds. The momentum observed in modern physical experiments is the mo-
mentum predicted by quantum mechanics. Quantum mechanical momentum is
the statistical average of instant momentum, which we call statistical momen-
tum:

~Ps =< ~Pi >=
Mst

2π
< ~v + ~u > (3.48)

From this we relate the instant momentum at small time scales to the quantum
mechanical momentum at large time scales. There is an important observation
which we have proved in Chapter 5. The classical statistical velocity of any
stationary state (the ground state is the lowest energy stationary state) is ~v = 0,
and the quantum envelop velocity of the ground state electrons of hydrogen
atoms is

~u = − c

137
r̂ (3.49)

Comparing the results of quantum mechanics: the momentum of the ground
state electrons of a hydrogen atom must be zero, satisfying the isotropic wave
function. Subtlely, the quantum envelope velocity does not contribute to the
momentum of the ground state electrons because isotropic offsets each other by
< ~u >= 0. Because quantum mechanics is the combined result of statistical
averaging three velocities and instant mass on large time scales, ~Ps is consistent
with the momentum calculated by quantum mechanics.

The kinetic energy observed in modern physical experiments is the kinetic energy
predicted by quantum mechanics theory. Quantum mechanical kinetic energy is
the statistical average of instant kinetic energy, which we call statistical kinetic
energy.

Es =< Ei >=
Mst

4π
< V 2 > (3.50)

2 In the discussion below, the particles are all specific to electrons and represent the particles
of matter.
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The quantum envelop velocity contributes to the kinetic energy of the ground
state electrons (always positive so cannot cancel out). Therefore, the energy
of the ground state electron has two parts (the classical statistical velocity is
always 0, and does not contribute to the ground state kinetic energy):

ground state energy = quantum envelop energy + coulomb potential

The calculated result is exactly -13.6 ev, which is also consistent with the en-
ergy calculated by quantum mechanics. The quantum envelop kinetic energy is
defined as

Ee =
1

4π
Mstu

2 (3.51)

Substituting the value of the electron energy of the ground state of a hydrogen
atom

E =
Mst

4π
< (

c

137
)
2
> + < − e2

4πε0
a >= −13.6ev (3.52)

Where a is the Bohr radius of the hydrogen atom and ε0 is the vacuum permit-
tivity. Thus, we obtain the definitions of momentum and kinetic energy that
are consistent with quantum mechanics.
More generally, the equivalence between statistical momentum and quantum
mechanical momentum in any quantum state are proved as follows. According
to the Ehrenfest theorem of quantum mechanics, the average value of particle
positions evolves with time as

d

dt
〈~x〉 = 1

i~
〈[~x, H]〉 = 1

i2m~
〈[~x, p2]〉 = 1

i2m~
〈~xpp− pp~x〉 (3.53)

Combining with ~xpp− pp~x = i2~~p, we have

d

dt
〈~x〉 = 1

m
〈~p〉 (3.54)

This is a very important result, indicating how the momentum average of quan-
tum mechanics is related to the mean value of the coordinates. In the MIP
framework, the derivative of coordinates versus time is defined as

d

dt
~x = ~u+ ~v (3.55)

Once two sides of the equation are averaged, the momentum average of quantum
mechanics corresponds to the statistical momentum of the MIP as

~Ps =< ~Pi >=
Mst

2π
< ~v + ~u > (3.56)

which proves that the microscopic theoretical basis of quantum mechanics is
exactly MIP.
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4 Mass-Diffusion Uncertainty relation

We now consider the motion status of particle under impacts of STP collisions.
The most important proposition of Copenhagen interperitation of quantum me-
chanics is the wave-particle duality. This allows one using the superposition rule
of plane waves to describe the state of a particle. The kernel of the wave trans-
formation from frequency space to time space will be the factor exp(ipx/~). In
fact it introduces the quantized operator formalism ~p = −i~~∇. Because of the
duality, physical quantities of the particle can also be derived from wave, which
implies some quantities can be described in phase space as eigenvalues of special
operators. However, under the framework of MIP, we need to emphrase again
that the wave-like property of the particle is an emergent property due to col-
lision of STP, therefore it is not intrinsic. We can not borrow the quantization
hypothesis directly. We consider the action of the particle

S[φ(t, x), ∂φ(t, x), ν̄(t, x)] (4.1)

= S0[φ(t, x), ∂φ(t, x)] +

∞∑
I=1

SI [ν̄(t, x)]

where φ(t, x) describing the classical trajectory of the particle, and S0 is the
related classical action. SI [ν̄(t, x)] is the contribution of I− th collision between
STP and the particle. It does not depend on the classical trajectory at all,
which only depends on the fluctuation of STP. The MIP said this term should
contribute integer number of h , that is SI = nh.

The partition function of the particle now is

Z =
w
[dφ(t, x)] exp(− i

~
S[φ(t, x), ∂φ(t, x), ν̄(t, x)]) (4.2)

hence
exp

(
− i
~
SI [ν̄]

)
= exp

(
− i
~
nh

)
= e−i2πn = 1 (4.3)

from which we see the introducing of MIP does not change the classical partition
function, therefore physical quantity derived from classical action will not be
affected.

4.1 Mass-Diffusion Uncertainty

We have claimed and proven that particle mass is a statistical property describ-
ing the diffusion ability of the particle in spacetime, ,which shows that mass
and diffusion coefficient are indeed statistical properties, under continuous in-
teraction of STP. However, MIP itself describes a special Markov process, which
possesses the intrinsic characteristic property of being quantized.
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Firstly, we will proof that within framework of MIP, the particle mass and the
diffusion coeffient in spacetime are not only statistical conjuation to each other,
but also satisfying the minimum uncertainty relation:

∆m∆< = h/2 (4.4)

4.2 Instantaneous statistical inertia mass

In this article, mass reflects the statistical propterty of the motion of matter
particle, which is drived by collisions of STPs with the particle. As a statistical
physical quantity, its instantaneous value does not have an explicit meaning
in physics. We do not know how to measure the collision of a single collision
between one STP and the particle exactly. In the other way, when we consider
the relation between collision and the spectrum of STPs, we had already proven
the number of STPs can not be determinate accurately. Hence even for a single
collision between STP and the particle, the mass of the particle is also a sta-
tistical property. With this point of view, the statistical mass can be defined
instanteously. In Minkowski spacetime, the distribution of STPs is uniform and
isotropic. The instantaneous mass of matter particle will be changed according
to the speed of particle. Though the instantaneous mass of particle m̂, varying
every moment, when taking the mean of speeds of the particle, will regress to
the statistical inertia mass mST .

Because the exchanged action relating to every single collision is not the same,
neither the energy of the STP in this collision. The time interval that accom-
plishing the exchanging of action, is also different in every collision. We know,
as a reflection of the collision between STP and matter particle, the motion of
particle will deviate from its classical velocity. The noise part ~ν describes the
deviation cause by the collision between STP and the particle. The bigger the
noise is, the smaller the statistical inertia mass mST is. In another way, a bigger
deviation means the particle can diffuse in spacetime easier, thus it corresponds
to a bigger spacetime diffusion coefficient <. In the moment of measurement,
because of the existence of noise, the instantaneous mass of the particle will not
be exact as mST . We know

∆m = m̂−mST

The instantaneous mass corresponds to every measurement does not have any
real physical meaning. The standard deviation of many times of measurement
results is what we care about, it is

σ(m) =

√√√√ 1

N

N∑
i=1

(m̂i −mST )
2 (4.5)
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With the same reason, we only care about the standard deviation of spacetime
diffusion coefficients of every measurement

σ(<) =

√√√√ 1

N

N∑
i=1

(
<̂i −<

)2
(4.6)

The relative difference of this two statistical quantity can be represented as the
covariance, as

cov(m,<) =

∑N
i=1 (m̂i −mST )

(
<̂i −<

)
Nσ(m)σ(<)

(4.7)

Since the noise of STP is a white noise, its standard deviation is a constant, so
we can normalize its magnitude as 1.

Notice that when N →∞,

cov(m,<) = lim
N→∞

∑N
i=1 (m̂i −mST )

(
<̂i −<

)
N

≡ 〈∆m∆<〉 (4.8)

which is the LHS of the uncertainty relation expression as we claimed in (4.4).
The following task is to calculate its explicit value.

We now cut the time into slides along the classical velocity of the particle. On
each time slide, we only need to consider the collision of STPs parallel to the
time slide. Defining the time interval for the cutting as δτ . the instantaneous
mass at the moment i could be defined as follows: from the moment i− 1 to i,
the action changing causing by STP collisions is ∆Si = Si − Si−1; Meanwhile
the diffusion area is <̂i. The instantaneous mass is

m̂i ≡
∆Si

<̂i
(4.9)

To varifying the (4.9) matches the statistical definition as in previous chapter,
we need to reform the changing of action as the changing of motion status of
the particle, it is

∆Si =
1

4π
mST (V

2
i − V 2

i−1)δτ (4.10)

hereVi and Vi−1represent real velocities at moment i and i − 1. Because there
is no changing of classical velocity from moment i− 1 to moment i , meanwhile
the differentiable part of the collision, aka the quantum envelope velocity is also
a slow varying quantity, so it could be seen as unchanged in this time interval.
Thus all changing of the velocity is contributed from the STP noise. In classical
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situation, the previous equation could be written as

∆Si =
1

2
m(V 2

i − V 2
i−1)δτ

=
1

2
m
(
(Vi−1 + νi)

2 − V 2
i−1

)
δτ

=
1

2
m
(
ν2i + 2Vi−1νi

)
δτ (4.11)

Taking the mean value of this equation, we obtain

〈
∑
i

∆Si〉ν = 〈
w 1

2
m
(
ν2i + 2Vi−1νi

)
dt〉ν

= ~/4 (4.12)

However, it is notable that the changing caused by STP collisions is not a
classical kinetic variation, we need to consider the special relativety effect as
well. In rest frame of classical velocity, the particle energy is

E = mc2

In static observer frame, its energy is

E0 =
m0c

2√
1− V 2/c2

(4.13)

Therefore we obtain

∆Si =

 m0c
2√

1− V 2
i

c2

− m0c
2√

1− V 2
i−1

c2

 δτ0√
1− V 2

i−1

c2

=
m0c

2δτ0√(
1− (Vi−1+νi)2

c2

)(
1− V 2

i−1

c2

) − m0c
2δτ0(

1− V 2
i−1

c2

)

=

m0c
2δτ0

(√(
1− V 2

i−1

c2

)
−
√(

1− (Vi−1+νi)2

c2

))
(
1− V 2

i−1

c2

)√(
1− (Vi−1+νi)2

c2

) (4.14)

especially, in above equation, we used the special relativity transformation that

mi =
m0√
1− V 2

i

c2

(4.15)

Because the changing of action from i− 1− th to i− th time slide is a Lorentz
scalar. We can take the i− 1− th slide as the rest frame with mass mi−1, the
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i − th slide represents the frame with velocity νi. Therefore, we change the
equation (4.14) as

∆Si =

(
mi−1c

2√
1− ν2i /c2

−mi−1c
2

)
δτi (4.16)

=

(
1

2
mi−1ν

2
i +

3

8
(ν2i /c

2)2c2mi−1 + · · ·
)
δτi

Taking mean value of the above, we obtain

〈
(
1

2
mi−1ν

2
i +

3

8
(ν2i /c

2)2c2mi−1 + · · ·
)
δτi〉ν

=
~
4
+

3~2

32c2mi−1δτi
+

5~3

256c4m2
i−1δτ

2
i

· · · (4.17)

When the cutting interval goes to the classical limit, say, δτi � 0 , and the
number ~/c is very small, we have:

〈m̂i<̂i〉ν '
~
4

(4.18)

It means at arbitrary time slide, the mean value of the product of instantaneous
mass and diffusion coefficient is ~

4 .

From the definition of statistical inertia mass mST and diffusion coefficient < ,
we have:

< ≡
N∑
i=1

<̂i/N (4.19)

mST ≡ 2π

N∑
i=1

m̂i/N (4.20)

It will not change the essence of the relation

〈mST<〉ν =
h

2

This is because

〈mST<〉ν = 2π〈
N∑
i=1

m̂i/N

N∑
j=1

<̂j/N〉ν

= 2π

 N∑
i=j

〈m̂i<̂i〉ν
N2

+

N∑
i6=j

〈m̂i<̂j〉ν
N2


=

h

4N
+ 2π

∑N
i=1〈m̂i〉

∑N
j 6=i〈<̂j〉

N2
+O( h

2

c2N
)

=
h

4N
+
N − 1

N

h

2
+O( h

2

c2N
) =

h

2
− h

4N
−O( h

2

c2N
) (4.21)
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when N → ∞, 〈mST<〉ν = h
2 . Therefore we know the time cutting definition

and the statistical definition is coincident with each other.

Now we can calculate the covariance as following

cov(m,<) = lim
N→∞

∑N
i=1 ∆Si −mST

∑N
i=1 <̂i −<

∑N
i=1 m̂i

N
+ h/2 (4.22)

and we obtain:

cov(m,<) = lim
N→∞

∑N
i=1 ∆Si
N

− h/2 (4.23)

From MIP, the changing of action caused by STP collsion is N times of Planck
constant, where N is an arbitrary integer, when the number of collisions goes
to infinity, it is obvious that

lim
N→∞

∑N
i=1 ∆Si
N

= lim
N→∞

~/4
N

= 0 (4.24)

at last we obtain
〈∆m∆<〉 = h/2 (4.25)

and the proof is closed.

4.3 Position-Momentum Uncertainty Relation

Extending the definition of commutation relation, and recall m = mST /2π, we
consider the position-momentum commutator

[x, p] = lim
ε→0

(
1

2π
x(t+ iε)mST

δx(t)

δt
− 1

2π
mST

δx(t+ iε)

δt
x(t)

)
= lim
ε→0

(
i
ε

2π

[
mST

(
δx(t)

δt

)2

−mST
δ2x(t)

δt2
x(t)

])
(4.26)

Here we didn’t take the statistical inertia mass as a variable, because when
considering the changing of the particle’s position caused by STP collisions, its
statistical property is unchanged. Noticed that in our derivation, the momentum
and position both have its instantaneous value. However, the two measurements
are not isochronous in priori. Our isochrony is essencially different from what
in quantum mechanism. Here since there exist collisions between STPs and
matter particle, any two measurements can not be exactly isochronous. We let
the time interval ε goes to zero to achieve an isochronous commutation relation
in posteriori.

Define
aST (t) :=

∂2x(t)

∂t2
(4.27)
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It is the instantaneous accelaration induced by the collison between STP and
the particle. From which we can define the instantaneous "spacetime" force as

FST (t) = maST (t) = m
δ2x(t)

δt2
(4.28)

The statistical average of eq.(4.26) is

[x, p] = lim
ε→0

(
m〈V (t)2〉νiε− 〈FST (t)x(t)〉νiε

)
(4.29)

Its second term has an explicit meaning in physics. It is the the mean work
done by STP acting on the particle. Obviously, this mean work is zero.

Now we consider the contribution from the first term of eq.(4.29) Under dis-
cretization of the fluctuation, the average speed is

t+εw

t

ν(τ)dτ/ε = ν̄/
√
ε

therefore

〈ν2〉ν = 〈ν̄2〉ν/ε =
h

mST ε
(4.30)

Substitude this into the first term ofEq. (4.29), we obtain

[x, p] = lim
ε→0

(
iεm〈ν2〉ν + iε〈U2〉ν

)
= lim
ε→0

iεm
h

mST ε
+ 0 = i~ (4.31)

which is the most fundamental hypothesis of quantum mechanism, the position-
momentum uncertainty relation.

4.4 Energy-Time Uncertainty Relation

Within the framwork of non-relativity quantum mechanism, the position-momentum
uncertainty relation does not imply the energy-time uncertainty. This means we
can not derive one kind of uncertainty relation from the other. Notice, position,
momentum, energy are all dynamical variables. They are functions of time t,
say, the time t is a self-variable. Experimentally, because in non-relativity quan-
tum mechanism, time t is an independent variable and does not rely on particle
status, we can measure the position, momentum, energy of a matter particle.

Now we define the ∆t in energy-time uncertainty relation as: the characteric
time describing a significant variation in the system study at hand. To describe
the variation, we have to introduce a time-varying physical quantity Q. The
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’significant’ variation is defined as the time interval in which the Q changing by
one standard deviation σQ. Mathematically, it is expressed as:

σQ = | d
dt
〈Q〉ν | ×∆t (4.32)

Meanwhile, we can define the ∆E in energy-time uncertainty relation as the
uncertainty of Hamiltonian of the system σH . The average evolution equation
of Q along with the time is

d

dt
〈Q〉ν =

i

~
〈[H,Q]〉ν (4.33)

combine with the Schwarz inequality in mathematics, we have

σ2
Hσ

2
Q ≥

[
1

2i
〈[H,Q]〉ν

]2
(4.34)

and then substitude into the definition of ∆E and∆t, we arrive:

∆E∆t ≥ ~
2

(4.35)

If any physical quantity in this system varies fast, say ∆t is very small, then its
energy uncertainty will be very large. If ∆E is very small, then the ∆t is very
large, it means all observables in this system are varying slow.

4.5 Neutrino mass and the neutrino diffusion experiment

In previous subsections, we derived the mass-diffusion uncertainty relation. We
now discuss a possible important application of this .

In mordern physics, neutrino oscillation is provided as a longstanding puzzle
for high energy physics. The current explaination is that neutrinos have a very
strange property that they can not be eigenstate of mass and flavor simultane-
ously. However, in the progress of nuclear reaction, neutrinos are all considered
as a flavor eigenstate, which means they have definitive flavors. This leads to a
strange result that we can not detect the mass of neutrinos.

Within framework of MIP, we study the statistical mass of neutrino. By defi-
nition, statistical mass is an emergent mass resulting from random collisions of
STPs and the particle. The statistical mass of a free neutrino should be smaller
than the summation of masses of three kinds of neutrinos with different flavours.
According to the most recent experiment of cosmology, for the three kinds of
neutrinos with different flavours, their mass summation is much more smaller
than a single neutrino with certain flavour, it implies the statistical mass of
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Fig. 4.1: Diffusion experiment of neutrino

neutrino maybe zero. We now use the neutrino emitted from nuclear reactor
to design a crucial experiment to investigate whether the statistical mass of a
neutrino is exact zero.

If the statistical mass of neutrino is exact zero, the uncertainty of its mass also
vanished, hence we can not observe the following estimated diffusion effect. We
will reach to a new important conclusion: the neutrino moves in speed of light,
because the motion speed of a free particle is determined by its statistical mass.
This conclusion coincides with the most recent experiment. If the statistical
mass of neutrino is not zero, we will study its mass uncertainty and the diffusion
caused by STP collisions. In this situation, we can conclude that the neutrino
oscillation itself reflects the statistical inertia mass is a statistical property.

Experimently, physcists now can measure the mass square differences relating
to neutrino oscillation indirectly. The mass square differences are between 2.6×
10−3eV 2 and 7.58×10−5eV 2. This gives a good estimation for the mass-diffusion
uncertainty. It is clear that the mass uncertainty of neutrino is in interval
0.0087 ∼ 0.05eV .

From the mass-diffusion uncertainty relation, we have

∆m∆< = ~/2 (4.36)

the diffusion coefficient reads

∆< = ~/2∆m =
6.626× 10−34 × 9× 1016

4× 3.1416× 0.05× 1.6× 10−19
(4.37)

= 1186.4[m2/s]

The physical meaning of this calculation is significant. Every second the neu-
trino propagates with a growing diffusion cone, with the bottom of the cone,
increasing its area to 1186.4m2. If a neutrino goes from sun to earth, its diffusion
radius will be about 307 meters.

Since sun cannot be seen as point-like source for neutrino ejection, the diffusion
effect of neutrino can not be measured accurately. We could use the neutrino
emitted from nuclear reactor to design a crucial experiment in labratory, as
shown in Fig.4.1
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Electron neutrinos came from reactor and were screened by screening matter,
except those moving strictly toward x-direction. According to MIP and due to
diffusion of neutrino, after propagating distance d, dectectors at distance d will
detect neutrinos in a disk region with equal probability. The disk area can be
calculated as

δr '
√

∆R
d

cπ
(4.38)

If d ' 100km , δr ' 0.3548m, the disk is macro significant detectable. From the
result of this crucial experiment, we can make a claim on whether the statistical
mass of neutrino is zero, and also can deduce the speed, oscillation and other
properties of neutrino.

5 Random Motion of Free Particle under MIP

5.1 Decompositions of the Real Velocity

In modern quantum mechanics, particles do not have trajectories of motions,
so their velocities are not well defined. Within the framework of MIP, the
real velocity of the particles must be discussed in detail. Under the impact of
STP, the velocity of the particle not only contains the classical velocity, but
also the results of random mechanical interactions. It is especially important
that the particles are subjected to the impact of the STP, and the change of
action is quantized. Therefore, the real velocity of the particles should reflect
the classical, random and quantum properties.

Within the framework of MIP, the motion of particles is a frictionless quantum
Brownian motion. However, it should be noted that the impact of STP is not
completely random. The exchanged action that each particle is subjected to
STP is an integer multiple of the Planck constant h. Therefore, the movement
of particles in spacetime cannot be a problem of random mechanics completely.
It is the quantization of randomized motions. The corresponding theoretical
system is a quantum Markov process. If there is no STP and other external
forces, the motion of the free particles satisfies Newtonian mechanics. Its veloc-
ity is the classic velocity.
Within the framework of MIP, for the real velocity of motion of free particles
~V (~x, t), we can first isolate the classical statistical velocity of the particle ~v(~x, t).
In the context of spacetime, it is a simple mean of the statistics of the impact of
STP as Gaussian noise. Since the simple mean contribution of Gaussian noise
is zero, the classical statistical velocity of the particle and the classical veloc-
ity under Newtonian mechanics are exactly equal. Second, after separating the
classical statistical velocity ~v(~x, t), we will consider a random motion. This ran-
dom motion is driven by the impact of STP, and we note it with the random
motion velocity ~W (~x, t). In Appendix B of this paper, we prove that any ran-
dom function can be decomposed into a random function and a superposition
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of differentiable functions. Random motion under the framework of MIP also
follows this important principle. Therefore, in general, we can decompose the
random motion velocity ~W (~x, t) as follow

~W (~x, t) = ~u(~x, t) + ~ν(t) (5.1)

Where ~u(~x, t) is defined as the quantum envelope velocity of the particle. For
free particles, < ~u(~x, t) >ν= 0. It corresponds to the perturbation part of the
random motion. It reflects the physical fact that the impact of STP is random,
but it is a small perturbation to the current motion of the particle. These im-
pacts are "differential impacts" of STP on the particles. Under the action of
the pertubation of space-time, the motion of particles is not an unpredictable
random motion. It allows the motion state of particles to be described by
a differentiable function and describes the corresponding motion state . The
equation is a non-random partial differential equation. And ~ν(t) represents the
non-microscopic impact of the particle by STP, which is a non-perturbative
effect on the velocity of the particle motion. We define it as the velocity of
fluctuation. Because of the existence of such random impact, the state function
that we finally describe the equation of motion of the particle will not be an ac-
curate description. It can only be a probabilistic description on the background
of this fluctuation.

We will see that in the framework of MIP, quantum envelope motion reflects
the wave-particle duality of particles. Considering the impact between STP and
particle, the amount of exchange action is nh. For particles with a statistical
mass of m0, the characteristic time of this collision is

tc =
nh

m0c2
(5.2)

The so-called quantum envelope motion is essentially the differentiable part of
the fluctuation motion.

The above discussion is based on the classification of particles by the impact
of STP. From the above analysis we can see that there is actually another
mathematical classification for the velocity of the particles, and we decompose
the velocity of the particle into a differentiable part and a non-differentiable
part. The differentiable part of the real motion velocity of a particle can be
defined as:

~U(~x, t) = ~v(~x, t) + ~u(~x, t) (5.3)

It is a superposition of classic statistical velocity ~v(~x, t) and quantum envelope
velocity ~u(~x, t). We call this differentiable velocity “statistical average velocity”.
Although mathematically it is a differentiable function, it is quite different from
the classical velocity. Because there is a quantum envelope velocity ~u(~x, t), it is
a representation of the Markov process formed by the impact of STP. Therefore,
the decomposition of the velocity of the particles caused by the collision of STP
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can be written in three parts in principle3:

~V (~x, t) = ~u(~x, t) + ~v(~x, t) + ~ν(t) (5.4)

Since a Markov process will still be a Markov process under time reversal, the
quantum envelope velocity ~u(~x, t) is invariant under time reversal as

T : ~u(~x, t)→ ~̃u(~x, t) = ~u(~x, t) (5.5)

However, the classical statistical velocity ~v(~x, t) is changed by the time reversal,
that is,

T : ~v(~x, t)→ ~̃u(~x, t) = −~v(~x, t) (5.6)

With above properties of time reversal, we can have a well defined limit ~u = 0
as Newtonian mechanics with

~v =
1

2
(~U − ~̃U) (5.7)

~u =
1

2
(~U + ~̃U) (5.8)

Where ~̃U is the time reversal of the statistical average velocity ~U . In the follow-
ing, the physical quantities with time reversal are marked with tilde.

The non-differentiable part is the fluctuation velocity ~ν(t) for the random “non-
differentiable impact”of the particle. It causes the particle’s velocity to deviate
from the classical statistical mean, so it will be physically reflected as a random
diffusion behavior of the particle in spacetime. Based on this, we named it the
“diffusion velocity” of particles in space and time.

In the following subsections, we will see that the decomposition of the above
two velocities is a very important theoretical basis for deriving the equation of
motion of particles, that is, the Schrödinger equation in quantum mechanics
and an in-depth understanding of its physical meaning.

5.2 From MIP to Schrödinger Equation

Without the interaction of spacetime, the velocity of particle ~v has to be the
derivative ~v = d~x

dt . Contrasting from usual Markov process, spacetime random
motion is frictionless, otherwise the quantum effect of a particle will decay as
time going, which is obviously not the case. According to the MIP, the coordi-
nate of a free particle is a stochastic process ~x(t), in which the velocity ~V can
not be expressed in terms of d~x

dt . The velocity ~V should be a statistical average
corresponding to a distribution δ~x = ~x(t+ 1

ω )− ~x(t), at the limit of spacetime
3 After we finished our manuscript, we found that this three-velocity decomposition is in

fact consistent with Wold’s decomposition theorem of the stochastic process in [20].
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collision frequency ω going to infinity. In Einstein’s theory on Brownian motion,
δ~x is a Gaussian distribution with zero mean and variance proportional to 1

ω [6].
However, Einstein’s theory cannot be correct at the limit of spacetime collision
frequency ω going to infinity[21, 22]. Therefore, we will construct the operator
D as following, which plays the same role as d

dt in Newtonian Mechanics. For
any physical function f(~x, t), we have

ω(f(~x(t+
1

ω
), t+

1

ω
)− f(~x(t), t))

= [∂t +
∑
i

ω(xi(t+
1

ω
)− xi(t))∂i

+
∑
ij

ω

2
(xi(t+

1

ω
)− xi(t))(xj(t+

1

ω
)− xj(t))∂i∂j

+
∑
i

(xi(t+
1

ω
)− xi(t))∂i∂t +

1

2ω
∂2t ]f(~x(t), t) (5.9)

At the limit of spacetime collision frequency ω going to infinity, in terms of
statistical average < ... > for δx, we can define the operator D as

Df(x(t), t) = lim
ω→+∞

ω〈f(~x(t+ 1

ω
), t+

1

ω
)− f(~x(t), t)〉ν (5.10)

= (∂t +
∑
i

Ui∂i +
∑
ij

<ij∂i∂j)f(~x(t), t) (5.11)

where we used

~U = lim
ω→+∞

ω〈δ~x〉ν (5.12)

it relates to the descreterization of Lagevin equation

xi(t+ ε)− xi(t) = εUi(x(t)) +
√
εν̄i +O(ε2) (5.13)

here
ε =

1

ω
(5.14)

In eq.(5.10) , we used the following deduced result

lim
ω→+∞

ω〈δxiδxj〉ν
2

= lim
ε→0+

1

2ε
〈(xi(t+ ε)− xi(t))(xj(t+ ε)− xj(t))〉ν

= lim
ε→0+

1

2ε

[
〈ε2Ui(x(t))Uj(x(t))〉ν + ε〈ν̄iν̄j〉ν + ε

3
2 〈(Uiν̄j + Uj ν̄i)〉ν

]
=

h

2mST
δi,j (5.15)

Because of the isotropy of space, the MIP coefficient will be

<ij =
~

2mij
= <δij (5.16)
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which is consistent with Eq.3.30 and 3.39. The operator D and its time reversal
D̃ are

D = ∂t + ~U · ∇+ <∇2 (5.17)

D̃ = −∂t + ~̃U · ∇+ <∇2 (5.18)

Therefore, the statistical average velocity of particle ~V can be written as

~U = D~x (5.19)
~̃U = D̃~x (5.20)

Correspondingly, its classical statistical velocity and quantum envelope velocity
are

~v = D−~x (5.21)
~u = D+~x (5.22)

with

D− =
1

2
(D − D̃) (5.23)

D+ =
1

2
(D + D̃) (5.24)

We define the statical average acceleration of particles as

~a = D~U = (D+ +D−)(~v + ~u) (5.25)
= D+~u+D−~v +D−~u+D+~v

Under time reversal, it acts as

~̃a = D̃ ~̃U = (D+ −D−)(−~v + ~u) (5.26)
= D+~u+D−~v −D−~u−D+~v

Define the classical average acceleration as

~ac =
1

2
(~a+ ~̃a) = D+~u+D−~v, (5.27)

obviously it is invariant under time reversal. The average acceleration of a free
particle must be zero, which can be written as

D+~v +D−~u = 0. (5.28)

However, the average acceleration of quantum envelope motion can not simply
be zero,

D+~u+D−v 6= 0 (5.29)
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At classical and low speed case, the average acceleration of quantum envelope
motion does not relate to classical statistical velocity, therefore we can have

D−~v −D+~u = 0. (5.30)

These conditions are equivalent to the coupled non-linear partial differential
equations as following

∂~u

∂t
= −<∇2~v −∇(~u · ~v) (5.31)

∂~v

∂t
= −(~v · ∇)~v + (~u · ∇)~u+ <∇2~u (5.32)

Random motions of free particles due to the random impacts of STP satisfy
the Markov property, one can make predictions for the future of the process
based solely on its present state just as well as one could know the process’s
full history. This is the simplest situation for random motions, the free particle
does not involve any external potential. Now, we have an initial value problem,
which is to solve ~u(~x, t) and ~v(~x, t)given ~u(~x, 0) = ~u0(~x), ~v(~x, 0) = ~v0(~x). In
order to solve the coupled non-linear partial differential equations, we have to
linearise it firstly. Let

Ψ = eR+iI , (5.33)

where

∇R =
1

2<
~u (5.34)

∇I =
1

2<
~v (5.35)

We can obtain
∂Ψ

∂t
= i<∇2Ψ (5.36)

According to the MIP, the universal spacetime diffusion coefficient is the MIP
coefficient < = ~

2mST
. Substituting to the last equation, we will get the equation

of motion of free particles as

i
∂Ψ

∂t
= − ~∇2

2mST
Ψ (5.37)

which is the Schrödinger equation essentially.

According to the continuity equation

∂tρ(~r, t) +∇ · ~J = 0 (5.38)

The definition of particle current is density multiplied by velocity. In the frame-
work of MIP, the velocity in this definition corresponds to the classical statistical
velocity. We can naturally derive the Born’s interpretation as follows:

~J = ρ~v (5.39)
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among them
~v = 2<∇I (5.40)

Substitute (5.33) in Schrödinger equation

∂tΨ = i<∇2Ψ (5.41)

Let the real and imaginary parts be equal respectively, there are

∂tR+ <(2∇R · ∇I +∇2I) = 0 (5.42)

and
∂tρ(~r, t) +∇ · (ρ~v) = 0 (5.43)

which can be solved as
ρ = e2R (5.44)

Therefore, we show that the distribution of the particle number density is exactly
the wave function modulo square. Further considering the ensemble of many
identical particles, the particle number density is interpreted as the probability
density, which is exactly the Born’s interpretation.

The Born rule is a law of quantum mechanics which gives the probability that
a measurement on a quantum system will yield a given result, which became
a fundamental ingredient of Copenhagen interpretation. In this paper, we at-
tempt to suggest an interpretation of Born rule according to the MIP, which
can provide a realistic point of view for wave function. Emerging from random
impacts of spacetime, it’s absolutely necessary that wave function is complex. If
wave function were a real sine or cosine function[27], according to ρ = |Ψ|2, the
probabilistic density of a free particle with definite momentum would oscillate
periodically which violates the isotropy of physical space.

5.3 Physical Meanings of Potential Functions R and I

Substituting Ψ = eR+iI into ∂Ψ
∂t = i<∇2Ψ, we equalise the real and imaginary

part separately as

∂tR = −<(2∇R · ∇I +∇2I) (5.45)
∂tI = <[(∇R)2 − (∇I)2 +∇2R] (5.46)

Combining with previous result ρ = |Ψ|2 = e2R, we have

∂tρ = 2ρ∂tR (5.47)
∇ρ = 2ρ∇R (5.48)

The differential equation of potential R can be turned into

∂tρ = −2<∇ · (ρ∇I) (5.49)
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With ∇I = 1
2<~v, the differential equation of potential R is equivalent to the

equation of continuity
∂tρ+∇ · (ρ~v) = 0 (5.50)

Noticing that the classical momentum of particle is m~v = ~∇I, we find that the
differential equation of potential I goes to

∂t(~I) +
(∇(~I))2

2m
− ~<[(∇R)2 +∇2R] = 0 (5.51)

Comparing with the Hamilton-Jacobi equation from classical mechanics [28, 29]
as

∂tS +
(∇S)2

2m
+ V (x) = 0 (5.52)

which is particularly useful in identifying conserved quantities for mechanical
systems. There are two crucial remarks: Firstly, potential function I is propor-
tional to the Hamilton-Jacobi function S as S = ~I. Secondly, for a free particle,
the influence of spacetime can be summed up to the spacetime potential

VST = −~<[(∇R)2 +∇2R] (5.53)

where the spacetime potential VST will play the same role of potential V in the
Hamilton-Jacobi equation. The spacetime potential VST vanishes in the classical
limit ~ = 0, which is equivalent to V = 0 for free particles in classical mechanics.
The quantum effect, which corresponding to nonzero ~, now is the natural result
of the existence of the spacetime potential VST , induced by MIP. In principal,
the moving of free particle can be described precisely by the spacetime potential
VST as

m
d2~x

dt2
= −∇VST = ~<∇[(∇R)2 +∇2R] (5.54)

This equation indicates that free particle moves not along straight line within in-
teractions of STP. It is affected by a space-time potential VST . The interactions
between STP and particle give the statistcal mass to particle.

5.4 Space-time Random Motion of Charged Particles in
Electromagnetic Field

According to the MIP, in case of low speed, electromagnetic field only serves as
an external potential, which itself is not affected by random impacts of space-
time. In a electromagnetic field ( ~E, ~B), the charged particle will experience a
Lorentz force ~F = e( ~E +~v× ~B). Therefore, the average acceleration of charged
particles will be

~a = e( ~E + ~v × ~B)/m (5.55)
where m is the inertial mass of charged particle and e is the charge. Based on the
spacetime principle, we are able to derive the equation of motion of charged par-
ticle in electromagnetic field, which is finally shown to be Schrödinger equation
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in electromegnatic field, which is

i~∂tΨ =
1

2m
(−i~∇− e

c
~A)2Ψ+ eφΨ (5.56)

where the electromagnetic potential and the electromagnetic field are connected
by

~B = ∇× ~A, ~E = −∂t ~A−∇φ. (5.57)

We do not have average acceleration in absence of electromagnetic field. How-
ever, this is not the case when the particle have non-zero electric charge, moving
in external electromagnetic field. Identifying the velocity in the Lorentz force
as the classical velocity of random motion of particle in spacetime, we have

∂t~v = e( ~E + ~v × ~B)/m− (~v · ∇)~v + (~u · ∇)~u+ <∇2~u (5.58)

In the electromagnetic field, the equation of motion of charged particle becomes
coupled non-linear partial differential equations as following

∂~u

∂t
= −<∇(∇ · ~v)−∇(~u · ~v) (5.59)

∂~v

∂t
= e( ~E + ~v × ~B)/m− (~v · ∇)~v

+(~u · ∇)~u+ <∇2~u (5.60)

In order to solve the coupled non-linear partial differential equations, we have
to linearise it firstly. Let Ψ = eR+iI and notice that the canonical momentum
of charged particle [30] is ~p = m~v + e ~A/c, we suppose

∇R =
1

2<
~u (5.61)

∇I =
1

2<
(~v +

e ~A

mc
) (5.62)

In order to prove Eq.(5.56), we expand the first term of right side of Eq.(5.56)
as

1

2m
(−i~∇− e

c
~A)2Ψ = −~2∇2

2m
Ψ+

e2A2

2mc2
Ψ (5.63)

+
i~e
2mc

(∇ · ~A)Ψ +
i~e
mc

~A · (∇Ψ)

Substituting Ψ = eR+iI , it leads to

− ~2

2m
[∇2R+ i∇2I + (∇R+ i∇I)2]Ψ +

e2A2

2mc2
Ψ

+
i~e
2mc

(∇ · ~A)Ψ +
i~e
mc

( ~A · (∇R+ i∇I))Ψ (5.64)
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With vector formulas

∇( ~A · ~B) = ~A× (∇× ~B) + ~B × (∇× ~A)

+( ~A · ∇) ~B + ( ~B · ∇) ~A (5.65)
∇(∇ · ~A) = ∇× (∇× ~A) +∇2 ~A (5.66)

and Eq.(5.61), we will obtain

∇× ~u = 0 (5.67)

∇× (~v +
e ~A

mc
) = 0 (5.68)

Straightforwardly, we have

i~(∂tR+ i∂tI) = −
~2

2m
[∇2R+ i∇2I

+(∇R+ i∇I)2] + e2A2

2mc2
(5.69)

+
i~e
2mc

(∇ · ~A) + i~e
mc

( ~A · (∇R+ i∇I)) + eφ

Now, let’s prove that the real and imaginary parts are separately equaled as

∂tI =
~
2m

(∇2R+ (∇R)2 − (∇I)2)

− e
2 ~A2

2mc2
+

e

mc
( ~A · (∇I))− eφ

~
(5.70)

∂tR = − ~
2m

(∇2I + 2(∇R) · (∇I))

+
e

2mc
(∇ · ~A) + e

mc
~A · (∇R) (5.71)

Taking the gradient from both sides and the definitions ~B = ∇ × ~A, ~E =
−∂t ~A − ∇φ, we have reproduced the Eq.(5.59). Therefore, we have proved
that both sides of Eq.(5.59) are at most different from a zero gradient function.
It’s important to notice that the choices of electromagnetic potentials are not
completely determined. It allows a gauge transformation [31]

~A′ = ~A+∇Λ (5.72)
φ′ = φ− ∂tΛ (5.73)

For any function Λ(~x, t), the electromagnetic field is invariant. Therefore, the
corresponding wave function cannot change essentially, at most changing a local
phase factor. Given ψ′ = ψe

ieΛ
~c , Schrödinger equation of charged particle in

electromagnetic field is invariant, i.e., U(1) gauge symmetry. By choosing the
function Λ(~x, t) properly, we are able to eliminate the redundant zero gradient
function. So we have proved Eq.(5.56) at the end.
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5.5 Stationary Schrödinger Equation from MIP

Compare to the definition of classical statistical velocity as in eq.(5.35), it is
easy to see that for the ground state, the classical statistical velocity is zero.
Moreover, we can prove for all stationary states, their classical statistical ve-
locities are zero. For a stationary state has exact energy E, the Schrödinger
equation is

[−~2∇2

2m
+ Vc(~x)]Ψ = EΨ (5.74)

its conjugation reads

[−~2∇2

2m
+ Vc(~x)]Ψ

∗ = EΨ∗ (5.75)

here Vc(~x) is classical external potential. Add the above two equations, the
new real wave function has to satisfy the Schrödinger equation with same eigen-
energy E.

Corresponding to the classical velocity from Eq.(5.35), it is easy to show that
the classical velocity of particles must be zero in stationary states. Within the
framework of MIP, we should interpret the stationary states from quantum me-
chanics as a spacetime random motion with zero classical velocity. Once we have
all the stationary states, we will get the general solution by linear superposition.
Therefore, we are going to derive stationary Schrödinger equation from classical
velocity ~v = 0, which can provide a clear physical picture of MIP. Moreover,
when ~|v| is large and close to velocity of light c, the generalisation of this frame-
work is clear and will be explained in our further work.
The trajectory of random motion of particle can be understood as the superpo-
sition of classical path and fluctuated path. During time interval 4t, there are
two contributions to the trajectory as

δ~x = ~u(~x, t)4t+4~x (5.76)

of which distribution satisfies ϕ(4~x) = ϕ(−4~x) and
ˆ
ϕ(4~x)d(4~x) = 1

. The spacetime coefficient reads

< =
1

24t

ˆ
(4~x)2ϕ(4~x)d(4~x) (5.77)

The probabilistic density ρ(x, t) evolves as

ρ(~x, t+4t) =
ˆ
ρ(x− δ~x, t)ϕ(4~x))d(4~x) (5.78)
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Expanding Taylor series of both sides, we have

∂tρ = −∇ · (ρ~u) + <∇2ρ (5.79)

which is consistent with Fokker-Planck equation. In any external potential
V (~x), there are two contributions to the changing of average velocity. One is
from random impacts of spacetime, another one is from acceleration provided
by external potential. Therefore, the average velocity will evolve during time
interval 4t as

~u(~x, t+4t) =´
(~u(~x− δ~x, t)− 4t∇V (~x−δ~x)

m )ρ(x− δ~x, t)ϕ(4~x))d(4~x)´
ρ(x− δ~x, t)ϕ(4~x))d(4~x)

(5.80)

the denominator of eq. 5.80 is the normalisation factor of the probability dis-
tribution. Expanding Taylor series of both sides, we obtain

m
d~u

dt
= −∇V + <m(

∇2(ρ~u)

ρ
− ~u∇

2ρ

ρ
) (5.81)

From this we can see the acceleration of the quantum envelope velocity ~u, whose
dynamics are rooted in the joint contribution of the classical potential and the
quantum potential. For the physical state with certain energy, the three-velocity
decomposition ~V (~x, t) = ~u(~x, t)+~v(~x, t)+~ν(t) has clear physical meaning. The
quantum envelope velocity ~u(~x, t) and the classical statistical velocity ~v(~x, t) are
both velocity fields, which are functions of space-time coordinates. The classical
statistical velocity field of a physical state with certain energy is zero, which
can be used as a new interpretation of the steady state of quantum mechanics.
The dynamic mechanism of the quantum envelope velocity field ~u(~x, t) has two
contributions, the classical external potential field where the particle is located
and the quantum potential field generated by the random collision of time-space.
The diffusion velocity ~ν(~x, t) is the background of space-time fluctuations, evenly
distributed in space, and satisfies the properties of Brownian motion in time,
which is the intrinsic property of space-time. The sum of these three velocities is
the real velocity of the objective reality of the particles required by materialism.
See appendix B where we proved these.With the condition of stationary state
∂tρ = 0, it goes to

~u = <∇ρ
ρ

(5.82)

∂t~u = 0 (5.83)

It’s important to notice that

d~u

dt
= ∂t~u+ (~u · ∇)~u (5.84)

The average velocity ~u is not zero in the stationary state, which exactly cancle
out its fluctuation velocity. Therefore, given the condition of stationary state,
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we are able to get

− 2m<2∇2√ρ
√
ρ

+ V (x) = Const. (5.85)

We can prove this constant is exactly the average energy of particle

E =

ˆ
ρ(

1

2
mu2 + V )d3x (5.86)

Now, we have derived

−2m<2∇2√ρ
√
ρ

+ V (x) = E (5.87)

ψ =
√
ρe−iEt/~ (5.88)

Let < = ~
2m once again, we arrive at the stationary Schrödinger equation

− ~2∇2

2m
ψ + V ψ = Eψ (5.89)

5.6 Ground States of Hydrogen Atoms in MIP

In the hydrogen atom system, we can take ~A = 0 and φ = − e
4πε0r

. The
stationary solution of the equation (5.56) satisfies

EΨ =
1

2m
(−i~∇)2Ψ− e2

4πε0r
Ψ (5.90)

The lowest energy stationary state solution (ground state wave function) is
Ψ(r, θ, ϕ) = 1√

πa3
e−r/a, where a = 5×10−11m is the Bohr radius of the hydrogen

atom. Using the wave function of the ground state of a hydrogen atom, we can
get its quantum envelope velocity as

~u = 2<∇R = − ~
ma

r̂ = − c

137
r̂ (5.91)

Where c is the velocity of light in vacuum, r̂ is the unit vector r̂ = ~r
r . Similarly

we can get its classic average velocity

~v = 2<∇I = 0 (5.92)

Its spacetime fluctuation rate is satisfied

< νi >= 0, < νi(t)νj(t
′) >= <δijδ(tt′) (5.93)

Then the electron in the ground state of the hydrogen atom has its coordi-
nate ~X(t) as a random variable, and its real velocity ~V satisfies the following
microscopic dynamic equations.

d ~X(t)

dt
= ~V (t) = ~u+ ~v + ~ν = − c

137
r̂ + ~ν(t) (5.94)
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This is the real equation of motion of the ground state electrons of a hydrogen
atom in the context of MIP. The quantum envelope velocity always points to
the center of hydrogen atom. The closer to the center, the greater the repulsive
force generated by the spacetime potential. Because this envelope velocity is
balanced out by the combination of the classical Coulomb potential and the
spacetime potential, the hydrogen atom can be stabilized on the ground state.

According to MIP, the real motion of electrons in the ground state of hydrogen
atoms, we can calculate the average kinetic energy of electrons as

< K >=
m

2
< ~V (t)2 >=

m

2
(
c

137
)2 +

m

2
< ~ν(t)2 > (5.95)

The average of the square of the spacetime fluctuation is

< ~ν(t)2 >= </T (5.96)

Where T is the cumulative interaction time of the electrons. The ground state
of a hydrogen atom can exist forever, that is, T tends to infinity, and thus we
can obtain the average kinetic energy of the ground state electron as

< K >=
m

2
< ~V (t)2 >=

m

2
(
c

137
)2 (5.97)

We can calculate the average potential energy of the electron as

< U(r) >=< − e2

4πε0r
>=< − e2

4πε0a
> (5.98)

Where a is the Bohr radius and ε0 is the vacuum permittivity. The average
energy of the ground state electrons is the sum of the average kinetic energy
and the average potential energy. Substituting the standard values of physical
constants, we can get the numerical result of the average energy of the ground
state electrons as

E =< K > + < U >= −13.6ev (5.99)

We have reached the same conclusion as quantum mechanics through the mi-
croscopic equation of motion of MIP. It can be seen that quantum mechanics
only reflects the statistical average nature of the real motion process and does
not reflect all the physics under the framework of MIP.

5.6.1 Deriving the amount of elementary charge from MIP

According to MIP, the interaction between particles and STP (the basic defini-
tion of the action is the product of momentum and displacement)

Nh =

˛
pdq (5.100)
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For example, the simplest uniform circular motion is˛
pdq = 2πmvr (5.101)

Consider the electrons inside the hydrogen atom. STP collisions provide random
Brownian motion, and attraction from proton provides centripetal force with
equilibrium conditions

e2

4πε0r2
=
mv2

r
(5.102)

The amount of charge can be solved as

e = nh

√
ε0
mπr

(5.103)

The exact value of the electronic charge can be accurately obtained. We know
that in MIP, the exchange action is nh, where n can be any integer.
We only need to make a hypothesis that the orbit of the electron is determined
by the quantum number n of STP interaction. The proof of this hypothesis
is shown in the next section. That is, when n = 1, the electron falls on the
Bohr’s orbit (r = 0.53× 10−10m). When n = 2, the electrons fall on the second
orbit (by analogy). You can get important results (all values below are with
international units)

h = 6.62× 10−34,m = 9.11× 10−31, ε0 = 8.85× 10−12

After substituting, we obtain the amount of charge as

e = 1.6× 10−19C (5.104)

5.6.2 Quantum number n of STP determining the orbit of hydrogen
atoms

What we want to prove is that when the electrons are in Bohr’s orbit (r = a),
the amount of exchange action of STP is just a Planck constant, ie

h = 2πmva (5.105)

Using the ground state wave function of the hydrogen atom derived above

ψ =
1√
πa3

e−r/a (5.106)

The average value of the momentum can be found as

Mv = p = |
ˆ
ψ∗(−i~∇)ψdτ | = ~

a
(5.107)

The integral volume element is dτ = r2sinθdθdϕdr and h = 2πmva.
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5.6.3 Generalisation to Hydrogen-like atoms

The exchanged action between particles and STP

nh =

˛
pdq (5.108)

In uniform circular motion ˛
pdq = 2πmvr (5.109)

An electron in a hydrogen-like atom with a positively charged nucleus. STP
collisions provide random Brownian motion, and the attraction of the nucleus
provides centripetal force with equilibrium conditions

Ze2

4πε0r2
=
mv2

r
(5.110)

The amount of charge can be solved as

e = nh

√
ε0

Zmπr
(5.111)

The Bohr-like orbital electron corresponding to n = 1 has a Bohr radius of
r = a/Z, from which the elementary charge can be derived as

e = 1.6× 10−19C (5.112)

Starting from MIP, we have made a thorough study of free matter particles and
obtained the most important conclusions of quantum mechanics. Furthermore,
the most fundamental cause of atomic stability is explained by MIP, and from
the first principle we calculate the basic physical quantity of electron charge unit.
It can be seen that the random collision of STP does not only provide chaotic
background noise , but also the stability of all matter in a seemingly chaotic
background. At the most profound level, materialism interpret the physical
world and the contradictions are unified.

6 Quantum Measurement in MIP

6.1 General Principle

There are fundamental distinctions on quantum measurement between MIP and
Copenhagen interpretation. Within the framework of MIP, since matter particle
is collided randomly by STP. Any measurement related to position and momen-
tum can not be done in a time interval between two collisions, therefore any
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this kind of measurement cannot lead to precise result, which means we cannot
make errors as small as possible in principle. Therefore, incommutable observ-
ables can not only be measured precisely at the same time, but also cannot be
measured precisely separately. Theoretically, all measure values means statisti-
cal average, which include intrinsic uncertainty from spacetime besides normal
measurement errors. For examples, the momentum uncertainty from MIP is
due to the statistical properties of fluctuated mass. As a statistical mass, the
minimum fluctuation is 4mst , which roughly is one part per million of electron
mass. The position intrinsic uncertainty 4Xst from MIP is the mean free path
between two consecutive collision by STP.

When the spacetime sensible mass is equivalent to the statistical inertial mass,
the equation of motion will be determined by Schrödinger equation. In other
words, moving matter particle and propagational wave are unified in spacetime.
If we want to measure a matter particle, we need apparatus to interact with
particle somehow. However, every such measurement has to interrupt the ran-
dom motion of particle. Therefore, measurement means the end of a Markov
process. When the measurement is finished, a new Markov process will begin.
For the moving matter particle, the phases of wave functions before and after
measurements is completely irrelevant, which cannot interfere each other. Un-
der this framework, it’s unnecessary to introduce hypothesises of wave function
collapse or multi universe.

6.2 EPR Paradox in MIP

In a 1935 paper[45], Einstein with Podolsky and Rosen considered an exper-
iment in which two particles that move along the x-axis with coordinates x1
and x2 and momenta p1 and p2 were somehow produced in an eigenstate of the
observables X = x1 − x2 and P = p1 + p2 ( these two observables commute
[X,P ] = 0 ).It’s easy to understand that the measurement of the position of
particle 1 can interfere with its momentum, so that after the second measure-
ment the momentum of particle 1 no longer has a definite value. However two
particles are far apart, how can the second measurement interfere with the mo-
mentum of particle 2? And if it does not, then after both measurements particle
2 must have both definite position and momentum, contradicting the quantum
uncertainty principle. If it does, there exist some “spooky” interaction between
two far apart particles, contradicting the locality principle in the special theory
of relativity. The orthodox interpretation of quantum mechanics suppose that
the second measurement which gives particle 1 a definite position, prevents par-
ticle 2 from having a definite momentum, even though the two particles are far
apart. The states of the two particles are so call quantum entanglement.

Let’s investigate the experimental process in detailed and estimate every uncer-
tainty relations. Suppose two particles that are originally bound in some sort of
unstable molecule at rest fly apart freely in opposite directions, with equal and
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opposite momenta until their separation becomes macroscopically large. Their
separation will evolve as

x1 − x2 = x10 − x20 + (p1 − p2)t/m (6.1)

where x10, x20 are initial positions of two particles. It’s noticed that under
MIP, every massive particle is collided randomly by STP, the initial separation
of two particle cannot be measured precisely. There exists intrinsic uncertainty
4Xst = 4|x10−x20| as the mean free path between two consecutive collision by
STP. According to the uncertainty relation derived from MIP, the momentum
difference at least has intrinsic uncertainty as 4Pst = 4|p1 − p2| ≥ ~

4Xst
,

because of the commutation [x1 − x2, p1 − p2] = 2i~. Therefore the uncertainty
of separation will be

4|x1 − x2| = 4Xst +
~t

4Xstm
(6.2)

Its minimum is at 4Xst =
√

~t
m , leading to

4|x1 − x2| ≥ 2

√
~t
m

(6.3)

Similarly, the total momentum P is not strictly zero under MIP, which includes
at least the intrinsic uncertainty due to

4P = 4mstv (6.4)

where 4mstis the fluctuation of statistical mass, according to MIP, roughly as
one part per million of electron mass. Perform EPR experiment after the second
measurement of particle 1, the uncertainty of particle 2 at least will be

4p24x2 = 2

√
~t
m
4mstv (6.5)

More importantly , does the intrinsic uncertainty of particle 2 given by MIP
contradict the uncertainty relation given by quantum mechanics? If

4p24x2 ≤
~
2

(6.6)

it still contradicts uncertainty relation of quantum mechanics, which means
that we will observe the quantum entanglement experimentally, because we
have to suppose the “spooky” interaction between two far apart particles to
satisfy uncertainty relation. Therefore, we obtain the key criterion of quantum
entanglement (momentum-position type) as

4m2
st

m2
≤ λd

16πL
(6.7)
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where λd = h
mv is de Broglie′s wavelength and L is the separation of two par-

ticles. So we can conclude that there is a characteristic separation of quantum
entanglement as

L∗ =
λd
16π

(
m

4mst
)2 (6.8)

When the separation of two particles is larger than L∗, the inequality of (8)
cannot be satisfied which means we are no longer able to determine the existence
of quantum entanglement from experimental results. The reason is that the
intrinsic uncertainty of particle 2 given by MIP has already satisfy uncertainty
relation of quantum mechanics automatically. We cannot deduce the existence
of ’spooky’ interaction in this scenario. For two electrons moving at the speed
of 0.01c, the corresponding characteristic separation will be L∗ ≈ 1m. For two
atoms moving at the speed of 0.01c, the corresponding characteristic separation
will be L∗ ≈ 106m.

7 From MIP to Path Integral

The path integral representation of quantum mechanics is a generalization and
formulation method for quantum physics, which extends from the principle of
action in classical mechanics. It replaces a single path in classical mechanics with
a quantum amplitude that includes the sum or functional integral of all paths
between two points. The path integral expression was theoretically published
by theoretical physicist Richard Feynman in 1948 [49]. Prior to this, Dirac’s
1933 paper[50], had major ideas and some early results. The main advantages
of the path integral expression is that it treats spacetime equally, so it is easy to
generalize to the theory of relativity, which is widely used in modern quantum
field theory. However, the basic assumptions of MIP tell us that the effect
of each STP colliding on particles can be seen as an independent path. The
weight of each independent path is related to the distribution of energy. This
is essentially a process of path integration. To understand this concept more
clearly, we consider a simple process as follows. Assuming that the effect of
random motion of particles over time ∆t is from point A to point B. According
to MIP, in this process, the change of the action can only be h, 2h, 3h, ..., but the
paths are different corresponding to each specific action change. For example,
the smallest amount of action change is one h, corresponding to a linear motion
from A to B, and the 2h change corresponds to the movement of the polyline,
during which the particle is struck twice by STP, and so on. In this picture, the
so-called infrared effect is naturally ruled out, that is, the process of less than
one h in ∆t. The effect of infinity is also ruled out because the instantaneous
velocity has certain upper bound which is the speed of light. This suggests
that such a path integral effect is a finite summation rather than an infinite, so
there is no need to introduce a so-called renormalization procedure. We see that
under the framework of MIP, the quantum properties of particles are rooted in
nature as the statistical description of their random motion.
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7.1 Path Integral of Free Particle and Spacetime Interaction
Coefficient

We had argued the real velocity of free particle in space-time satisfies the de-
composition as

~V (~x, t) = ~v(~x, t) + ~u(~x, t) + ~ν(t) (7.1)

in which there are two kinetic arguments, they are classical statistical velocity
~v and quantum envelope velocity ~u.

There are two kinetic variables with random motion particle in spacetime, which
are classical speed ~v and fluctuated speed ~u. The corresponding kinetic equa-
tions are

∂~u

∂t
= −<∇(∇ · ~v)−∇(~u · ~v) (7.2)

∂~v

∂t
= −(~v · ∇)~v + (~u · ∇)~u+ <∇2~u (7.3)

Setting Ψ = eR+iI , we are able to linearise as

∇R =
1

2<
~u (7.4)

∇I =
1

2<
~v (7.5)

which leads to
∂Ψ

∂t
= i<∇2Ψ (7.6)

During an infinite small time interval ε, the solution can be written in terms of
integrals as

Ψ(x, t+ ε) =
w
G(x, y, ε)Ψ(y, t)dy (7.7)

which represents the superposition of all the possible paths from y to x. The
critical observation of Feynman is the weight factor G(x, y, ε) will be propor-
tional to eiS(x,y,ε)/~, where S(x, y, ε) is the classical action of particle as

S(x, y, ε) =
w
L(x, y, ε)dt =

w
(K − U)dt = (K̄ − Ū)ε (7.8)

K̄ and Ū are average kinetic energy and potential energy separately. In order
to show the equivalence between path integral formulation and the spacetime
interacting picture, we should derive our basic kinetic equations from the postu-
lation of path integral G(x, y, ε) = AeiS(x,y,ε)/~. For a free particle in spacetime,
one has Ū = 0,L̄ = m

2 (
x−y
ε )2 and S = m(x−y)2

2ε , which leads to

Ψ(x, t+ ε) = A
w
e

im(x−y)2

2~ε Ψ(y, t)dy (7.9)
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Setting y − x = ξ and α = − im
2~ε , it can be written in terms of

Ψ(x, t+ ε) = A
w
e−αξ

2

Ψ(x+ ξ, t)dξ (7.10)

= A
w
e−αξ

2

(Ψ(x, t) + ξ
∂Ψ

∂x
+

1

2
ξ2
∂2Ψ

∂x2
+O(ξ4))dξ

With the properties of Gaussian integral
w
e−αξ

2

dξ =

√
π

α
(7.11)

w
e−αξ

2

ξdξ = 0 (7.12)
w
e−αξ

2

ξ2dξ =
1

2α

√
π

α
(7.13)

we can obtain

Ψ(x, t+ ε) = A(

√
π

α
Ψ(x, t) +

1

4α

√
π

α

∂2Ψ

∂x2
+O(α− 5

2 )) (7.14)

Setting A =
√

α
π , we have

Ψ(x, t+ ε)−Ψ(x, t) = ε∂tΨ(x, t) =
1

4α

∂2Ψ

∂x2
(7.15)

From this integral, We observed that the most important contribution comes
from y − x = ξ ∝

√
ε, where the speed of particle is y−x

ε ∝
√

~
mε , we see

here when ε → 0, the speed divergent in order
√

1/ε. The paths involved are,
therefore continuous but possess no derivative, which are of a type familiar from
study of stochastic process. With the isotropy of space, we have

∂tΨ(~x, t) =
1

4αε
∇2Ψ(~x, t) (7.16)

Corresponding to the Eq. (7.6), if one requires the equivalence between path
integral formulation and MIP, there must be

i< =
1

4αε
(7.17)

< =
1

4iαε
=

1

4i(− im
2~ε )ε

=
~
2m

(7.18)

Notice that < is only an arbitrary parameter in the Eq.(5.31). The consistency
between path integral and MIP requires < = ~

2m . An arbitrary finite time
interval ∆t, can be cut into infinitely many slides of infnitesimal time interval
ε. And in each ε, the collisions leads to many different paths, one can pick one
path and consectively another along the time direction, this will end up a path
in ∆t, sum over all possible paths in ∆t gives an integration over path space,
which is the celebrated historical summation or path integral. The method here
can be straightforwardly generalised to the particle in the external potential as
in following section.
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7.2 Path Integral of Particle in an External Potential and
Spacetime Interaction Coefficient

In an external potential U , one has Ū = U(x+y2 ) and L̄ = m
2 (

x−y
ε )2, which leads

to the action
S =

m(x− y)2

2ε
− U(

x+ y

2
)ε (7.19)

According to the path integral formulation, it must satisfy

Ψ(x, t+ ε) = A
w
e

im(x−y)2

2~ε −
iU(

x+y
2

)ε

~ Ψ(y, t)dy (7.20)

= A
w
e

im(x−y)2

2~ε (1−
iU(x+y2 )ε

~
)Ψ(y, t)dy

To the lowest order of ε, it shows

U(
x+ y

2
)ε = U(x+

ξ

2
)ε = U(x)ε (7.21)

Ψ(x, t+ ε) = A
w
e−αξ

2

(1− iU(x)ε

~
)Ψ(x+ ξ, t)dξ (7.22)

From the properties of Gaussian integral in the previous section, we obtain

Ψ(x, t+ ε) = A(1− iU(x)ε

~
)

√
π

α
Ψ(x, t) +A

1

4α

√
π

α

∂2Ψ

∂x2
(7.23)

Setting A =
√

α
π , ε→ 0, we have

∂tΨ(~x, t) =
1

4αε
∇2Ψ(~x, t) +

1

i~
UΨ(~x, t) (7.24)

To be consistent with the case of free particle, let’s take < = ~
2m which leads to

∂tΨ(~x, t) = i<∇2Ψ(~x, t) +
1

i~
UΨ(~x, t) (7.25)

Therefore we have derived the equation of motion from MIP.

8 Electromagnetism: An MIP Approach

8.1 Essential Properties of Electronic Charge In Modern
Physics

In framework of modern physic, fundamental matter particles are all electric
charged. The fundamental electric charge is defined as the amount of charge of
an electron or a positron.
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For electric charge 4, there are five fundamental properties. Firstly, there are
only two kinds of charges, as known as the positive and negative charges. The
characteristic quantum numbers of positron and electron are 1 and -1. Secondly,
same charges repel each other, different charges attract each other.Thirdly,
the interaction between charges is known as the Coulomb force, obeys the
inverse square law. Electron and positron can annihilation each other, emit
photons.Forthly, in an isolated system, the algebraic amount of charges are
conserved. Finally, the amount of fundamental charge is 1.6× 10−19C.

Dynamics of STP revisited

Since there are no interactions between STP, the differential dynamics of STP
is discribed by a massless free scale field theory, its Lagrangian is:

LST = ∂µφ∂
µφ . (8.1)

The dynamic equation is the 3+1 dimentional Klein-Gordon equation,

∂µ∂
µφ = 0, (8.2)

the solution of above equation is a wave solution, it can be written as follow

φ(~x, t) =
∑

E2=
∑3

i=1 p
2
i

f(E, ~p) exp(iEt− i~p · ~x), (8.3)

in which f(E, ~p) is an analytic function in momentum space.

Now let us consider putting a particle into space-time. The impact of introduc-
ing the matter particle into space-time scalar field, is somehow like dropping
a cobble into the water surface of a peaceful lake, leads to the ripple effect.
Compare to the fluctuation of space-time, the matter particle introduces a non-
perturbative effect, which will bring into the space-time a strong potential. The
reason that the matter particle results a strong potential is as follows Any per-
turbative disturbance will be get drowned out by the fluctuation of microscopic
space-time energy fluctuation. In general, strong perturbation will lead to non-
linear effects, especially non-perturbative soliton effect. The soliton effect is
steady and relatively large than STP. We know STP are local excitation of
space-time energy, obviously, a cluster of STP describes a “huge” excitation of
space-time energy. So it is nature to introduce solitons into space-time field
since a local non-perturbative energy disturbance leads a local space-time soli-
ton, discribing a cluster effect of STP.

4 We will use charge instead of electric charge in this section, for simplicity.
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8.2 2+1-dim Complex Scalar Space-time field

In modern quantum field theory, the microscopic energy can be non-conserved
locally, which is saying the vacuum can excit any pair of virtual conjugated
particles. In framework of MIP, the fluctuations of space-time energy are STP.
The non-conservation nature of local space-time energy is saying the number of
STP are locally non-conserved. However, in a global viewpoint, the energy of
STP are conserved.

In framework of MIP, we introduce a local companion for STP field, which is a
local field that can interact with STP. Howerver, in global, the companion field
will decouple with the STP field. The existence of the local companion field also
implies in local there is a kind of local symmetry, which is broken in global. In
fact, when the local symmetry is U(1) , STP are excitations of a complex scalar
field.

In framework of MIP, matter particle experiences quantum Brownian motion,
which essentially is a Markov progress. This implies the past and future of the
matter particle are causual irrelated. So at an arbitrary point of time, one can
cut the slice vertical to the direction of the velocity of the matter particle, as
known as the normal slice. The dynamics of matter particle on normal slice
is a 2+1-dim dynamics. The whole 3+1-dim dynamics could be extented from
the dynamics on slices. Notice there are two kinds of dynamics on the 2+1-dim
normal slice, one for matter particle, the other for STP, respectively.

We now consider the 2+1 dimensional dynamics of STP. As is stated above, the
matter particle drops a cobble into the STP lake and results a period potential.
We denote the potential as V (φ, φ∗), thus the Lagrangian of complex STP field
now becomes

LST = −1

2
∂jφ∂

jφ∗ + V (φ, φ∗), j = 0, 1, 2. (8.4)

8.3 Abrikosov-Nielsen-Olesen-Zumino Vortex

In 2+1 dimension, the famous non-pertubative solution for a complex scalar
field is the Abrikosov-Nielsen-Olesen-Zumino(ANOZ) vortex solution [54][55].
The Lagrangian supports the ANOZ vortex is

L = −∂jφ∗∂jφ−
λ

2

(
φ∗φ− F 2

)2 (8.5)

The minimum of the potential is obvious, it is

φ = F · eiϕ

which is a cycle with radius F . Notice this configuration is compatible with
the “ripple” effect of matter particle acting on STP field. It also introduces
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a symmetry U(1) . Since this U(1) now is a local symmetry, it implies there
should be a gauge field companion with the STP field. The soliton solution is
obtained when introducing the boundary condition at infinity, that is

|x| → ∞ : ~φ→ F
~x

|x|
, φ→ Feiϕ. (8.6)

However, the soliton solition suffers an energy divergence because

E =
w
d2x

(
~∂φ∗~∂φ+ V (φ, φ∗)

)
(8.7)

goes to infinity. One can check this as follows

|x| → ∞ : ∂iφj →
F

|x|

(
δij −

xixj
|x|2

)
2∑

i,j=1

(∂iφj)
2 → F 2

|x|2

w
d2x~∂φ∗~∂φ → 2π

∞w

0

d|x|F
2

|x|
: Log divergent. (8.8)

We saw the energy of the vortex is divergent at spatial infinity, this is unphysical
since it implies there is an infinity energy source at spatial infinity. To avoid this
divergence, the way out is to introduce a gauge vector field to smear the infinity
energy on whole 2+1-dim normal slice. In fact, the local non-conservation of
space-time energy implies we need a companion field for STP field in the first
place. Here it is clear that the field is a gauge field. To do so, we need introduce
the covariant derivative for STP field, instead of original derivative, as well as
a kinetic term for the gauge field. Now the Lagrangian is

L = −1

2
Dµφ

∗Dµφ− 1

4
FµνF

µν − V (φ, φ∗) (8.9)

Dµφ = ∂µ − igAµ (8.10)

The complex STP field degenerates into a real scalar field. This is because the
energy non-conservation is recovered in global. The complexity of the STP field
reflects the local property of STP. At spatial infinity,

φ→ Feiϕ|ϕ=0 = F (8.11)

the gradient of STP field is

~∂φ = (∂rφ~er + ∂ϕφ~eϕ)ϕ=0 = iF/r (8.12)

and the gauge field becomes pure gauge field (with vanishing field strength),
that is

~A→ 1

ig
φ−1~∂φ (8.13)
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In form of polar coordinates,

Ar = 0, Aϕ =
1

gr
(8.14)

In general, we can not let a complex scalar field directly equals to a real scalar
field at an arbitrary spatial point. However, we can let them equals to each
other up to a gauge transformation, say

φ→ ΩF, Ω(~x) = eiϕ(~x) (8.15)

and then we have
~A→ − 1

ig
Ω~∂Ω−1 (8.16)

Actually, under this general configuration, the divergence of energy will be
strictly vanished, as

~Dφ→
(
~∂Ω+ Ω(~∂Ω−1)Ω

)
F = Ω~∂(Ω−1Ω)F = 0 (8.17)

In terms of component, the gauge field reads

Ai = −
1

g
εij
xj
r2

(8.18)

From the Stokes theorem, we have

Φ ≡
˛
C=n·∂Σ

~Ad~x =
w

Σ

~Bd~σ =
2πn

g
≡ gm (8.19)

here we recognize the famous Dirac quantization condition [53] for electronic
charges, say

g · gm = 2πn, n ∈ Z (8.20)

This implies if there was an ANOZ vortex solution, the electronic charge is
quantized. When n is a negative integer, it describes an opposite spinning vortex
solution and also describes a negative charge. In modern physics, there should
be a Dirc monople to support the Dirac quantization condition of charges. In
framework of MIP, the only origin of quantized charge is the STP field.

8.4 From 2+1-d to 3+1-d

In 3+1 Minkowski space-time, the local space-time symmetry is Lorentz symme-
try, denoted by SO(3, 1). In Lie group theory, SO(3, 1) is algebraic isomorphism
to SU(2)× SU(2) , that is

so(3, 1) ∼= su(2)× su(2) ∼= so(3)× so(3). (8.21)
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In fact, this isomorphism reveals locally, the 3+1-dim space-time equals to cross
extension of two 2+1-dim space-time.

Now we consider how this local extension of dimension can be done from Lie
algebra. Notice the six generator of Lorentz group can be written explicityly as

Ki ≡ L0i = t∂i − xi∂t i, j, k ∈ [1, 2, 3] (8.22)
Rk = εijkLij = εijkxi∂j (8.23)

The two algebra su(2) are isomorphic to so(3) , in terms of derivative, they are

Sa = εabcra∂rb (8.24)
S̃a = εabcla∂lb (8.25)

in which there are six degrees of freedom, in the meaning of linear space, they
are

r1, r2, r3, l1, l2, l3

Though the Lie algebras of SO(3, 1) and SU(2)× SU(2) is isomorphic to each
other, from the viewpoint of degree of freedom, they are not the same. Notice
there is a hidden duality, which maps 2-dim surface to 1+1-dim surface and vice
versa, as follows

? : e0 ⊗ ei → ε jk0i ej ⊗ ek
? : ej ⊗ ek → ε0ijke0 ⊗ ei (8.26)

This duality is actually the Hodge duality in differential geometry. It implies
extension rules should be followed when extending a theory from 2+1-dim to
3+1-dim.

In conclude, we know the rule guiding the extension from 2+1-dim to 3+1-dim
is Hodge duality. In the vortex situation considered at hand, the Hodge duality
actually corresponds to a resolving of singularity. The vortex has a singular
tube which shrinks to a point when goes to its center. If one wants to resolving
the singularity, the general way in differential topology is to introduce a finite
size sphere instead of the singularity. The resolving operation can be done by
two steps: cut the vortex tube at a finite size, which will be a circle, then rotate
the circle into a sphere. This rotation was been done in 3+1-dim and is the
physical saying of the Hodge duality.

8.5 The Origin of Photon from ANOZ Vortex

In discussion of ANOZ Vortex, we obtained the gauge constraint and the quan-
tization condition of electric charge, however, we didn’t obtain the dynamics of
the vortex. Because vortex is not a fundamental excitation, its dynamics can
not be analytically achieved from fundamental STPs. So in order to obtain the
vortex dynamics. We need to introduce the Lagrangian for vortices.
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8.5.1 Dynamics on normal slice

For the kinetic part of STPs field, say,

Lφ =
1

2
~Diφ

∗ ~Diφ =
1

2
|(∂i − igAi)φ|2 (8.27)

in this subsection, i, j, k, l,m, n = 0, 1, 2 label indices on the 2+1-dim normal
slice. We only consider the excitations nearby the vortex potential, which is
φ = Feiϕ. The above STP field kinetic Lagrangian can be written as

Lφ =
1

2
F 2 (∂iϕ− gAi)2 (8.28)

After a simple square matching operation, we arrive a linear form

Lφ = − 1

2F 2
ξiξi + ξi(∂

iϕ− gAi) (8.29)

here ξi is a static auxillary field. Notice that for vortex solution, the phase angle
field ϕ is singular at the vortex center, we now separate the phase angle into
two parts, one is smooth and the other is for vortex, say,

ϕ = ϕ0 + ϕvortex (8.30)
The smooth part does not have a significant effect on what we concerned, we
integral it out and it results a constraint equation for the auxillary field,

∂iξ
i = 0 (8.31)

This reveals the auxillary field is a 2+1-dim sourceless field, and it can be
rewritten as a pure curl as

ξi = εijk∂jak (8.32)
On the other hand, the equation of motion of auxillary field ξ can also be
obtained from Euler-Lagrange equation, it reads

ξi = F 2(∂iϕ− gAi) (8.33)
The above two equations define a hidden duality as follow

F 2(∂iϕ− gAi) = εijk∂jak (8.34)
Substitute it into equation (8.29), we obtain

Lφ =
1

2F 2
ξiξi =

1

2F 2
εijk∂jakεimn∂

man

=
1

2F 2
f jkfjk (8.35)

here
fjk = ∂jak − ∂kaj (8.36)

is the field strength of a field. Here we saw the dynamics of the STP field on
normal slice is fully equivalent to a vector field a . Recall the kinetic term of
gauge field A , we obtain a effective Lagrangian on normal slice

Ltotal = LA + Lφ = − 1

4g2
F jkFjk +

1

2F 2
f jkfjk (8.37)
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8.5.2 The Hodge duality

Notice in the dynamics of 2+1-dim vortex, the singularity of the phase angle is
essential, which results that the corresponding gauge field A is also singular at
the center of the vortex. This singularity could be resolved in higher dimension,
for example, in 3+1-dim space-time, we can extend the 2+1-dim Hodge duality
(8.34) to 3+1-dim. This 3+1-dim Hodge duality reflects the local duality of 3+1-
dim Lorentz group, as revealed in last subsection. In 3+1-dim, the complex
STPs field becomes real because the phase angle is fixed to zero and has no
dynamics at all, leads a free STP scalar field in 3+1-dim. Actually, in 3+1-dim,
we can define the Hodge duality of a field as:

F ′αβ =
√
2gF iεαβijf

ij (8.38)

from which we has defined a gauge field A′ , its field strength is

F ′αβ = ∂αA′β − ∂βA′α (8.39)

It is an extension of a field in 3+1-dim and on any 2+1-dim sub-manifold of the
3+1-dim space-time, its dynamics is equivalent to field a . In total, we know

Ltotal = −
1

4g2
F jkFjk −

1

4g2
F ′αβF ′

αβ (8.40)

Actually, in 3+1-dim, the two parts of above Lagrangian can be written as a
single term when defined a new field Ã satisfying

1

g
F̃ij = Fij ,

1

g
F̃αβ = F ′

αβ (8.41)

Notice the above equations are six equations, which are

∂0Ã1 − ∂1Ã0 = g(∂0A1 − ∂1A0) (8.42)
∂0Ã2 − ∂2Ã0 = g(∂0A2 − ∂2A0) (8.43)
∂1Ã2 − ∂2Ã1 = g(∂1A2 − ∂2A1) (8.44)
∂0Ã3 − ∂3Ã0 = g(∂0A

′
3 − ∂3A′

0) (8.45)
∂1Ã3 − ∂3Ã1 = g(∂1A

′
3 − ∂3A′

1) (8.46)
∂2Ã3 − ∂3Ã2 = g(∂2A

′
3 − ∂3A′

2) (8.47)

On 0-1-2 normal slice, we can assume

Ã0|Σ=(t,x1,x2) = gA0, Ã1|Σ=(t,x1,x2) = gA1, Ã2|Σ=(t,x1,x2) = gA2 (8.48)

here Ãi|Σ=(t,x1,x2) denotes the reduced field of the four dimensional gauge field
Ã onto normal slice Σ = (t, x1, x2, 0). Hence from eq.(8.45-8.47) we see, the
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constraint equations require that on x3 direction, Ã0, Ã1, Ã2 should coincide
with A′

0, A
′
1, A

′
2 ,

Ai(0, 0, 0, x3) = A′
i(0, 0, 0, x3), i = 0, 1, 2 (8.49)

then we obtain
Ã3(t, x1, x2, x3) = gA′

3(t, x1, x2, x3) (8.50)

Actually, the A′
3 is a new component of the gauge field results from the Hodge

duality, it is unique up to a pure gauge with vanishing field strength. Now we
see how to extend the gauge field on 2+1-dim to 3+1-dim guiding by the Hodge
duality. A simple extension is

Ãi(t, x1, x2, x3) = g(Ai(t, x1, x2, 0) +A′
i(0, 0, 0, x3)), i = 0, 1, 2 (8.51)

Ãi(t, x1, x2, x3) = gA′
3(t, x1, x2, x3) (8.52)

Under this extension, we arrive a simple Lagrangian

Leff3+1d = −
1

4
F̃µν F̃

µν , µ, ν = 0, 1, 2, 3 (8.53)

it is the famous Lagrangian for 3+1-dim gauge field, the field strength is the
same as Maxwell field strength. In three dimensional form, the field strength
can be written as electric and magnetic field strengths as

Ei = F̃0i, Bi = εijkF̃
jk, i, j, k = 1, 2, 3 (8.54)

In above derivation, we saw that the dynamic effects of STP ANOZ vortex
and 3+1-dim electromagnetic field are completely equivalent. This reveals an
important assertion: photons are companion particles of STP vortices. In 3+1-
dim space-time, Maxwell field strength is a derived result because of vanishing
of the ANOZ vortex singularity.

In conclusion, when introducing the third spatial dimension, the singularity of
ANOZ vortex is vanished. Meanwhile the equation of motion for ANOZ vortices
is equivalent to 3+1-dim Maxwell equations, they are

~∇ · ~E = 0 (8.55)
~∇ · ~B = 0 (8.56)

~∇× ~E = −∂
~B

∂t
(8.57)

~∇× ~B =
∂ ~E

∂t
(8.58)

Here what we obtained is the source-free Maxwell equations because we didn’t
consider the effect of matter particles, which will couple to gauge field as will
considered in next subsection.
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8.6 The Coulomb Force

We now consider the force between two matter particles. In hydrodynamics,
two vortices will repel each other if their handing of spins are the same, and
will attract each other if their handing of spins are different. This is a nature
derivation from Bernoulli principle. There are only two kinds of charity for
2+1-dim vortices, left and right, respectively.

More than two decades ago, people had already found the correspondence be-
tween equations of motions of hydrodynamics and Maxwell eletromagenetism
[56]. This correspondence was supported by [58] with a detailed derivation. The
correspondence between hydrodynamics and eletromagnetism is much more like
a coincidence in previous researches. However, in framework of the STP vortex,
the fluid-eletromagnetism correspondence now has a concrete theoretic origin.

In previous subsections, we only considered dynamics of STP and gauge fields,
leaving the matter particle as a source of potential. It is nature to consider the
interaction between matter field and gauge field as well. To do so, we introduce
the matter field in Lagrangian as follow

Ltotal = −
1

4
F̃µν F̃

µν − iψ̄γµD̃µψ +mψ̄ψ (8.59)

D̃µ ≡ ∂µ + ieÃµ (8.60)

This interaction can be understood as an effective representation of the collision
between matter particle and STP vortices, though their are no terms represent-
ing vortices in the Lagrangian. This is because the dynamics of vortices now
is equivalent to gauge field in 3+1-dim. Other collisions between matter par-
ticle and STP are not considered in this section, as we will see, they also play
important roles in deriving gravity between matter particles.

In global, the STP and gauge field are decoupled, hence all local dynamics
have been reduced to gauge field dynamics in 3+1-dim space-time. Notice the
Lagrangian we obtained above is the same as that in famous QED [17]. Un-
der standard calculation, the interaction between matter particles will be the
Coulomb interaction. However, in framework of MIP, the gauge field is not orig-
inated from matter field, but from STP vortices. This is an essential difference
between modern quantum field theory and the MIP proposed in this article.

Define the four dimensional current as

jµ ≡ iψ̄γµψ (8.61)

we can explicitly see the minimal couple between gauge field Ã and the electronic
current j. The equation of motions now becomes the famous sourced Maxwell
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equation, as known as

~∇ · ~E = j0 (8.62)
~∇ · ~B = 0 (8.63)

~∇× ~E = −∂
~B

∂t
(8.64)

~∇× ~B = ~j +
∂ ~E

∂t
(8.65)

8.7 Another Derivation of EoM of Photons

In framework of MIP, we had obtained four properties of charges, they are: 1.
There are only two kinds of charges corresponding to left and right chiralities of
STP vortices. Same charges repel each other while different ones attract each
other. 2. The charges are quantized guiding by the Dirac quantization condition
derived from STP vortex. 3. Force between charges are mediated by photons.
4. The force between charges is the Coulomb force.

Based on calculations in previous subsections and discussion of the Hodge du-
ality, we know some properties of phtons in frame work of MIP. At first, it
companies with the non-pertubative solition solution, as known as the vortex
solution. Secondly, it is a gauge field in 2+1-dim normal slice on which another
effective auxillary gauge field lives as well. Thirdly, the 3+1-dim Hodge duality
acts on the effective auxillary gauge field does not only resolve the phase singu-
larity of the STP vortex, it introduces the dual part of 2+1-dim gauge field. So
the 2+1-dim gauge field and its Hodge dual merged into a 3+1-dim gauge field,
which is the photon field, which means on 3+1-dim space-time, the photon field
can be understood as toplogical excitations of 2+1-dim gauge field, the topo-
logical configuration is known as the Hopf link excitation. We now clarify the
conclusion in detail since it is very important to understand the spin of photon,
which has a zero mass.

In framework of STP vortex, the vortex tube is made of two fields, one is the STP
field φ , whose gradient defines the flow direction of the vortex, the other is 2+1-
dim gauge field A whose field strength characterizes the spinning direction of
the vortex. So in this picture, A describes the rotation and φ the flowing. Under
the Hodge duality, the dynamics of the soliton part of STP field is equivalent
to another gauge field A′ , which is Hodge dual to A. Topologically, the vortex
tube reprensents a Wilson loop, its Hodge duality is t’Hooft loop. Put them
together forms a famous topological object, the Hopf link, as shown in Fig.8.1.
The Hopf link is obvious a non-local object. The topological stability of the
Hopf link protects it from pertubative destruction, so it can propagate in space-
time without dissipation unless it meets another vortex. This is very similar
to what happens in electromegnatic interaction, where photons propagates the
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Fig. 8.1: Photon as a topolotical excitation: a Hopf link

interaction between charges. We had seen the equation of motion of the Ã, aka
the joint representation of A and A′ , is nothing but the Maxwell equations.
The Ã field is an effective representation of the Hopf link.

There are two circles in a Hopf link, they wind the topological subgroup (math-
ematically, the minimal torus) of Lorentz group separately. As we knew in
previous section, they are left and right hand topological circles, each corre-
sponds to a spinor fiber. However, in physics, there are no purely topological
objects. So we need to consider the dynamics of the Hopf link, say, the effect
resulted from deformation of either circle.

Consider an arbitrary deformation on one of the two circles, it will affect the
whole Hopf link and defines a self isomorphism as follow

A : ΛL ⊗ ΛR → ΛL ⊗ ΛR (8.66)

here A denotes the self isomorphism on ΛL ⊗ΛR, ΛL and ΛR are left and right
spinor firbers respectively. In appendix E, we proved that such a self isomor-
phism should be a vector map. Relatively, all derivatives should be changed
into covariant derivatives, as

∂µ → Dµ = ∂µ + igAµ (8.67)

This leads to non-trivial local transmition that

[Dµ, Dν ] = DµDν −DνDµ = ig(∂µAν − ∂νAµ). (8.68)

This reflects the local homomorphism deformation. The strength of the de-
formation is described by the coefficient g, which relates to charge of matter
particle. So we could propose an assertion: the amount of electric charge re-
flects the strength of local deformation of local space-time. The RHS of above
equation is nothing but a field strength of four dimensional gauge field

Fµν = ∂µAν − ∂νAµ (8.69)
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Since

Dµ[Dµ, Dν ] = ig∂µ(∂µAν − ∂νAµ)− g2Aµ(∂µAν − ∂νAµ)
= −ig�Aν + ig∂ν(∂

µAµ)− g2∂µ(AµAν) + g2(∂µA
µ)Aν

=
1

2
g2∂ν(AµA

µ) (8.70)

under Lorentz gauge ∂µAµ = 0,the above equation only have pure derivation
contributions, with vanishing contributions for no-boundary free field. So this
equation can be simply written as

DµFµν = 0 (8.71)

In three dimensional form, it can be written as

~∇ · ~E = 0 (8.72)
∂tE − ~∇× ~B = 0 (8.73)

In another way, because the Hopf link configuration is unchanged under left-
right flop symmetry, this leads to a electromagnetic duality for field strength
Fµν . The left-right flop symmetry actually means a flop between pair of indices
(0, i)↔ (j, k) , this can be achieved by introducing the Levi-Cevita connection

ε0ijk : (0, i)→ (j, k) (8.74)

thus for the field strength Fµν , we have the following dual relation

F̃αβ ≡
1

2
εµναβF

µν (8.75)

The Levi-Cevita connection flip electric and magnetic fields in three dimensions,
and the above dual relation reads

~E → ~B, ~B → − ~E (8.76)

The dual equation in four dimensional is written as

DµF̃
µν = 0 (8.77)

In three dimension, it becomes two equations

~∇ · ~B = 0 (8.78)
∂t ~B − ~∇× ~E = 0 (8.79)

Equations (8.72,8.73,8.78,8.79) are Maxwell equations for source-free electro-
magnetic fields, which proves in 3+1-dim, the Hopf link transforms the local
deformation just the same as photon propagates in space-time.

The figure fig.8.2 shows how a deformation propagates from an electron to a
positron, where red upper arrows denote left topological circles and blue downer
arrows denote right topological circles.
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electron positron

Fig. 8.2: Photons deliver the interaction between electron and positron

8.8 Photon and vortex tube

We had already known that in framework of MIP, the spins of matter particles
are originated from collisions between them and STP along topological circles
in local space-time. Now we knew the photon could be represented as a Hopf
link, which also is winding topological circles in 3+1-dim local space-time. So
it is possible the spin of photons are also originated from STP.

In case of matter particles, for examples, electron and positron, their spins
are sourced from local winding along left and right topological circles U(1)L
and U(1)R in local space-time, respectively. At arbitrary moment, electron or
positron has a phase angle ϕL or ϕR. These two phase angles are undetermined.
It means electron or positron has a local phase angle symmetry, which is U(1)
symmetry. Because it is deduced from local space-time symmetry, it is a gauge
symmetry.

Let us choose the phase angle be θ . The identical principle for fundamental
particles requests the following equqtions

ψ → ψe−iϕL ≡ ψe−iθ, ψ̄ → ψ̄e−iϕR ≡ ψeiθ (8.80)

from which we know
ϕL = −ϕR = θ (8.81)

It means the gauge group U(1) is the diagonal subgroup of U(1)L×U(1)R , with
transition matrix be -1. This perspective could be extend to higher dimensional
transition matrices, which will leads to non-Abelian gauge groups, for example,
SU(2) or SU(3) .

In this picture, photon is represented as a Hopf link of 2+1-dim gauge fields, it is
massless. However, it carries the information of collisions between matter parti-
cle and STP vortices. So it will also record the motion of the matter particle, as
well as its spin. Since it is a (1, 1) representation of the topological subgroup of
Lorentz group. Therefore, from the Hopf link proposition, we obtained photon
has spin 1, and massless, and satisfies Maxwell equations. It actually explains
how a massless photon has non-zero spin.
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8.9 The generation of charged leptons in MIP

In the frame of MIP, there are no more than 3 generations of charged leptons.

According to MIP, the mass of matter particles is a statistical mass deriving from
collision of STP. This collision effects of STP can be described by an effective
potential V (x) ,which reflects the strength of the interactions between STP and
matter particles and will vary with the statistical mass: the bigger the statistical
mass, the stronger effective potential you will get. If the particle is massless,
there is no collision. Therefore the space is homogeneous and isotropic so that
we can write V (x) = 0. On the other hand the previous discussion has shown
us that the 3+1-dimensional electromagnetic field is born in vortex solution in
2+1-dimensional spacetime.

In the following we will make a study of the number of generations of charged lep-
tons in the Standard Model, which is still an open question. Crossing any point
O in 3-dimensional space there are 3 independent orthogonal 2-dimensional
planes. Take O as the origin and choose rectangular coordinate system with the
coordinates (x0, x1, x2, x3) . The Lagrangian equipped with vortex solution in
the 2+1-dimensional subspaces can take the following forms

L2+1
a = ∂µφ

∗∂µφ− λa
2

(
φφ∗ − F 2

)2
, (8.82)

with a = 1, 2, 3 respectively corresponding to 3-dimensional spacetime (x0, x2, x3), (x0, x1, x3), (x0, x1, x2);
λa is the coupling constant which reflects the strength of the effective potential
and is closely related to the statistical mass of the particle. If λa = 0, that is
V (x) = 0, indicating the particle is massless ,there is neither collision nor vortex
solution. So the statistical mass is an essential prerequisite for a particle to get
charge. Following the steps in the previous section, bring in the gauge field ~A
and investigate the excited states near the lowest point of the potential. From
(8.27), we get

L2+1
a = LĀ + Lφ = −1

4
FijF

ij +
1

4
fijf

ij , (8.83)

with (i, j) taking values in the corresponding subspace. For the sake of simplic-
ity, we have chosen the coupling constants of the gauge fields to be 1. Now the
Lagrangians do not obviously involve λa any more and therefore have nothing
to do with the statistical mass of the particle. Take Hodge ∗ duality, and lift the
2+1-dimensional theory to 3+1-dimensional spacetime. We take the notation
Fαβ = iεijαβfij . For L2+1

1 ,

L2+1
1 = −1

4
FijF

ij +
1

4
fijf

ij (8.84)

Here the indexes i, j come from the subspace (x0, x2, x3), with i, j = 0, 2, 3. The
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independent components of the field strength are F02, F03, F23, f02, f03, f23. and
Fαβ = iε02αβf02 ⇒ F13 = −if02
Fαβ = iε03αβf03 ⇒ F12 = if03

Fαβ = iε23αβf23 ⇒ F01 = −if23
(8.85)

Here we take the usual notations as gµν = diag(1,−1,−1,−1), ε0123 = 1. So
that for L2+1

1 in the 3+1-dimensional spacetime, we have

L3+1
1 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.86)

with

F̃µν =


0 −if̃23 F̃02 F̃03

if̃23 0 if̃03 −if̃02
−F̃02 −if̃03 0 F̃23

−F̃03 if̃02 −F̃23 0

 (8.87)

Following the same way, for L2+1
2 , we get

Fαβ = iεijαβfij ⇒


Fαβ = iε01αβf01 ⇒ F23 = if01

Fαβ = iε03αβf03 ⇒ F12 = if03

Fαβ = iε13αβf13 ⇒ F02 = if13

(8.88)

L3+1
2 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.89)

with

F̃µν =


0 F̃01 if̃13 F̃03

−F̃01 0 if̃03 F̃13

−if̃13 −if̃03 0 if̃01
−F̃03 −F̃13 −if̃01 0

 . (8.90)

For L2+1
3 , we can obtain

Fαβ = iεijαβfij ⇒


Fαβ = iε01αβf01 ⇒ F23 = if01

Fαβ = iε02αβf02 ⇒ F13 = −if02
Fαβ = iε12αβf12 ⇒ F03 = −if12

(8.91)

L3+1
3 = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij (8.92)



8 Electromagnetism: An MIP Approach 75

with

F̃µν =


0 F̃01 F̃02 −if̃12
−F̃01 0 F̃12 −if̃02
−F̃02 −F̃12 0 if̃01
if̃12 if̃02 −if̃01 0

 . (8.93)

According to the above, starting with 3 different 2+1-dimensional Lagrangians
L2+1
a , we end up with the 3+1-dimensional Lagrangians which have the uniform

description as

L3+1
a = −1

4
F̃µν F̃

µν = −1

4
F̃ijF̃

ij +
1

4
F̃αβF̃

αβ

= −1

4
F̃ijF̃

ij − 1

4
f̃ij f̃

ij . (8.94)

In fact they are the same one since they can be converted to each other by
rotating the proper coordinate axis as follows

L3+1
1 ← (ê1 ↔ ê2)→ L3+1

2 ← (ê2 ↔ ê3)→ L3+1
3 , (8.95)

which is equivalent to internal rotations of the gauge fields ~A,~a. For the
electromagnetic field arising from the lepton with fundamental charge in 3+1-
dimensional spacetime, when we trace back to its birth in 2+1-dimensional sub-
space, we will find out we have 3 degrees of freedom described by λa, a = 1, 2, 3,
and just corresponding to the 3 different subspaces. Therefore the type of
charged leptons is no more than 3. Actually the modern science has told us
there are 3 generations of charged leptons in our real world, which is just in
accordance with λ1 6= λ2 6= λ3 6= 0 in our framework and from the aspect of
STP the local isotropy of spacetime is broken. In conclusion, in the frame of
MIP, there are no more than 3 generations of charged leptons, which is firmly
rooted in the fact that we live in a 3+1dimensional spacetime.

8.10 Conclusion of the section

In this section, from the MIP picture, we explained the origin of electromagnetic
interaction in detail. In framework of MIP, the 3+1-dim electromagnetic field
represents itself as a Hopf link exicitation made of 2+1-dim gauge field and its
Hodge dual partner. It is a topological state. From this topological configura-
tion, we obtained the Maxwell equations in two different ways, also from which,
we explained why massless photons have spin 1. In this section, we studied four
properties of electric charges, say, positive and negative, quantization, repelling
and attracting , Coulomb inverse square law ,and equations of motions of pho-
tons, which propagates the Coulomb interaction between charged particles. In
addition, together with the charge amount calculated in section 5, we obtained
all five properties of the electric charge.
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There is one additional expression for the STP vortex configuration.In this sec-
tion, we only considered the non-pertubative potential came from matter par-
ticle. However, a non-pertubative disturbance of space-time energy does not
only have such a single origin in our universe. In early universe, the disturbance
is very large and STP vortices could also be generated as well as its partner
field, the photon field. It implies in early time, the universe was dominated by
radiation, which coincides with observations in cosmology. Another example
for non-pertubative potential is black holes, near the horizon of a black hole,
the space-time energy disturbance is quite large, and it will also generate elec-
tromagnetic radiation. This kind of radiation has a completely different origin
comparing with Hawking radiation. This may offer quite a lot of new perspec-
tives on black hole and cosmology researches.

Last and most importantly, we derived the generation for charged leptons. This
is a completely new result and one can not derive this law in current quan-
tum field theory framework. Within the MIP framework, by invoking the STP
vortices, the generation is a direct inference.

9 Muon physics and MIP

9.1 Theoretical framework

Under the framework of MIP, STPs collide with material particles. In quantum
field theory, this is equivalent to introducing a massless scalar field into the
theory and its interaction with material particles. Therefore, the Standard
Model of particle physics needs to be revised as:

L = LSM + LST + Lint (9.1)

In the above formula, LSM is the Lagrangian of the standard model of particle
physics; LST is the kinetic energy term of the STPs scalar field, which can be
expressed as for:

LST =
1

2
∂µφ∂

µφ (9.2)

Since the strength of the collision between STPs and material particles is pro-
portional to the mass of the particles, the interaction term between STPs and
material particles is expressed as:

Lint = λ
∑

i∈all matter fields
miφψ̄iψ . (9.3)

Where ψi represents the material particles in the Standard Model, that is, lep-
tons and quarks. mi is the mass of the corresponding material particles.

Obviously, for material particles, the mass itself already reflects the information
of the collision and interaction between STPs and material particles. So at the



9 Muon physics and MIP 77

φ

µ−

γ

µ−

Fig. 9.1: Feynman diagram of the contribution of STPs to the anomalous mag-
netic moment of muon

tree level, the interaction (9.3) does not change any physics. But at the order of
loop diagrams, the interaction of the above equation is ignored by the Standard
Model of particle physics.

In this chapter, we will consider the modification of muon physics caused by
the interaction of STPs with muons, which includes two aspects. One is the
correction of muon anomalous magnetic moment. The second is the lifetime of
muon. Muon physics is considered because muons are two hundred times more
massive relative to electrons. This means that at the loop diagrams, STPs are
about 104 times larger than electrons for the correction of muon physics. On
the other hand, electrons do not decay, and the effect of STPs cannot be verified
in experiments.

9.2 muon anomalous magnetic moment

The anomalous magnetic moment of the muon is contributed by a triangular
Feynman diagram. The single loop contribution of the STPs scalar field to the
muon anomalous magnetic moment can be represented by a Feynman diagram
9.1. As early as 1972, Jackiw and Weinberg have calculated the contribution of
this graph [37], and its contribution to the muon anomalous magnetic moment
is:

∆gµ =
3λ2m2

µ

8π2
. (9.4)

Jackiw and Weinberg call this contribution in their paper the "virtual scalar
field" contribution. Since this "virtual scalar field" does not exist in the Stan-
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dard Model, the contribution of this scalar field is not considered in subsequent
experimental verifications. But in MIP, this scalar field exists undoubtedly ,
and it refers to the scalar field of STPs. Therefore we need to consider its
contribution to the anomalous magnetic moment of muon.

As early as 2006, Brookhaven National Laboratory in the United States dis-
covered experimentally that there is a 3.3σ difference between the anomalous
magnetic moment of muon and the prediction of the Standard Model[38], that
is,

aµ(BNL) = 116592080(63)× 10−11(0.54ppm).

Where aµ =
gµ−2

2 is the difference value of muon anomalous magnetic moment.
In 2021, the Fermi National Laboratory in the United States accurately mea-
sured the difference value of the muon anomalous magnetic moment[39], and
the result was:

aµ(FNAL) = 116592040(54)× 10−11(0.46ppm).

Combining two experiments, the average of anomalous magnetic moment is:

aµ(EXP) = 116592061(59)× 10−11(0.35ppm).

From the standard model, the theoretical value of aµ is:

aµ(SM) = 116591810(43)× 10−11(0.37ppm).

The deviation between experiment and theory is:

aµ(EXP)− aµ(SM) = 251± 59× 10−11.

This deviation reaches 4.2σ, so it is a very significant deviation. This means
there is a high probability that the contribution of a certain particle is missing
from the Standard Model. Under the MIP framework, we believe that this
deviation comes entirely from the contribution of STPs. From this deviation,
the coupling constant λ of STPs and material particles can be determined, Its
value is given as follows:

λ2 = (aµ(EXP)− aµ(SM))
16π2

3m2
µ

= 1.18349(±0.27819)× 10−11MeV−2 (9.5)
λ = 3.44019+0.38300

−0.43137 × 10−6Mev−1 (9.6)

Therefore, the introduction of the interaction between STPs and muon can
completely match the theoretical and experimental results of muon anomalous
magnetic moment.
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9.3 Muon decay problem

Furthermore, to demonstrate the self-consistency of the scalar field introduced
into STPs, we also need to consider the corresponding physics of the single
loop interactions between STPs and material particles. In other words, if the
introduction of the STPs scalar field and its coupling strength λ results in a
contradiction between the theory of a certain physical process and the corre-
sponding experimental results, it is proved that the STPs scalar field is not
the source of the deviation of the muon anomalous magnetic moment. There-
fore, we consider the single loop process in the muon decay problem. With the
participation of STPs, the corresponding Feynman diagram is shown in Figure
9.2:

p2

W−
p4

p1
φ

p3

νµ

ν̄e

µ− e−

Fig. 9.2: Feynman diagram of the single loop contribution of STPs to the muon
decay

The contribution of this box Feynman diagram is the scattering amplitudeM�
is:

iM� = −g
2
wλ

2mµme

8

w d4k

(2π)4
D(k, p,m)

N (k, p,m)
(9.7)

D(k, p,m) = ū(p2)γ
µ(1 + γ5)u(p1)ū(p2)(k/− p/2 − p/4 +me)γµ(1− γ5)v(p4)

N (k, p,m) =
[
(k2 −m2

µ + iε)
] [
((k − p2)2 −m2

W + iε)
]

×
[
(k − p2 − p4)2 −m2

e + iε
] [
(k − p1)2 + iε

]
Without introduction of the STP scalar field, the scattering amplitude of the
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muon decay can be labeled as follows:

MST =Mtree +M1−loop +M2−loop + · · ·

After introducing the STP scalar field, the absolute square of the scattering
amplitude can be written as:

|M|2 = (MST +M�)
(
M∗

ST +M∗
�
)

= |MST |2 + 2Re

 ∑
all spins

M∗
treeM�

+ higher order terms (9.8)

Therefore, we only need to calculate Re
[∑

all spinsM∗
treeM�

]
to get the cor-

rection of the scattering amplitude.

W−
µ−

νµ

νe

e−

Fig. 9.3: muon decay tree diagram

Mtree represents the contribution of figure 9.3, and its expression is as follows:

M∗
tree = −

g2w
8m2

W c
2
ū(p1)γ

µ
(
1− γ5

)
u(p2)v̄(p4)

(
1 + γ5

)
γµu(p3) (9.9)

Condensing all Dirac matrices using Casimir’s trick, we finally get:∑
all spins

M∗
treeM� = i

4g4wλ
2mµme

m2
W c

2

w d4k

(2π4)

[(k + p1) · p4] [(k + p1 − 2p4) · p2]
N (k, p,m)

(9.10)
We compute this integral using the Mellin – Barnes (MB) representation [40,
41, 42, 43, 44] developed by V. A. Smirnov et al. For the integral kernel in
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(9.10), we can do the substitution k + p1 → k, and then use the Mellin –
Barnes representation to express it as factor multiple form of the Γ function,
and finally the MB integral is used to do the appropriate contour integration.
Since there are multiple Γ function poles that overlap, the order of the contour
integration needs to be evaluated at multiple singular points. We denote the
result of the integration of k as F(s, t,m), where s = (p1 − p2)2, t = (p1 − p3)2
is the Mandelstam variable. In muon’s stationary reference frame, where p1 =
(mµc

2, 0, 0, 0), the decay rate of muon is

dΓ =
〈|M|2〉
2~mµ

(
d3p2

(2π)32|p2|

)(
d3p3

(2π)32|p3|

)(
d 3p4

(2π)32|p4|

)
× (2π)4δ4(p1 − p2 − p3 − p4) (9.11)

The momentum of the electron, anti-electron neutrino and muon neutrino are
also clearly written down, which are:

p2 = (|p2|c,p2), p3 = (
√
|p3|2c2 +m2

ec
4,p3), p4 = (|p4|c,p4) (9.12)

Substituting the above formula and the momentum of muon p1 into F(s, t,m),
it becomes F(|p2|, |p3|,me,mµ,mW ) Then the change of decay rate caused by
STP is:

∆ΓST = − g4wλ
2me

8π3m2
W c

2~

mµc/2w

0

d|p2|
mµc/2w

mµc/2−|p2|

d|p3|Im (F(|p2|, |p3|,me,mµ,mW ))

(9.13)
Substituting into the numerical calculation shows that:

∆ΓST = 1.2141± (0.2854) (9.14)

The muon decay rate calculated from the Standard Model is:

ΓSM = 455169.311 (9.15)

Therefore, the lifetime of muon under the action of STP is:

τµ = 1/(ΓSM +∆ΓST ) = 21969788(±14)× 10−13s (9.16)

Experimentally, the muon lifetime is

τµ(Exp) = 21969811(±22)× 10−13s (9.17)

It can be seen that after adding the contribution of the STP scalar field, the the-
oretical lifetime of the muon perfectly matches the experimental observations.

9.4 Summary

In this chapter, we consider two modifications for muon physics due to STP.
First, we consider the correction of the STP scalar field to the muon anomalous
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magnetic moment. The interaction strength λ between the STP scalar field and
the matter particle is determined. Second, we calculate the correction of the
STP scalar field for muon decay, which makes the theoretical predictions agree
with the experimental observations perfectly. It can be seen that we only need
to introduce one free parameter, the STP scalar field interaction strength, we
achieved a great triumph in the area of muon physics.

10 STP Vortices as origin of spin

In this chapter, we will discuss the essence of spin from the topological structure
of STP vortex.

While introducing into the gauge field in the 2+1 dimensional normal space,
the singularity at the center of votex was resolved as a S1. On the differential
geometry point of view, this S1 can be seen as the spatial edge of the vortex.
Because of Hodge duality, we can obtain the dual S1 which will be denoted
as S1?. Hence in the 3+1 dimensional space-time, the simplest topological
structure involving S1 and S1? is a Hopf link, which is a direct intersection
of these two circles. As known in knots theory, there are more fundamental
connect way for S1 and S1?. The fundamental stone of topological intersection
is the famous skein relation, which can be explicit as in the Fig.10.1

A single Hopf link actually have two twisted points, each of them is the mirror
image of the other one. Mathematically, the two twisted points Hopf link is not
the most fundamental topological structure. The most fundamental one is the
single twisted point connection, which is shown in Fig.10.2

Within the STP vortex configuration, we could have the following algebra-knot
correspondence: the fundamental representation of the Lorentz group corre-
sponds to the single twisted point connection of two cirles, which are edges of
two dual vortices. The two twisted points connection corresponds to the adjoint
representation of the Lorentz group.Under this framework, the algebraic repre-
sentation of Lorentz group and the topological knot representation has a deep
and explicit corelation.

Even in mathematics, this correspondence is a new conjecture, we do not have
a direct proof at this stage. However, the indirect way to proof the conjecture
is worth to study. For example, connect the affine representation to each other,
that is saying, finding an integrable correlation between Schur polynomial and
Jones polynomial.
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Fig. 10.2: Topological phase transition of STP vortices

α β+ γ+ = 0

Fig. 10.1: Skein relation

10.1 Topological phase transition of STP vortices

There are vortices on the tangent space and the normal space, since from the
point view of isotropic STPs, there are no differences between these two spaces.
Actually, in previous chapter, what we solved on the normal space has its Hodge
dual on the tangent space. Therefore, in 3+1 dimensional space-time, we need
to understand the interaction theory of two vortices living on dual spaces.

The interaction between two vortices can make centers of them fuse or intersect
to each other. As we had known in previous chapter, because of the existence of
gauge field, the singular center of the vortex had been resolved into a S1. If there
are no interactions between S1 and its dual S1?, the dynamics on tangent space
and normal space will completely decoupled. If this is the case, the dynamic
of STPs around the matter particle will be un-isotropic and un-uniform. This
obviously violates the physical fact. In other words, if the dynamics on tangent
space and the one on normal space do not couple to each other, the space-time
will be choked as slides. Hence the naturally way to couple these two dynamics
of STPs leads to a phase transition.

The simplest topological phase transition is as shown in Fig.10.2. Notice that
Edward Witten had used the skein relation developed by John Conway in 1969
to study knot invariant. It is amazing that the topological phase transition
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shown in10.2 is the same as John Conway’s skein relation.

Therefore, we have already known the two vortices on tangent space and nor-
mal space respectively can form a topological twisted point through topological
transition as well as the skein relation. For current double vortex case, because
we could related the two vortices to each other by a single Lorentz rotation.
This means the double vortex sysem has an internal symmetry. A careful study
reveals the group is a double cover of SO(3), respect to the Z2 symmetry of the
double vortices. this is because the center of STP vortex is what the matter par-
ticle sit on, hence in 3+1 dimensional spacetime, the two vortices have the same
center. We splitted these two vortice by hand is a convenient way to explictly
reprensent them. Therefore, the rotation subgroup of Lorentz group is the dou-
ble cover of SO(3) , that is, SU(2). This concludes the internal consistence
between topological twisted point and spin.

10.2 The isotropic vortex

In previous chapter, we introduced into the 2+1 dimensional gauge field for
vanishing the energy singularity at the center of STP vortex. The resolving of
the singularity as an S1 is the same as to introducing a U(1) principal bundle
structure in mathematics. The 2+1 dimensional gauge field is nothing but the
connection on this principal bundle. However, the resolving operation blows up
the singularity on the center of STP vortex does not reconfiguration all proper-
ties the singularity. As the center of STP vortex, the singularity is isotropic, but
the circle S1 is orientable. This means we covered the un-orientability of the
singularity by the resolving operation. Now it is clear that we need to recover
the un-orientability on the circleS1.

In 1976, T. Martin [57] noticed that there is a correspondence in mathematics
as follows. The rotation and translation effects can be separated geometrically.
Hence there are two connections correspond to rotation and translation, respec-
tively. The rotation connection corresponds to the torsion tensor, which has the
similar meaning as curvature to translation effects.

We now consider the 2+1 dimensional STP vortex, it is nothing but a micro-
scopic space-time. In this space-time, the torsion can not be negligible. The
existence of microscopic torsion has no influence to the general relativity, since
the geodesic line is unrelying on the torsion at all.

As saying in MIP, the matter particle obtains the mass property by collision of
STPs and itself. In this picture, without STPs, the matter particle generated
a space-time potential. The potential leads to a curved space-time around the
matter particle. Microscopically, the metric around the matter is curved.

Before introducing the torsion tensor, we need to introduce the everywhere
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othogonal tangent vielbein field ea(x) as following

ea(x) = eia
∂

∂xi
, a = 0, 1, 2 (10.1)

it satisfies the relation as:

gij = ηabeiae
j
b, ηab = gije

j
ae
i
b . (10.2)

It is natural to define the dual cotangent vielbein field, as:

θa(x) = θai dx
i (10.3)

they satisfies the normal condition

< θa, eb >= δab (10.4)

and
gij = ηabθ

a
i θ
b
j , ηab = gijθai θ

b
j (10.5)

now the differential interval

ds2 = gijdx
idxj = ηabθ

a
i θ
b
jdx

idxj = ηabθ
aθb (10.6)

the spin connection can be defined by covariant differential on tangent vielbein
field, as:

ωbiaeb = Diea, ωbia =< Diea, θ
b > (10.7)

where ωbia(x)is the spin connection coefficient, and

ωba(x) = ωbia(x)dx
i (10.8)

is the spin connection 1-form field. The covariant differential now is defined as
following:

D′ = ∂ + ω (10.9)

when acting on a vector field ξa(x),

D′
iξ
a =

∂ξa

∂xi
+ ωaibξ

b (10.10)

Now we can discuss the coupling between spinor field and space-time under local
Lorentz symmetry. If there is a spinor field ψ(x), aka a spin representation of
local Lorentz group, then on dynamical point of view, the momentum term of
this spinor field can be written as:

D′
iψ = ∂iψ +

1

2
ωabi Σabψ (10.11)

here Σab is the spin representation of Lorentz algebra,

[Σab,Σcd] = ηbcΣad + ηadΣbc − ηacΣbd − ηbdΣac (10.12)
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Introducing the spin connection ωabi , the parallel transition of cotangent field
θ(x) defines the torsion of this manifold

τaik = D′
iθ
a
k −D′

kθ
a
i

=
∂θak
∂xi
− ∂θai
∂xk

+ ωaibθ
b
k − ωakbθbi (10.13)

it is the field strength of the cotangent vielbein. When it is not zero, the
manifold is not torsion-free and hence intrinsic twisted.The un-vanishing of the
field strength of cotangent vielbein implies there is a multi-value property when
we joint two 2+1 dimensional theories into a single 3+1 dimesnional theory.
We know there exists a sigularity at the center of STP vortex, meanwhile the
vielbein rounds the singularity, the vielbein will generate a monodromy matrix
at the singularity. To incomplete the contribution of this 2 × 2 monodromy
matrix, we need to consider the following action:

I =
w
d3xTr[εijkθai τ

a
jk] +

w
d3x?Tr[εijkθa?i τ

a?
jk ] (10.14)

here the Tr means summation on vielbein indices. The ? indices means those
torsion related variables are defined on dual 2+1 dimensional space-time. As
we saw, (10.14) actually is a simple split joint of two 2+1 dimensional Chern-
Simons theory defined on different boundary of the 3+1 dimensional space-time.
Therefore, we need to introduce the joint constraint, which is obvious the Hodge
duality. It is easy to proof that within the following constraint, the first term
and the second term in (10.14) Hodge dual to each other. The constraint is :

εijkθai = εijklτa?il , εijklτajk = εijlθa?j (10.15)

Now the two 2+1dimensional Chern-Simons theory is fused into a 3+1 dimen-
sional instanton interaction:

I = 2
w
d4xεijklTr

(
τa?il τ

a
jk

)
(10.16)

We see, under the fused situation, the contribution of cotangent vielbein is
completely equivalent to a topological instanton contribution of a gauge field.
The instanton contribution is nothing but a constant, so now the task is to
calculate this constant factor.

Written (10.16) as the differential form, it can be recognized as a characteric
number in 3+1dimensional space-time. Notice when accomplish with the cotan-
gent vielbein, on the 2+1 dimensional space-time, the boundary of the vortex
could be seen as an S2. We now joint two S2 into a boundary of 3+1 dimensional
space-time. If the concatenation is trivial, then the 3+1 dimensional spacetime
has a boundary with topology S2×I. However, the 3+1 dimensional space-time
is R3,1, when there exists no particles, the boundary is a null set. The boundary
can be seen as an S3 within the matter particle. So it means when we transform
the two 2+1 dimensional vortices, the concatenation of their boundaries (S2) is
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non-trivial. The final result of this concatenation is to generate an S3. In fact,
this is the way how the two 2+1 dimensional vortices become a microscopic
stable configuration around the matter particle in 3+1 dimensional space-time.

Now consider the cobordism characteristic number of (10.16), it discribes the
phase angle changing from S2 × I to S3. The phase angle difference describes
the charactersitic number, we obtain:

I = 2× vol(S3)

vol(S2)
×N = 2× 2π2

4π
×N = πN (10.17)

Here N is the topological number according to torsion τ , aka the winding num-
ber. It describes the multiplicity of the mapping from S2× I to S3 . In physics,
it is the theta contribution.

When considering the wave function of matter particle, we do not see the contri-
bution of the characteristic number. Therefore the topological phase transition
just contributes the signature of the wave function, as:

Ψ[N ] = ψ(x, t) exp(iI) = (−)Nψ(x, t) (10.18)

when the particle rotate around some fixed axe one whole circle, the corre-
sponding 2+1 dimensional STP vortex also rotated one times around the S3 ,
the result is the topological winding number changes by 1, now

Ψ[N ] → Ψ[N+1] or Ψ[N−1] (10.19)

as
Ψ→ −Ψ (10.20)

so we have proved the spin of matter particle should be 1/2, as known as the
Fermionic property.

From which we observed above, we obtain an important conclusion. The spin
statistical property of matter particle is originate from the un-orintable of singu-
larity sitting on the center of STP vortex around matter particle. This singular-
ity is double covered, there are two 2+1 dimensional vortices around it. The two
vortices reconstruct the singularity by manifold cobordism and thus incomplete
the isotropic property of the singularity. The spin property of matter particle
corresponds to the topological phase transition at the cobordism. In general,
in the frame of MIP, the spin of matter particle describes the topological order
that corresponding to topological phase transition of STP vortices around the
matter particle.

10.3 Pauli exclusion principle

We now use s to label the topological order according to the topological phase
transition of STP vortices. For union definition convenience, we let the topo-
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logical order as a quantum evolution operator, that is:

e
i
~ ŝθ|Ψ〉 = eiθ/2|Ψ〉 (10.21)

From this definition we could take this topological order as an operartor that
has eigenvalue ~

2 , for example, 〈ŝ〉 = ~
2 . The parameter of rotation one circle

is θ = 2π, subsitute this parameter into previous equation, one obtains the
Fermionic statistical property immediately.

Now let us consider a permutation of two coincident particles. Suppose particle
1 is on the state |Ψx1(p)〉 and particle 2 is on the state |Ψx2(p)〉. Then the direct
product system of these two particle is on the state |Ψx1

(p)〉 ⊗ |Ψx2
(p)〉. We

could rotate the |Ψx1
(p)〉 as well as the|Ψx2

(p)〉 half a cirlce around the center
between x1, x2 . Because the vortices around these two particles also rotated
two half a circles, hence

Tx1,x2
eiπŝ|Ψx1

(p)〉 ⊗ |Ψx2
(p)〉 = ei

π
2 |Ψx2

(p)〉 ⊗ eiπ2 |Ψx1
(p)〉

= −|Ψx2
(p)〉 ⊗ |Ψx1

(p)〉 (10.22)

here Tx1,x2
exchanges x1, x2. Therefore if there are two coincident matter par-

ticles, on the same state, and sit on a same position, then it is easy to see a
direct result from (10.22):

|Ψx(p)〉 ⊗ |Ψx(p)〉 = −|Ψx(p)〉 ⊗ |Ψx(p)〉 (10.23)

when and only when |Ψx(p)〉 ⊗ |Ψx(p)〉 = 0 the previous result can be the case.
however, |Ψx(p)〉 ⊗ |Ψx(p)〉 = 0 means the state actually does not exist! So the
Pauli exclusive principle is a natural result in the frame of MIP.

11 MIP and Special Relativity

Under the framework of MIP, STP itself has no self-interaction. The speed of
STP is constant at vst. The effect of STP on particles is a stochastic dynamics
problem, which makes the particle’s time derivative d~x/dt not well defined.
Under this framework, the classical speed of particles only has clear meaning
under statistical average. Because any experimental results can’t isolate the
effect of STP which are generated at the time that cannot be accurately known,
it can’t be determined from the beginning that the initial velocity of the particles
is the classic speed in textbooks. This is actually just an ideal concept, and
there is actually no such so-called classic speed. In the framework of MIP, the
so-called "classic speed" only has a statistical meaning, which actually represents
the statistical average speed of particles in spacetime. In the following, when
we say classical speed, the actual meaning refers to the statistical average speed
of the particles.
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11.1 Equivalence between Inertial Reference Systems

Under the MIP framework, the real moving speed of a material particle is

~V = ~v + ~u+ ~ν (11.1)

The quantum envelope velocity of free material particles can be obtained by
combining the wave function corresponding to the particle of matter, ψ =
ei(~p·~x−Et)/~

~u = 2<∇R = 0 (11.2)

Classic statistical speed of matter particles

~v = 2<∇I =
~p

m
(11.3)

From the three-speed decomposition process, we know that the classic statistical
speed ~v and the fluctuation speed ~ν are independent, so the fluctuation speed
of ~ν is completely caused by STP collision as

~ν = f({~vst}) (11.4)

Where {~vst} is the speed of all STP and satisfies f(0) = 0. Regardless of the
classical speed of free material particles , the principle of MIP holds true in all
inertial systems. Therefore equivalence between the inertial reference systems
is no longer a postulate, but a basic law. In the following, we will study the
transformation law between inertial systems and prove that if and only if the
speed of light and the speed of STP are equal, the Lorentz transformation of
special relativity can be derived naturally.

We also notice that the interaction of STP on particles causes the particles
to perform random fluctuations. The speed of fluctuational movement is very
different from that of the classic speed. It is essentially a relative speed that is
constant under time reversal. In the Appendix B, we prove that this random
Markov fluctuation is not related to the classical motion, so it is also invariant
under the transformation of the inertial reference system. From this perspective,
the equivalence between inertial reference systems is a natural inference under
the MIP framework.

11.2 STP Collision and Particle Mass

In a random process in which particles are collided by STP, the instantaneous
velocity of the particle is equal to its classical statistical speed ~v, the fluctuation
velocity is ~ν, and the quantum envelope velocity is ~u overlay, ie the eq.(11.1) .
We know that under time reversal T (T : (t, ~x)→ (−t, ~x)), there is

T : ~v ⇒ −~v, T : ~u⇒ ~u, T : ~ν ⇒ ~ν (11.5)
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This is because for a continuous time Markov process under time reversal, it is
still a Markov process. The quantum envelope velocity ~u and the fluctuation
velocity caused by the STP collision ~ν are actually the consequences of the
STP collision on the particles. Both the quantum envelope velocity and the
fluctuation velocity are independent of the classical statistical velocity under
the time inversion transform. Therefore, we can always consider the scenario
where the particles with zero classic velocity are collided by STP. At this point,
the relative speed of STP to particles is vst and will always be vst.

Because of STP, absolutely free particles do not exist. We refer to particles
whose classical statistical speed is constant as "free particles." For free particles,
the quantum envelope velocity is ~u = 0, and ~ν is a random variable. As can be
seen from the probability distribution of ~ν, ~ν has nothing to do with the classic
statistical speed ~v. The true speed of such free particles is ~V which consists of
two parts that are independent of each other, namely

~V = ~v + ~ν (11.6)

When the particle’s classic speed ~v changes, ~ν does not change. It shows that
the STP background does not change with the change of the classical speed of
the particles themselves. This is actually the equivalence of the inertial reference
system.

On the other hand, we already know that the statistical mass of a particle
actually induced by impact of STP. The more particles are hit by STP per unit
time, the greater the statistical mass of the particles.

First let’s consider the static mass of the particles. Particles in spacetime are
always subject to random collisions of STP. We know that the mass of a particle
reflects the statistical properties of the motion which manifests in STP impacts.
This does not mean that there is no statistical mass in the reference frame where
the particle’s classical velocity is zero. Because in the stationary reference frame,
the motion of the particle is still a random quantum Brownian motion, except
that its statistical position is at the origin. Therefore, when considering the
motion of particles, we should first separate the mass in the stationary reference
frame and then consider the change in the number of relative collisions due to
motion. If the stationary particles are subjected to N0 in the z direction in the
z direction unit time, and the moving particles are subjected to N collisions in
z direction per unit time. . At this point, the number of impacts on the particle
in the same time period on the x− y plane still appears to be N0, so the mass
is not a scalar property. But in fact, if we want to guarantee the principle of
relativity is right, then the number of collisions in any direction will increase
relatively. Here comes the mass observed by the laboratory observer:

m = m0N/N0 (11.7)

Where N is the number of times which the particle is hit by STP per unit time
observed by the laboratory observer, and m0 is the static mass of the particle.
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H
L

Fig. 11.1: Collision between STP with matter particle.

11.3 Time Dilation Effect

From the relative speed constant assumption, the distribution of STP under
the reference system transformation will not change. If the distribution of the
STP is uniform and isotropic in the rest frame , then because the speed of STP
relative to the particle does not change, in the frame of relative velocity ~v . The
distribution of STP is still uniform and isotropicl. It should be noted, however,
that the time costs for the same collision process in different reference frames
are different. This can be explained by the following explanation.

In the rest frame, the STP is at a constant speed vst , moving toward the particle
from the distance H . After time t , it will collide with the particle, so the time

t = H/vst. (11.8)

However, in the moving frame with constant velocity v, after time t′. The
distance between the time and space will be L. And the distance from the
particle is

√
L2 −H2 , Then t′ = L/vst , the following formula pops

L

vst
=

√
L2 −H2

v
(11.9)

hence

t′ =
√
t′2 − t2 vst

v
⇒ T = t′

√
1− v2

v2st
(11.10)

As long as the speed of STP vst equal to the speed of light c , the above equation
returns to the relativity of simultaneousity in special relativity. Because of zero
static mass of photon , the STP and photons have no interaction. On the other
hand, due to the isotropy of STP, there can always exist STP moving parallel
to the photon, so there are no relative movement between such STP and the
photon. Hence the speed of light should be essentially equal to the speed of
STP, that is c = vst, which is a rigorous conclusion. and is the physical origin
of the axiom of invariance of speed of light in special relativity.
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Fig. 11.2: Flux of STP cross a disk.

11.4 Relativistic Mass Effect

Now we consider the expression of the particle mass under the frame trans-
formation. Due to the homogeneity and isotropy of STP distribution, we can
assume the density of the STP is ρ0, and in moving frame with constant velocity
v, the particle moves along the horizontal direction .

Then in the rest frame, the number of STP passing through the disc on the
vertical direction is

N0 = ρ0πr
2vst∆t (11.11)

The mass of the particle is

mst = kstρ0πr
2vst∆t (11.12)

where kst is the propotional coefficient. In the moving frame with constant
velocity v, the number of STP passing through the same disc is

N = ρ0πr
2vst∆t

′ (11.13)

Notice that in moving frame, the time interval ∆t′ is coincident with that in
rest frame. The time dilation is universal along all directions, not only along the
moving direction. Therefore, numbers of collisions on three spatial directions
are uniformal N .

Since
∆t′ = ∆t/

√
1− v2/v2st (11.14)

we have
m′
st = kstN = kstρ0πr

2vst∆t
′ = mst/

√
1− v2/v2st (11.15)

When vst = c, it is the same expression of relativistic mass as in special relativity.



11 MIP and Special Relativity 93

11.5 Length Contraction Effect

Next, we consider the relativity of spatial distance, which is the length contrac-
tion effect in the special theory of relativity. In the framework MIP, we have
two independent methods to derive this effect.

The first derivation is a natural inference of time dilation and mass enhancment
effects, which we have derived in the above two sections. In each direction, STP
and the particle’s unit cross-section have the same collision number N . The
time dilation is independent of the spatial direction (that is, the orthogonality
is guaranteed). Based on these two points, in the parallel direction and the
vertical direction of the particle motion, each of the collisions of a rectangular
cross section is considered. In the case where the particles are stationary, two
rectangular sections are both a long , the width is also b.

For a rectangular section in the parallel direction of particle motion (which is
perpendicular to the direction of particle motion), the increase in the number
of collisions N is due to the dilation of time, see the equation (11.15) . In
the view of a stationary observer, if the area of the rectangle is constant, then
the rectangular section in the vertical direction of the particle motion (which is
parallel to the direction of particle motion) will have more STP passes. Similar
to calculation of time dilation, we can get it at ∆t′ The number of STP passing
the same area are:

Ñ = ρ0abvst∆t
′/
√

1− v2/v2st = N/
√
1− v2/v2st. (11.16)

Then this result will show that the mass is not isotropic, which clearly vio-
lates the definition of statistical mass. The only way to resolve this contradic-
tion is to make the length in the particle’s direction of motion contract, and
its contraction ratio is exactly equal to

√
1− v2/v2st. This makes a → a′ =

a
√
1− v2/v2st, Ñ = N . Therefore, from the inherent self-consistency of the

theory, the moving ruler under the framework of MIP must be contracted.

The second derivation is discussed below.

We consider the relativity of the spatial distance, that is, the measure effect in
special relativity. We first consider the rest reference system, the length of the
ruler is

l0 = xB − xA (11.17)

When the ruler is moving along x- direction in speed of v , as shown in the
following figure.

The spacetime coordinates at both ends of the ruler are

(x′A, t
′
A), (x′B , t

′
B),

as a rigid body, it requires t′A = t′B . In this coordinate system, the special
relativistic transformation is



11 MIP and Special Relativity 94

x

y

z

A B

Fig. 11.3: Ruler in rest reference frame.
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Fig. 11.4: Ruler in moving reference frame
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XA =
x′A + vt′A√
1− v2

v2st

, xB =
x′B + vt′B√

1− v2

v2st

(11.18)

Hence
xB − xA =

x′B − x′A√
1− v2

v2st

(11.19)

and

l = x′B − x′A = l0

√
1− v2

v2st
(11.20)

In the framework of MIP, we consider the differential distance dx′ The MIP
requires δ(px) = nh = δ(p′x′), n ∈ Z . In all inertial frames, each time the STP
acting on matter particle , the changing of action is nh. The basic principle will
remain the same regardless of inertial reference frames.

In the motion reference frame, we know that the mass m′ = m0/
√

1− v2/v2st,
thus inducing δp′ = m′δv. In the rest reference frame δp = mδv0 , we can easily
seethat to ensure the MIP is independent of reference frame transformation,
there must exists the relation

dx′ = dx
√

1− v2/v2st (11.21)

The length now is the integral of the above formula, and we have

l =

ˆ B

A

dx′ = l0

√
1− v2/v2st (11.22)

Thus we have derived the same result as in special relativity. However, its
intrinsic meaning is not the same as in special relativity. Since we study within
frameword of MIP, in which the STP’ relative movement to the particle does
not change under refrence frame transformation. Distinct frome macro length
contraction effect of special relativity, the differntial distance is also constracted
under MIP, which precisely reflects the universal applicability of the MIP.

11.6 An Alternative Method of Deriving Special Relativity

From the nature of time and space to study the transformation between inertial
systems, we don’t have to discuss the nature of light from beginning to end. We
only need: the speed of STP is the maximum possible speed, and we can obtain
special relativity. In Model 1 of Chapter 3 of this paper, we discuss examples
of discrete space-time, where the maximum STP speed is not an assumption.

Consider two inertial systems K,K ′. When t = 0 is set, the two origins
of inertial systems coincide. K ′ relative K with speed ν . Simplifying the
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derivation of symbols, using 1 + 1 dimension space-time. Most commonly, the
time and space of K and K ′ are transformed as follow:

x′ = X(x, t, v) , t′ = T (x, t, v), (11.23)
where X and T are two universal functions. We will determine the form of
X,T by the nature of space and time in the following.

Consider that the space is uniform. That is, a ruler is in K and the endpoints
are in x1 and x2. It must be the same length as the endpoints in x1 + ∆x
and x2 +∆xẆith spatial invariance, also in the K ′ system:

X(x2 +∆x)−X(x2) = X(x1 +∆x)−X(x1). (11.24)
Get ∆x→ 0, you can get:

∂X(x, t, v)

∂x
|x1=

∂X(x, t, v)

∂x
|x2 . (11.25)

With the arbitrariness of x1 and x2 , we know that the equation must be
constant at both ends, i.e. X is a linear function of x . By the same token, a
linear function of T is t can be obtained from the homogenous of time.

With t = 0 = t′, the origin coincides with x = 0 = x′ , we can get(
x′

t′

)
=

(
av bv
Cv dv

)(
x
t

)
(11.26)

where av, bv, cv, dv are functions of ν and the diagonal elements are dimen-
sionless. When x = vt x′ = 0 gets bv = −vav.

Let’s consider the spatial homogenous. In the 1+1 dimension spacetime, it
can be understood as the inversion of the x axis. x→ −x, v → −v, x′ → −x′,
the spatio-temporal transformation is unchanged, that is, union:(

x′

t′

)
=

(
av bv
Cv dv

)(
x
t

)
(11.27)

as well as

(
−x′
t′

)
=

(
a−v b−v
C−v d−v

)(
−x
t

)
(11.28)

Can get:
a−v = av, b−v = −bv, c−v = −cv, d−v = dv. (11.29)

By definition, the transformation of K to K ′ must be equivalent to the trans-
formation of K ′ to K with a relative speed of −ν, ie:(

x
t

)
=

(
a−v b−v
C−v d−v

)(
x′

t′

)
(11.30)
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Lianli available:
dv = av, cv =

a2v − 1

bv
. (11.31)

which is, (
x′

t′

)
=

(
av −va−v
−a

2
v−1
vav

av

)(
x
t

)
(11.32)

Very importantly, we generally determined that the diagonal elements of the
spacetime transformation must be equal.
With the definition of the inertial system, there is a K ′′ inertial system relative
to K ′ to w movement, then K ′′ relative K Must be an inertia transformation.
This can be formulated as:(

x′′

t′′

)
= awav

 1 + w
a2v−1
νa2v

−(w + v)

−a
2
w−1
wa2w

− a2v−1
va2v

1 + v
a2w−1
wa2w

(x
t

)
(11.33)

Combining the above two equations, we get an important relationship:

1 + w
a2v − 1

va2v
= 1 + v

a2w − 1

wa2w
(11.34)

v2a2v
a2v − 1

=
w2a2w
a2w − 1

= G. (11.35)

Because w, v is any speed, this formula must be equal to both constants and
set to G. The following proves that this formula must be no less than zero:

Available
av =

1√
1− v2

G

, (11.36)

Since v = 0, av = 1 is equivalent to no transformation, so we can remove the
negative root. It can be seen that for any speed v, there must be av > 0.
Using (11.33), after two inertial transformations, it is still an inertial system
transformation. So have

1 + w
a2v − 1

νa2v
> 0 (11.37)

If av < 1, when w � v, the above formula cannot be maintained. So we prove
that av ≥ 1 is equivalent to G ≥ 0. From this we can set

v2a2v
a2v − 1

=
w2a2w
a2w − 1

= θ2. (11.38)

In summary, the final transformation can be obtained:(
x′

t′

)
=

1√
1− v2

θ2

(
1 −v
−v
θ2 1

)(
x
t

)
(11.39)
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From this formula, you can see that v < θ. (space-time coordinates cannot be
imaginary). The joint transformation satisfies:

ω =
w + v

1 + wv
θ2
. (11.40)

Because w < θ, v < θ, no matter how we combine, we must have ω < θ. In
summary, θ must be the maximum possible speed allowed for time and space.
Combined with our discrete space-time model, there is a minimum length in
time and space l and a minimum time τ , and STP speed is defined as the ratio
of the minimum length and time.

Let’s prove θ = l
τ ≡ vst. as follows: If there was a speed V > θ, it would move

τ time interval, The distance must be greater than l, which is no problem and
will not cause any contradiction. But it travels through the shortest distance
l . It only takes l

V < τ time, which contradicts the definition of the shortest
time.

Therefore we prove that the STP speed θ = vst is the maximum possible speed
in space and time. Time and space of this nature must have the properties
derived above. When the STP speed is exactly equal to the propagation speed
of light in a vacuum, our results are equivalent to the special relativity.

11.7 Lorentz invariant form of MIP

MIP is a principle of the change of action, so the definition of action is required.
The basic definition of action is:

S =
w
Ldt (11.41)

This formal definition does not give any specific content of the action, but it
is very useful. Because it transfers the task of constructing the action S of a
system to the Lagrangian L of this system. Because MIP is a general principle,
the action must be invariant in all inertial systems. Therefore, S must be a
Lorentz invariant .

Obviously, dt is not Lorentz invariant, because of time dilation effect of special
relativity. Then, the Lagrangian L of the system cannot be a Lorentz invariant
. Because a Lorentz invariant is multiplied by a non-Lorentz invariant and then
summed (integral), the result cannot be a Lorentz invariant . To construct
Lorentz invariant action, it is necessary to use physical quantities of material
particle that have the Lorentz invariant properties.

In order to facilitate the construction of the Lorentz invariant action, we first
use the clock fixed on the material particle, because proper time dτ is Lorentz
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invariant, which satisfies

dτ =

√
1− v2

c2
dt (11.42)

Substituting to get

S =

t2w

t1

Ldt =

τ2w

τ1

L√
1− v2

c2

dτ (11.43)

Because proper time dτ is a Lorentz invariant , our task becomes to construct
an L such that L√

1− v2

c2

is Lorentz invariant. In addition to the proper time of

material particles, what other physical quantities are Lorentz invariant that can
be used to construct L? For electrons, we can list all the physical quantities of
Lorentz invariant:

m0, c, ~, e (11.44)

The quantities constructed from these original Lorentz invariant physical quan-
tities will not be listed, such as the fine structure constant α = e2

~c . Note that
the velocity v of the particle of matter is not Lorentz invariant , to ensure that

L√
1− v2

c2

invariant, the most general Lagrangian L can only take the form

L = G(m0, c, ~, e)
√

1− v2

c2
(11.45)

where G is a unknown function. To make the Lagrangian of free material par-
ticles transition to the correct classic form when the speed of light approaches
infinity, that is, the dependence on speed is 1

2m0v
2. Therefore the function G

can be completely determined as

G(m0, c, ~, e) = −m0c
2 (11.46)

because

lim
c→∞

−m0c
2

√
1− v2

c2
=

1

2
m0v

2 −m0c
2 (11.47)

According to the definition of Lagrangian , the Lagrangian with a different
constant corresponds to exactly the same physics. We get the final result

S =

t2w

t1

Ldt = −m0c
2

t2w

t1

√
1− v2

c2
dt (11.48)

If between t1 and t2, no STP collides with the material particles, so the material
particles maintain a uniform linear motion. Then the effect of this interval is
S0

S0 = −m0c
2

t2w

t1

√
1− v2

c2
dt = −m0c

2

√
1− v2

c2
(t2 − t1) (11.49)
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When STP colliding matter particles with initial time at t1 and the end time at
t2, and action in this interval is S. This establishes the MIP of Lorentz invariant
form :

S − S0 = nh (11.50)

Where n is an integer and h is Planck’s constant.

12 MIP and General Relativity

Gravitation refers to the attraction of objects with mass, and together with elec-
tromagnetic force, weak interaction force and strong interaction force constitute
the four fundamental interactions of nature. Among these four fundamental in-
teractions, gravity is the weakest, but it is also a universal long-range attraction.
Whenever there is an attraction between any two particles, the magnitude of the
force is inversely proportional to the square of the distance, and proportional to
the product of mass, we can conclude that this force must be gravitational. In
the framework of the mass principle, we naturally derive the gravitation from
the interaction between the massive fermion and STP.

12.1 Electron and STP

The electrons are described by the spinor field ψ, and the dynamics of free
electrons are determined by the amount of Dirac Lagrangian:

LD(ψ) = ψ̄(i∂/−m)ψ (12.1)

Where m is the electronic mass.
STP is described by the massless scalar field φ, and the dynamics of free STP
is determined by Klein Gordon Lagrangian:

Lsp(φ) =
1

2
∂µφ∂µφ (12.2)

The interaction between STP and electrons is determined by the Lagrangian:

Lint(φ, ψ) = −λψ̄φψ (12.3)

According to MIP, the interaction strength of STP and electrons λ must be
positively correlated with the mass m of the electron and

lim
m→0

λ(m) = 0 (12.4)

What needs to be studied here is the lowest order behavior of the interaction
strength λ when the electron mass tends to zero. When we replace all the
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electronic masses in the system with −m, the interaction strength λ , all physical
laws must remain the same. Therefore, the lowest order behavior is

λ(m) = A
√
m2 (12.5)

At m = 0 is the branch point of the function, which corresponds to the sin-
gularity implied by MIP, that is the disappearance of interaction with STP.
Comparing the description of photon frequencies and wavevectors by relativis-
tic quantum mechanics ω = ck, its correct interpretation should be:

ω = c
√
k2 (12.6)

This leads to the important conclusion that λ2 (instead of λ) is an analytic
function for m2. The correct expansion must be of the form:

λ2 = C0 + C2m
2 + C4m

4 + ... (12.7)

According to the MIP, there must be C0 = 0. The electron mass is very small
compared to the natural Planck mass. we can almost ignore the contribution of
all high-order terms, leaving only the lowest-order behavior:

λ2 = C2m
2 (12.8)

In summary, the dynamics of the entire system are composed of STP and elec-
trons, which are determined by the following action:

S[φ, ψ] =

ˆ
d4x [Lsp(φ) + LD(ψ) + Lint(φ, ψ)] (12.9)

Substituting a concrete expression, the total amount of action of the system is:

S[φ, ψ] =

ˆ
d4x

[
1

2
∂µφ∂µφ+ ψ̄(i∂/−m)ψ − λψ̄φψ

]
(12.10)

According to path integration, the total partition function of this system is:

Z =

ˆ
DφDψeiS[φ,ψ] =

ˆ
DψeiSeff [ψ] (12.11)

Let J = −λψ̄ψ, the result for the STP field φ is

Z =

ˆ
Dφ exp(1

2
∂µφ∂µφ+ Jφ) = eiW (J) (12.12)

When the fermion is at static limit, J(~xi) = λδ(~x− ~xi), we have

W (J) = −1

2

ˆ
d4k

(2π)4
J∗(k)J(k)

k2
=

ˆ
dx0
ˆ

d3~k

(2π)3
λ2ei

~k·~r

~k2
(12.13)
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Using Z = eiW (J) = e−iVeffT and T =
´
dx0 , we can get the effective interac-

tion between electrons as:

Veff (r) = −
ˆ

d3~k

(2π)3
λ2ei V eck·~r

~k2
= − λ2

4πr
= −C2m

2

4πr
(12.14)

The effective interaction forces between the corresponding electrons are:

Feff (r) = −
λ2

4πr2
= −C2m

2

4πr2
(12.15)

Where r = |~r| is the distance between the electrons, and the preceding negative
sign indicates this is an attractive interaction. This universal attraction force
is inversely proportional to the square of the distance and proportional to the
product of mass. We can conclude that it can only be gravitational. So we can
compare the gravitational formula and determine the scale factor C2 = 4πG,
that is:

Feff (r) = −
Gm2

r2
(12.16)

Where G is the gravitational constant, and the interaction force between the
electrons induced by STP is universal gravitation.

12.2 Universal Gravity among Macroscopic Bodies

Let us consider a system with three components: free protons, free neutrons,
STP. The nucleon is described by the spinor field ψi (subscript i=1 is denoted
as proton, i=2 is denoted as neutron, repeating indicator is summed), and the
dynamics of free nucleus is

LN(ψi) = ψ̄i(i∂/−mi)ψi (12.17)

Where m1 is the proton mass and m2 is the neutron mass.

The description of the free STP section is as described in the previous section.
The interaction between STP and nucleon is determined by the Lagrangian
quantity Lint:

Lint(φ, ψ) = −λijψ̄iφψj (12.18)

The repeated index are automatically summed, and there are four terms in this
formula. According to MIP, the interaction strength of STP and electrons λij
must be positively related to the mass of the nucleus mimj , and must have:

lim
m1→0

λ11 = λ12 = λ21 = 0 (12.19)

lim
m2→0

λ22 = λ12 = λ21 = 0 (12.20)
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With the same reasoning of the previous section, according to the analytical
nature of the function and the limitations of the MIP, the lowest order behavior
must be:

λ2ij = C2mimj (12.21)

In summary, the dynamics of the entire system are composed of STP and nu-
cleon, which are determined by the following action:

S[φ, ψ] =

ˆ
d4x [Lsp(φ) + LN(ψ) + Lint(φ, ψ)] (12.22)

Substituting a concrete expression, the total amount of action of the system is:

S[φ, ψ] =

ˆ
d4x[

1

2
∂µφ∂µφ+ ψ̄i(i∂/−mi)ψi − λijψ̄iφψj ] (12.23)

According to path integration, the total partition function of this system is:

Z =

ˆ
DφDψ1Dψ2e

iS[φ,ψ1,ψ2] =

ˆ
Dψ1Dψ2e

iSeff [ψ1,ψ2] (12.24)

The result of accumulating the STP field φ can further obtain the effective
interaction potential between the nucleons:

Vij(r) = −
λ2ij
4πr

= −C2mimj

4πr
(12.25)

Same as the previous section, let the lowest order proportional coefficient C2 =
4πG, where G is the gravitational constant. This leads to the important con-
clusion that the interaction between the nucleus induced by STP is universal
gravitation:

Fij(r) = −
Gmimj

r2
(12.26)

We obtained the correct expression of the gravitational potential between pro-
tons and protons, protons and neutrons, neutrons and neutrons. Considering
that the gravitational potential is a scalar potential, a direct summation super-
position can be performed, thereby obtaining the gravitational force between
the macroscopic objects, and mathematically proves that the sum of the gravi-
tational forces between the constituent elements of the two macroscopic objects
is equivalent to mass center. This is the classic proof of Newton and will not be
repeated here.

12.3 MIP and Equivalence Principle

The principle of equivalence plays a very important role in the general relativity.
The principle of equivalence means that the observer cannot distinguish the
inertial force generated by the acceleration and the gravitational force generated
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by the mass , which is derived from the fact that the gravitational mass and
the inertial mass are strictly equal. In the theoretical framework of general
relativity, the gravitational mass and the inertial mass are strictly equal, which
is a postulation of the theory. Aparting from the support of empirical facts,
there is no theoretical further explanation.

Within the framework of MIP, we have the microscopic origins of gravitation in
the above two sections, which implies important physical results: in the universal
gravitational formula induced by STP and fermion interaction, the mass of
fermion from Dirac equation is inertial mass. From the overall perspective of
modern physics, we can determine that this force must be gravitational, and
it can be inferred that the inertial mass of the fermion must be equal to its
gravitational mass. Of course, this conclusion cannot completely replace the
principle of equivalence, and does not solve the problem of whether the mass of
the boson in the natural world is equal to the mass of gravity. However, it is
still an extremely important conclusion, because the principle of equivalence and
general relativity are mainly applied to macroscopic objects in nature (such as
various celestial bodies), and their mass components are completely derived from
fermions. It can be said that when general relativity is applied in macroscopic
fields such as cosmology and astrophysics, the equivalence principle is no longer a
hypothesis, but a property that can be derived from microscopic STP dynamics.

Starting from the equivalent principle we derived, combined with Einstein’s el-
evator thought experiment, we can demonstrate the inevitable bending of time
and space with gravitational source. Describing the curve time and space ,
mathematically we have to use the metric field of Riemannian geometry. The
core of general relativity is the physical equation that is satisfied in this Rie-
mannian background. To get the Einstein field equation furthermore, we must
add some constraints.

The important ones are as follows: 1.The Newton gravitational potential is the
classical limit. The static gravitational field is determined by the mass density
distribution of matter, which is a component of the momentum energy tensor.
Extending to the general gravitational field and determining the momentum
energy tensor of the gravitational field must correspond to this limit.

2. Referring to the Newtonian gravitational potential equation, we also require
that the differential equations satisfied cannot have more than two orders of
derivatives. This is combined with a theorem of Riemannian geometry 5 and
the classical limit of Newton’s gravitation, the form of the gravitational field
equation can be determined. The coefficient of the cosmological constant term
has not been completely determined. This item has no effects on this paper and
will not be discussed here.

Furthermore, according to MIP, inertial mass and gravitational mass are no
5 Weinberg, "Gravitation and Cosmology", the uniqueness of curvature tensor is a very

important mathematical theorem in Riemannian geometry.
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longer fundamental physical quantities. The two remain equal because both
come from the statistical mass of STP collisions.

13 Entropy in MIP

Phase space is a delicate concept. Within the framework of MIP, the coordinates
and momentum of particles can be completely independent, so the phase space
has real physical meaning. Discussing the issue of entropy for non-interacting
particle in the phase space will be more clear and insightful.

13.1 Entropy in phase space

Let us first consider a matter particle of mass m in a harmonic oscillator po-
tential. The energy of a particle is the sum of its kinetic energy and potential
energy

E =
p2

2m
+

1

2
kx2 (13.1)

Where k is the stiffness coefficient of the spring. According to Newton’s second
law

mẍ = F = −dV
dx

= −kx (13.2)

and
k = mω2 (13.3)

Where ω is the frequency of particle vibration.

The state of a particle is characterized by (x, p). In the (x, p) space, each point
represents a state of the particle. This space is named phase space, and the
motion of the particles constitutes the trajectory in the phase space.

For each fixed energy E, the particle’s trajectory in phase space is an ellipse.
According to the definition of ellipse, we can write

p2

2mE
+

x2

2E
mω2

= 1 (13.4)

We can determine the two axis lengths of the ellipse

a =
√
2mE (13.5)

b =

√
2E

mω2
(13.6)
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According to MIP, a particle moves along an ellipse in phase space for a period,
and it must exchange with the STP an integer multiple of the Planck constant

˛
pdx = nh (13.7)

It can be seen from the geometric meaning of the integral that the integer value
corresponds exactly to the area of the ellipse

˛
pdx = πab =

2πE

ω
(13.8)

From this we get important results

E = n~ω (13.9)

This proves that every possible state occupies the same area in the phase space.
This is the most important difference between quantum mechanics and classical
mechanics: The energy levels are discrete, which means not all energy levels are
allowed for real motions. In the phase space, only discrete ellipses are possible
movements, corresponding to possible states.

With this important result, we can start to count the number of possible states
to determine the entropy. Intuitively, for the elliptic family of phase space, the
volume of the phase space occupied by each possible E (for the sake of intuition,
we are talking about one-dimensional motion, the corresponding phase space is
2 dimensions, and therefore the area), which is exactly The area A surrounded
by two adjacent ellipses. The most important thing is that this area A is a
constant. Similarly we can calculate this constant as

A =

˛
E=(n+1)~ω

pdx−
˛
E=n~ω

pdx = h (13.10)

If we further consider the net effect 1 + 1 + 1 + ... = ζ(0) = − 1
2 of the infinite

collisions of STP, we can get the complete result of quantum mechanics: The
energy level of a simple harmonic oscillator is E = (n+ 1

2 )~ω.

13.2 Entropy at absolute zero

Let us first consider the entropy at absolute zero, and then discuss the entropy
of thermodynamics. The entropy at absolute zero must be equal to zero, ac-
cording to the definition of Boltzmann entropy, which means the entropy is the
logarithm of all possible microscopic states at the same energy. It is equivalent
to say that there can be only one state at absolute zero, so its entropy is 0.
If we look at the typical time scale of quantum mechanics, this conclusion is
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correct. Due to STP colliding at the short time scale of MIP, the wave function
formed on the quantum mechanical time scale is a pure state, and its entropy
must be zero.
Free particles in quantum mechanics can be characterized by plane waves ei~p·~x/~,
where ~p · ~x/~ is called the phase factor of the wave function. In the time scale
of MIP, we will generalize this key factor.
First, in this extremely short time scale, according to Section 3.5, we general-
ized the momentum of quantum mechanics ~p to instantaneous momentum ~Pi.
Second, the instantaneous momentum is not a conserved quantity. The original
phase factor ~p · ~x must be generalized to

´
γ
~Pi · d~x. Third, for non-interacting

particles, aka free particles, we can always choose an inertial frame of reference
with zero classic statistical velocity. Furthermore, the integral of the random
velocity through the path γ on the time scale of quantum mechanics is 0. There-
fore, the contribution only comes from envelope velocity.
The number of all possible microscopic states of a particle can be characterized
by its envelope velocity u. Within a short time scale, different envelope velocity
can represent different possible states. We can construct entropy Within the
framework of MIP, and then find the following way to pass to the long-term
scale, the result of quantum mechanics about entropy.

Based on the above three points about particles traveling a path γ at the time
scale of quantum mechanics, we can generalize the phase factor in quantum
mechanics to

Ki =
1

~

ˆ
γ

~Pi · d~x =
mst

h

ˆ
γ

~ui · d~x (13.11)

All the possible state under the time scale of MIP are represented by different
i and Ki is a dimensionless quantity. From the conclusion of Chapter 5, the
envelope velocity is an irrotational field

∇× ~u = 0 (13.12)

So Ki does not depend on the path γ, which is just a function of the endpoint.
It must be noted that entropy is a variable of state, regardless of how to reach
the state.
The probability of possible state i is defined as

pi =
1

N
e2Ki (13.13)

Where the normalization constant

N =
∑
i

e2Ki (13.14)

In order to guarantee that the probability sum of various possible states equals
to 1, we have ∑

i

pi = 1 (13.15)
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and the probability of all possible states are greater than 0.
Within the framework of MIP and the probability of possible states on a short
time scale, we can define the corresponding entropy as

S = −
∑
i

pi log pi (13.16)

By this definition, we claim that all results of quantum mechanical entropy can
be derived.

The derivation is as follows:
Obtaining the gradient on both sides of Equation 11:

∇Ki =
mst

h
~ui (13.17)

For each possible state i, the wave function ψi will emerge on the quantum
mechanical time scale as

|ψi| =
1√
N
eKi (13.18)

In every possible state, Ki corresponds exactly to the original potential function
R. Thus our definition of entropy is equivalent to

S = −
∑
i

2|ψi|2 log |ψi| (13.19)

This is completely equivalent to the definition of von Neumann entropy in quan-
tum mechanics. Therefore, from the microscopic behavior of the envelope ve-
locity in the short time scale of MIP, quantum mechanical entropy in the long
time scale is derived.

We can summarize this section: at absolute zero and within the time scale of
MIP, the entropy of matter particles is not zero, and its various microscopic
states are characterized by different envelope velocities. According to the con-
clusions in Chapter 5, reaching the time scale of quantum mechanics after a
long time of random collision, the material particles at absolute zero appear as
a pure state wave function, and its evolution satisfies the Schrödinger equation.
Then the probability of only one state i is 1, and the probability of other states
is 0, which naturally leads to the conclusion of quantum mechanics: the entropy
is 0 at absolute zero .

13.3 Entropy at finite temperature

When we consider not only the quantum behavior of single particle but also the
thermodynamic properties of multiple particles without interactions, the work
in the previous section needs to be further generalized. In the first step, we
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generalize to the case of two particles. The probability that one is in state i
and the other is in state j is pip̃j . If they are identical particles, two probability
distribution functions are the same. According to the definition of entropy, the
entropy of two particle systems is

S = −
∑
ij

(pip̃j) log(pip̃j) = −
∑
ij

pip̃j log pi −
∑
ij

pip̃j log p̃j

= −
∑
i

pi log pi
∑
j

p̃j −
∑
j

p̃j log p̃j
∑
i

pi

= −
∑
i

pi log pi −
∑
j

p̃j log p̃j

= S1 + S2

(13.20)

Additivity is obtained, which is the fundamental property of entropy. This
can be directly extended to the entropy of any multi-particle system, which is
equal to the sum of the entropy of each single particle. That is to say, the
macroscopic thermodynamic entropy is the sum of the entropy of each part of
the subsystem. And we treat each single particle as an independent subsystem,
which is the smallest subsystem possibly. To be connected with thermodynamic
entropy, we need to introduce temperature.

The second step is to define the temperature in the MIP framework as following.
We have proved the additivity of entropy from MIP. Use this basic property to
define the physical quantity of temperature. Assuming that the energy of two
subsystems is E1 and E2, the total energy of the system E = E1 + E2 is a
conserved quantity. By the additivity of entropy, we have

S(E) = S1(E1) + S2(E2) (13.21)

The total system is a closed system. When in equilibrium, the derivative of
both sides with respect to E1 leads to

0 =
dS1

dE1
+
dS2

dE2

dE2

dE1
=
dS1

dE1
− dS2

dE2
(13.22)

It can be seen that there is a physical quantity in equilibrium, which is possessed
by all subsystems equally. We call this physical quantity the temperature T,
which is defined as

dS

dE
=

1

T
(13.23)

That is
dS1

dE1
=

1

T1
=
dS2

dE2
=

1

T2
(13.24)

In the third step, we introduce temperature into the definition of entropy, in
order to study the entropy of thermodynamics under the framework of MIP.
Let us consider the microscopic collision process under the MIP framework.
When a material particle collides with an STP, the material particle is in state
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a and the STP is in state b. After the collision, the state of the material
particle changes to c, and the STP state changes to d. The probability of this
process is proportional to nanb, that is, in the initial state, there are na material
particles in state a, and nb material particles are in state b. Then we consider
a reverse process whose probability is proportional to ncnd. According to MIP,
the STP collision process has time-reversal symmetry and the material particles
must reach an equilibrium state with the STP, that is, the average number of
particles in each state does not change. Then we have

nanb = ncnd (13.25)

Conservation of energy of the collision process leads to

εa + εb = εc + εd (13.26)

It can be proved that
ni = Ce−βεi (13.27)

Among them, the constant C is given by∑
i

ni = N (13.28)

According to the basic definition of probability theory, the probability of being
in the i state is

pi =
ni
N

=
1∑

i e
−βεi

e−βεi (13.29)

This pi is the generalization of the probability distribution at a finite temper-
ature. According to the definition of temperature, it can be proved that the
coefficient β must be equal to 1

T . From this we get the entropy at finite tem-
perature

S = −
∑
i

pi log pi (13.30)

We can directly substitute the specific expression of the probability distribution
pi to get the thermodynamic entropy as

S = −
∑
i

1∑
i e

−βεi
e−βεi log 1∑

i e
−βεi

e−βεi =
E − F
T

(13.31)

In this way, the general expression of thermodynamics is obtained, where the
free energy of thermodynamics reads

F = −T log
∑
i

e−εi/T (13.32)

And internal energy as

E =
1∑

i e
−εi/T

∑
i

εie
−εi/T (13.33)
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Within the framework of MIP, the energy of non-relativistic free material par-
ticles is expressed in terms of true velocity

ε =
1

2
mV 2 (13.34)

Substituting the distribution function of the true velocity of the material parti-
cles at a finite temperature

Φ(V 2) = (
m

2πT
)3/2e−

mV 2

2T (13.35)

Then we can further give the definition of classical statistical velocity in the
decomposition of three velocities

v =

ˆ
V Φ(V 2)d3V =

√
8T

mπ
(13.36)

which shows a deeper understanding of the physical meaning of the decomposi-
tion of three velocities. The entropy at absolute zero corresponds to the quantum
envelope velocity of material particles, while the entropy at finite temperature
includes the contributions from all three velocities. From finite temperature
to absolute zero, the physical quantity describing the system has undergone a
fundamental change. Therefore, thermodynamics cannot determine the value
of entropy at absolute zero, which can be obtained naturally under the MIP
framework.

13.4 Comparing between entropy at finite temperature and
absolute zero

In modern information theory, entropy (Shannon entropy) is a measure of un-
certainty. This basic concept is consistent with MIP. The study of the diffusion
coefficient of material particles at finite temperature shows that, the uncertainty
of the thermodynamic contribution of finite temperature is much smaller than
the quantum contribution at absolute zero in MIP.

MIP shows that matter particles do Brownian motion under random collisions
of STP, the most important property of this motion is

< X2 >= 2<t (13.37)

Where < is the space-time diffusion coefficient < = ~
2m . Obviously, this is a

result at absolute zero, has nothing to do with temperature, purely caused by
Planck’s constant.

In the framework of classical physics, the Planck constant is 0, so there is no such
diffusion coefficient, and of course there is no such Brownian motion. However,
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there will still be Brownian motion caused by thermal motion. So the space-
time diffusion coefficient has two parts, one is < independent of the temperature
T , and the other is related to the temperature T.

Our goal is the principle of entropy increasing, which is the thermodynamic
properties of matter particles. How the diffusion coefficient depends on temper-
ature T? Which part is more important?

The material particles do Brownian motion under the random collision of STP.
According to the estimation in Section 3.4, the most important physical param-
eter is the average time interval between two collisions τ as

τ ≈ 10−20s (13.38)

The time scale of electrons in quantum mechanics is τ ≈ 10−16s.Therefore, the
electrons in hydrogen atoms are much larger than the time scale of MIP. We
will explicitly construct the average time interval τ into the equation of motion:

m
dV

dt
= −mV

τ
+ F (t) (13.39)

We are able to get the answers to the above two questions at the same time as
follows: Multiply both sides of the equation by X, using

d(XV )

dt
= V 2 +X

dV

dt
(13.40)

We can get
m
d(XV )

dt
= mV 2 − mXV

τ
+ F (t)X (13.41)

Taking the average of both sides of the equation, at a temperature of T the
average kinetic energy of the particles is

1

2
m < V 2 >=

1

2
kT (13.42)

Substitute
m
d(< XV >)

dt
= kT −m< XV >

τ
(13.43)

Combined with the initial condition X(t = 0) = 0, we solve this differential
equation as

< XV >=
kTτ

m
(1− e−t/τ ) (13.44)

and
< XV >=

1

2

d < X2 >

dt
(13.45)

Solve another differential equation to get

< X2 >=
2kTτ

m
(t− τ(1− e−t/τ )) (13.46)
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This result is very important because it has both the properties wanted:

1. Under very short time scale t� τ

< X2 >=
kT

m
t2 (13.47)

At this time scale, the particles are moving at a uniform linear velocity, which
comes from thermal motion

√
kT
m .

2. More importantly, under the time scale observed in the experiment, t� τ

< X2 >=
2kTτ

m
t = 2<T t (13.48)

It shows that at this time scale, the particles are diffusive. Compared with equa-
tion (13.37), we can calculate the ratio of the diffusion caused by thermal motion
to the diffusion at absolute zero. Assuming the system at room temperature
300K, the ratio will be

<T
<
≈ 10−6 (13.49)

Therefore, the results we obtained without considering the temperature effect
are very good approximations. The diffusion effect of material particles due to
thermal motion can be ignored, and the diffusion coefficient at absolute zero
based on MIP calculation is very accurate. In MIP, whenever considering quan-
tum effects only, the entropy at finite temperature can be ignored, just as in the
Schrödinger equation where is no need for a term directly related to tempera-
ture.

13.5 Proof of entropy increasing principle

Within the framework of MIP, we can use the definitions of entropy, combining
with the general nature of Markov process, to prove the entropy increasing
principle for non-interacting particle, both at finite temperature and absolute
zero.

S = −
∑
i

pi log pi (13.50)

Straightforwardly, proving the entropy increasing principle means

dS

dt
> 0 (13.51)

Use the definition of probability ∑
i

pi = 1 (13.52)
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we have ∑
i

dpi
dt

= 0 (13.53)

Then the definition of entropy goes to

dS

dt
= −

∑
i

(
dpi
dt

log pi +
dpi
dt

) = −
∑
i

dpi
dt

log pi (13.54)

If there is equal probability distribution, all pi are equal to constant

pi =
1

Ω
(13.55)

which is a very useful constraint. We will use it below.

The STP collision causes the transition between different states of material
particles, which is a Markov process. For the Markov process, the following
mathematical properties

dpi
dt

=
∑
j

(pj − pi)gij (13.56)

dpj
dt

=
∑
i

(pi − pj)gji (13.57)

This property has already been used in Section 3.3 equation (3.23), which is
a special case of this mathematical property. If the probability distribution is
equal, the probability no longer changes. It is an important step to prove that
the collision of STP is invariant in time reversal, requiring the transfer matrix
g to have

gij = gji > 0 (13.58)

Therefore, the transition between various states is reversible on the time scale
of STP collision, because the matter particle’s Brownian motion in spacetime
is frictionless. The proof of entropy increasing principle is irrelevant about
the specific expression of entropy, whether or not including the temperature T.
From this microscopic reversibility, it is possible to deduce the irreversibility of
entropy on the macroscopic time scale, which is the essence point.

With this mathematical property, we get

dS

dt
= −1

2
(
∑
i

dpi
dt

log pi +
∑
j

dpj
dt

log pj)

= −1

2
(
∑
ij

(pj − pi)gij log pi +
∑
ij

(pi − pj)gji log pj)

=
1

2

∑
ij

(pj − pi)gij(log pj − log pi) (13.59)
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If pj > pi, then log pj > log pi, which guarantees dS
dt > 0.

If pj 6 pi, then log pj 6 log pi, which also guarantees dS
dt > 0.

So the entropy increasing principle has been proved. This principle has profound
significance in physics and other scientific fields, and can be used as a criterion
for irreversibility and time flow. However, it must be emphasized that this
principle is still an empirical law in modern physics and cannot be explained
from the first principle. Therefore, our results are of great significance. In MIP,
the random collision of STP can naturally generate the fundamental principle
of increasing entropy. Within the framework of MIP, we unify the concept of
entropy both at finite temperature and absolute zero and prove that both types
of entropy are never decreasing with time.

14 Summary

Starting from the fundamental concept innovation of statistical mass, this paper
proposes MIP: material particles will be subjected to random collision of STP’s
which is ubiquitous in space and time to make frictionless quantum Brownian
motion. The change of the action of material particles in each collision is inte-
ger multiple of Planck constant h. From MIP, we can prove all the important
results of the special theory of relativity. The speed of light in a vacuum no
longer has a special physical meaning, but instead the speed of STP represents
the upper limit of the speed of physical information propagation in spacetime.
The constant speed of light is a natural consequence of MIP. The relative invari-
ance of the speed of light actually reflects that the speed of STP relative to the
particle of matter is always relatively constant. The quantum theory obtained
under the framework of MIP is fully compatible with the existing quantum
theory. The advantage of this new framework is that it does not require the
introduction of additional wave function assumptions, which can directly derive
the Schrödinger equation. In particular, the concept of wave pack collapse is
not required to be introduced under our MIP framework. The Heisenberg un-
certainty principle no longer has a fundamental position but a natural inference
under the MIP framework. From the statistical uncertainty between inertial
mass and space-time diffusion coefficient, the most basic coordinate momentum
uncertainty relationship of quantum mechanics can be derived. Therefore, it is
proved that the wave-particle duality is a property exhibited by the STP collid-
ing particles under the MIP framework. Furthermore, we apply MIP to quan-
tum measurement problems, and have a new breakthrough interpretation of the
EPR paradox problem that has confused physics for nearly a century. The STP
colliding matter particles is a zero-spin scalar particle without mass. According
to MIP, the topological properties and dynamic properties of STP can explain
the nature of photons, and thus naturally obtain the complete electromagnetic
theory and all important properties of charge. Furthermore, from the vortex
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structure of spacetime, we obtain the origin of the spin and the relationship
between spin and mass. Going back to the 2+1d vortex when we investigate
the electromagnetic fields in 3+1d spacetime, we prove the strong constrain on
the number of generations of charged leptons, at most three generations. From
the microscopic behavior of a large number of STP, the macroscopic gravita-
tional effect can be derived, and the Newton’s universal gravitation formula are
obtained. Inertia mass and gravitation mass are no longer basic physical quan-
tities. The real root of the equivalence principle is that both come from the
statistical mass of STP collisions. We define entropy of matter particle micro-
scopically within the frame- work of MIP, and derive the principle of increasing
entropy of free particle, which is a cornerstone in thermodynamics. We general-
ize the concept of entropy to absolute zero, where we also prove the principle of
increasing entropy. Therefore, we unify the entropy at finite temperature and
absolute zero. Last but not least, MIP requires a novel massless scalar parti-
cle STP. The random collisions between STPs and muons is the crucial step
beyond standard model. Our extension of standard model is minimal, which
only introduce one free parameter describing the interaction strength between
STPs and muons, then we are able to explain two key experiments of muon si-
multaneously. By thorough calculations of corresponding Feynman’s diagrams,
the contributions from random collisions between STPs and muons explain the
anomalous magnetic moment of muon and its lifetime excellently, which solve a
world class puzzle about the anomalous magnetic moment of muon, and give a
self-consistent explanation to the lifetime discrepancy of muon at the same time.
Recent experimental results from FermiLab are the most precision verification
of MIP, which not only guarantees the correctness of MIP, but also rejects other
possible alternative model.

In summary, MIP may systematically solve all the basic problems of modern
physics, which is the common origin of special relativity, general relativity, elec-
tromagnetic theory ,quantum nature and thermodynamics. Starting from the
only one principle postulation, we may reconstruct the foundation of modern
physics and unify all important areas of modern physics. Furthermore, proof
of three generations of charged leptons create a theoretical framework of flavor
problem of neutrino, which lead to a novel research direction of neutrino oscil-
lation. The existence of STP vortex provide a research program for quantum
gravity and grand unifying of four fundamental interactions.

Appendix A: Brown Motion and Markov Process

When the displacement of the material particle X(t) satisfies the following con-
ditions, we call the material particle doing Brownian motion:

1.X(0) = 0.

2. On any finite disjoint interval set (si, si+ tt), the displacement of the particle
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is X(si+ tt)−X(si) , which are random variables that are independent of each
other.

3. For each s > 0, t > 0, X(s+ t)−X(s) obeys the normal distribution N(0, t).

For each constant a, the process X(t) + a is called the Brownian motion starting
from a. For the Brownian motion that is physically free of friction, we call it
the quantum Brownian motion in this paper.

Consider any past set of times (· · · , p2, p1), any "current time" s, and any "future
time" t, all of which are within the range of X, if any

· · · < p2 < p1 < s (14.1)

Then the Markov property is established, and the process is a Markov process,
but only if:

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
= Pr

[
X(t) = x(t) | X(s) = x(s)

]
(14.2)

Set up for all time sets. Then calculate the conditional probability

Pr
[
X(t) = x(t) | X(s) = x(s), X(p1) = x(p1), X(p2) = x(p2), . . .

]
(14.3)

Future state is independent of any historical state and is only relevant to the
current state.

In summary, the quantum Brownian motion studied in this paper is a Markov
process.

Appendix B: Decomposition of Random Variables

In the Langevin equation, the true velocity of particle motion ~V contains three
parts: the classic statistical velocity ~v , quantum envelope velocity ~u and Gaus-
sian noise ~ν

We do not consider the impact of classic statistical velocity. Then the random
motion of the particles will be determined by the quantum envelope motion
and Gaussian noise. The fact that we need to prove is that we can distinguish
the quantum envelope motion ~u in the strict mathematical differential sense.
The quantum envelope motion corresponds to the smooth continuous part of
the random motion, and the Gaussian noise corresponds to the continuous non-
differentiable part of the random motion.

First, for any random variable r(x, t), if a smooth function f(x, t) is superim-
posed, the result is still a random variable. which is a random variable, as

w(x, t) = r(x, t) + f(x, t) (14.4)
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But if r(x, t) or w(x, t) has a finite order autocorrelation association, then the-
oretically we can strictly distinguish w(x, t) and other two random variables of
r(x, t), which is:

〈r(x1, t1)r(x2, t2) · · · r(xn, tn)〉r = Fn(~x,~t), mod(n,N) ≡ 0 (14.5)
〈r(x1, t1)r(x2, t2) · · · r(xn, tn)〉r = 0, mod(n,N) 6= 0 (14.6)

Then there is

〈w(x1, t1)w(x2, t2) · · ·w(xN , tN ) · · ·w(xn, tn)〉r 6= 0, n > N (14.7)

Therefore, it can be strictly distinguished mathematically. In the case we con-
sidered, Gaussian noise ~ν has a second-order correlation

〈νi(t)νj(t′)〉 = Ωδi,jδ(t− t′) (14.8)

And all odd-order associations are zero

〈ν(t)〉ν = 0

So obviously
~w(t) = ~u(t) + ~ν(t)

The odd-order correlation is not zero. So you can strictly distinguish between
~w(t) and ~ν(t). Due to the MIP, there is only one kind of Gaussian noise, and
there is no other noise source. So continuous functions other than noise are
smooth and differentiable functions. So ~u is a smooth function.

Appendix C: From MIP to the Uncertainty Principle

We believe that the uncertainty principle comes from the kinematic equation of
stochastic spacetime motion, which is rooted in the non-differentiable motion
path, i.e. the particle coordinate ~x(t) derivative of time d~x/dt does not exist.
Therefore, it must be noted that the particle’s momentum ~p = md~x/dt cannot
be well defined. The momentum is defined as follows

~p = mD~x = m~v +m~u (14.9)

Kinematic equation
~u = <∇ρ

ρ
(14.10)

For the sake of simplicity, the following discussion uses only one component in
the x direction, and all vector equations become equations of one component.
For any random variable O, the statistical average is < O >=

´
Oρ(x)dx.
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Multiplying both sides of the equation by ρ and integrate x, we can get the x
and ux covariance

σ(x, ux) =< (x− < x >)(ux− < ux >) >= −< (14.11)

The covariance represents the total error of two variables, which is different
from the variance that only represents the error of one variable. If two variables
change in the same directions, then the covariance between two variables is
positive. If two variables change in opposite directions, the covariance between
two variables is negative. For any two real random variables A and B, there is
the Schwarz inequality |σ(A,B)| 6 σ(A)σ(B), which leads to

σ(x)σ(ux) > < = ~/2m (14.12)

The statistical definition of uncertainty is

σ(x) =
√
< x2 > − < x >2 (14.13)

σ(ux) =
√
< u2x > − < ux >2 (14.14)

So far we have proved the uncertainty relationship between the position of ran-
dom spacetime moving particles and the fluctuation speed. Further, if the un-
certainty of momentum has two parts of contributions

σ2(p) = m2(σ2(v) + σ2(u)) (14.15)

That is, σ(p) > mσ(u), the uncertainty of the position and the fluctuation speed
can be obtained.

σ(x)σ(px) > ~/2 (14.16)

The proof of our paper interprets Heisenberg’s uncertainty principle as the un-
certainty relationship between random spacetime moving particle position and
fluctuation speed.The random spacetime motion has no friction and no irre-
versible dissipation.
The uncertainty of the fluctuation speed is entirely from spacetime fluctuations.
According to Heisenberg’s original statement, the measured action inevitably in-
terferes with the state of the particles being measured, thus creating uncertainty.
Later that year, Kennard gave another statement. The following year, Herman
also obtained this result independently. According to Kennard’s statement, the
uncertainty of position and the uncertainty of momentum are the nature of the
particle, and cannot be suppressed below a certain limit, regardless of the mea-
sured action. Thus, for the principle of uncertainty, there are two completely
different interpretations. Landau believes that the two interpretations are equiv-
alent, so one expression can be derived from another expressions (Ref. quantum
mechanics of Landau). However, in the latest experimental progress, Japanese
scholars published on January 15, 2012, the empirical results of the Heisenberg
uncertainty principle. They used two instruments to measure the spin angle
of the neutron and obtained a smaller measurement than the Heisenberg limit,
which proves the measurement interpretation by Heisenberg is wrong. However,
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the principle of uncertainty is still correct, because this is the quantum nature
of the particle.
The derivation process of this paper has nothing to do with the measurement
theory, and it has nothing to do with the internal properties of the particles. It is
believed that the uncertainty principle is rooted in the fluctuation of spacetime.
Under the non-relativistic framework, spacetime fluctuations are only related to
the mass of the particles. The mass of a particle is the only perceptible property
of the particle in spacetime.

Appendix D: Additional Physics Example with Three-speed
Decomposition

The superposition of orbitals and the formation of chemical bonds, which are
common in chemistry, involves quantum superposition states. In the simplest
case, the ground state of the hydrogen atom and the first excited state are
superimposed with equal probability as

ψ(r, t) = ψ100e
−iE1t + ψ200e

−iE2t (14.17)

Where E1 = −13.6ev,E2 = −13.6/4ev = −3.4ev, the wave function of the
ground state of the hydrogen atom and the first excited state are

ψ100 =
1√
πa3

e−r/a (14.18)

ψ200 =
1√
2a3

e−r/2a(1− r

2a
) (14.19)

Where a is the Bohr’s radius a = 0.529× 10−10m.

With the Euler formula, we can write the superimposed wave function as

ψ = [ψ100cos(E1t) + ψ200cos(E2t)]− i[[ψ100sin(E1t) + ψ200sin(E2t)] (14.20)

From the real and imaginary part, the two potential functions R and I of the
superposition wave function can be further determined. It is found by equation
(5.34) and (5.35) that the electrons u and v are not zero in this state.

This physics example is not a special case, and has general physical meaning.
When the quantum state has definite energy, its classical statistical velocity v
must be zero. Generally speaking, the particle is in the superposition state of
the energy eigenstate, and its three speeds are not zero which has clear physical
meaning.

Appendix E: Self Isomorphism on Direct Product Spin Clusters

We hope to prove the following conclusions in this appendix:
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Theorem 14.1. Given any topological excited state deformation: A : ΛL ⊗
ΛR 7→ ΛL ⊗ ΛR, where A For automorphism mapping, ΛL,ΛR represent the
left-hand spin cluster and the right-hand spin cluster, respectively, and A is the
vector map.

Proof: First of all, from the symmetry of the spin structure, it is not difficult
to know that we only need to prove arbitrary automorphism: A : ΛL 7→ ΛL
Both are vector maps. This is because if we can determine that A is a vector
map, we can get it through conjugate expansion: Ã : ΛL ⊗ ΛR 7→ ΛL ⊗ ΛR for
vector mapping.

To prove that any automorphism: A : ΛL 7→ ΛL is a vector map, we need to
consider the model on the left-handed spin sector, which is corresponding to
the Clifford algebra .Proposition 1.3.2 by [59] It can be seen that for the finite
form Clifford algebra, the following forms are isomorphic:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1⊗̂ Cl∗1... ⊗̂ Cl∗1.

Among them, the number of Cl1 corresponds to r, and the number of Cl∗1
corresponds to s.

From the theorem 1.5.4 of [59], all Clifford K− means that ρ can be decom-
posed into straight sums of irreducible algebra representations of the following
form:

ρ = ρ1 ⊕ ...⊕ ρm.
The feature subspace Wi corresponding to ρi is the smallest subspace.

In additions, by the Bott cycle law theorem [59], we can get the algebraic
representation of all Clm, (m = 1, ...8), and the representation follows the
indicator m Repeated with a period of 8. That is: we can get the algebra of
any Clm as follows:

Cl1 = C, Cl2 = H, Cl3 = H⊕H, Cl4 = H(2),

Cl5 = C(4), Cl6 = R(8), Cl7 = R(8)⊕ R(8), Cl8 = R(16). (14.21)

For any combination of the above forms, the straight and broken parts ρi Can
be split into direct product form:

Clr,s ∼= Cl1 ⊗̂... ⊗̂ Cl1 ⊗̂ Cl∗1...⊗̂ Cl∗1.

The automorphism mapping between any part of the above direct product form
can be made by Cl1 = C, ...Cl8 = R(16) Algebraic combination between parts.
Since the above parts are all vector spaces, the automorphism must be a vector
mapping, that is, the automorphism of ρi must correspond to the matrix form.

In addition, from the algebraic decomposition process described above, it is not
difficult to know that the homomorphic mapping between all corresponding dif-
ferent sub-blocks is also a vector mapping. Finally, we will be ρi, i = 1, ...8 All
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of them are combined together in a straight form, and we can get the automor-
phism A : ΛL 7→ ΛL when i = 1, ...8 for vector mapping. When the indicator
i is greater than 8, by the Bott cycle law, we can still get the automorphism
mapping by the above process. A is the vector map. The conclusion is proved.

Appendix F: Field Theory Calculations for Fermionic Loop
Integral

We consider the following Fermion loop momentum integrals
w ddk

Dn1
1 Dn2

2

= iπd/2(−p2)d/2−n1−n2G(n1, n2) , D1 = −(k + p)2 , D2 = −k2

(14.22)
Noting that in the denominator, D1, D2 should actually have an infinitesimal
analytic continuation (−i0+). But for the sake of simplicity, we don’t explicitly
write it out. After analysing the continuation, we need to consider the contri-
bution of p2 < 0, and the power contribution of −p2 can be easily obtained
from dimensional analysis. In fact, what needs to be calculated now is the di-
mensionless function G(n1, n2); to simplify the calculation, we can let −p2 = 1.
When n1 ≤ 0 or n2 ≤ 0, the score can be strictly calculated and G(n1, n2) = 0
can be obtained.

Using Wick rotation and α parameterization, we can rewrite G(n1, n2) as:

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

w
e−α1(k+p)2−α2k

2

αn1−1
1 αn2−1

2 dα1 dα2 d
dk . (14.23)

Let
k′ = k +

α1

α1 + α2
p ,

We can get

G(n1, n2) =
π−d/2

Γ(n1)Γ(n2)

w
exp

[
− α1α2

α1 + α2

]
αn1−1
1 αn2−1

2 dα1 dα2

w
e−(α1+α2) Bmk

2

ddk

=
1

Γ(n1)Γ(n2)

w
exp

[
− α1α2

α1 + α2

]
(α1 + α2)

−d/2αn1−1
1 αn2−1

2 dα1 dα2 .

(14.24)

Using the substitution α1 = ηx, α2 = η(1 − x), the above formula can be
rewritten as

G(n1, n2) =
1

Γ(n1)Γ(n2)

1w

0

xn1−1(1− x)n2−1dx

∞w

0

e−ηx(1−x)η−d/2+n1+n2−1dη

=
Γ(−d/2 + n1 + n2)

Γ(n1)Γ(n2)

1w

0

xd/2−n2−1(1− x)d/2−n1−1dx .

(14.25)
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The integrand is an Euler B function, so we can get the final result

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (14.26)

For all positive integers n1,2 they are proportional to

G1 = G(1, 1) = − 2g1
(d− 3)(d− 4)

, g1 =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
, (14.27)

The scale factor is a rational function of d.

Noting that at k → ∞, the denominator part of (14.22) behaves as (k2)n1+n2

. Therefore, this integral is divergent when d ≥ 2(n1 + n2).
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