Justification for Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid.

> Udo E. Steinemann, Findeisen-Str. 5/7, 71665 Vaihingen an der Enz, Germany, published, 01-08-2019. e-mail: udo.steinemann@t-online.de

Abstract.

Current text is to be considered as an addendum for the earlier text: "Turbulence as structured Route of Energy from Order into Chaos, by Udo E. Steinemann, viXra.com/abs/1801.0037". The recent script introduced a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time of the article mentioned above. By the current text I have tried to justify the former model-idea on account of outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theory.

-164

1. Introduction.

Most Information contained in this chapter has been extracted from [1].

1.1. Fluid properties.

A set of properties presented in the scheme below maybe appropriate for the characterization of a turbulent fluid during subsequent discussions.

il bensity: e≪						•
$pressure$ in turbulence fluid: $a(\underline{r},t) = \hat{a}(\underline{r}) + a'(\underline{r},t) \ll$					•	
\gg speed-vector of turbulence fluid: $\underline{c}(\underline{r},t) = \underline{\hat{c}}(\underline{r}) + \underline{c}'(\underline{r},t) \ll$	•	•				
composed of	Ŧ				Ŧ	=
\gg mean portion: $\hat{\underline{c}}(\underline{r})$ \ll	•		•			
$ ightarrow$ mean portion: $\hat{a}(\underline{r})$ ≪ ■ $ ightarrow$ ϱ = const $ ightarrow$					•	•
	^				٨	
\gg stochastic portion representing fluctuation: $\underline{c}'(\underline{r},t)$ \ll	•			•		
\gg stochastic portion due to fluctuation: $a'(\underline{r},t)$					•	
with	Ŧ				Ŧ	
\gg (location-vector: $\underline{\mathbf{r}}$) \wedge (time-variable: t) \ll	•				•	
decomposed into		Ŧ	Ŧ	₽		
$components: c_1 \land c_2 \land c_3 \ll components: \hat{c}_1 \land \hat{c}_2 \land \hat{c}_3 \ll components: c'_1 \land c'_2 \land c'_3 \ll c'_2 \land c'_3 \land c'_2 \land c'_3 \ll c'_2 \land c'_3 \land c'_2 \land c'_3 \ll c'_2 \land c'_3 \land c'_2 \land c'_3 \land c'_3 \land c'_2 \land c'_3 \land c'_$		•	•	•		
according to		Ŧ	Ŧ	+		
≫rectangular coordinate-system≪		•	•	•		
with		Ŧ	Ŧ	+		
\gg (x ₁ -axis) \land (x ₂ -axis) \land (x ₃ -axis) \ll		•	•	•		
Properties of turbulent Fluid						(Charles and Charles of Charles o

$1.2.\ Equations\ of\ Fluids\ Motion.$

As shown below there is direct way from NAVIER–STOKE equation for a non–stationary fluid to the REYNOLDS–equation, which finally will deliver fluid–tensions due stochastic fluctuations of the fluid.

NAVIER-STOKE-equation for non-stationary fluids	•						
represented by	Ŧ						
$ d\underline{c}/dt = (\partial \underline{c}/\partial t) + \underline{c}(\nabla \cdot \underline{c}) = \underline{f} - \varrho^{-1}(\nabla a) + \nu(\Delta \underline{c}) \ll $	•						
	V						
$\gg dc_j/dt = (\partial c_j/\partial t) + c_k(\partial c_j/\partial x_k) = f_j - \varrho^{-1}(\partial a/\partial x_j) + \nu(\partial^2 c_j/\partial x_k^2) \ll$	•	•	•				
where	Ŧ						
\gg [j,k = (1,2,3)] \land [f _j = external forces] \land [ν = viscosity] \ll	•						
takes into consideration 🛛 🔶 leads to		↓	Ļ				
\gg fluctuation-property: $\underline{c} = \hat{c} + \underline{c}' \ll$		•					
		Λ					
≫time-everage of a property: 《…》≪		•					
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \nu (\partial^2 \hat{a}_j / \partial x_k^2) - \langle \langle c_k / (\partial c_j / \partial x_k) \rangle \rangle \ll $			•	•			
with				Ŧ			
$ \otimes \langle \langle \mathbf{c}_{\mathbf{k}}' (\mathbf{d} \mathbf{c}_{\mathbf{j}}' / \mathbf{d} \mathbf{x}_{\mathbf{k}}) \rangle = \langle \langle \mathbf{d} (\mathbf{c}_{\mathbf{k}}' \mathbf{c}_{\mathbf{j}}') / \mathbf{d} \mathbf{x}_{\mathbf{k}} \rangle - \langle \langle \mathbf{c}_{\mathbf{j}}' (\mathbf{d} \mathbf{c}_{\mathbf{k}}' / \mathbf{d} \mathbf{x}_{\mathbf{k}}) \rangle \rangle \ll $				•			
				^			
\gg continuity-equation: $\partial c_j' / \partial x_j = 0 \ll$				•			
leads to				Ŧ			
				•			
represented by				Ŧ			
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \nu (\partial^2 \hat{a}_j / \partial x_k^2) - \langle \langle d(c_k' c_j') / dx_k \rangle \rangle \ll $				•	•		
with					Ŧ		
$ \gg [\nu(\partial^2 \hat{\mathbf{a}}_j / \partial \mathbf{x}_k^2) = \varrho^{-1} (\partial \tau_{jk} / \partial \mathbf{x}_k)] \wedge [\langle\!\langle \mathbf{d}(\mathbf{c}_k' \mathbf{c}_j') / \mathbf{d} \mathbf{x}_k\rangle\!\rangle = (\mathbf{d}\langle\!\langle \mathbf{c}_k' \mathbf{c}_j'\rangle\!\rangle / \mathbf{d} \mathbf{x}_k)] \ll $					•		

leads to	+			
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \varrho^{-1} (\partial / \partial x_k [\tau_{jk} - \varrho \langle \langle c_j ' c_k ' \rangle]) $	•	•		
results in		Ŧ		
$\langle\!\!\langle (c_1')^2 \rangle\!\!\rangle \langle\!\!\langle c_1'c_2' \rangle\!\!\rangle \langle\!\!\langle c_1'c_3' \rangle\!\!\rangle$				
≫stress-tensor: –ϱ《cj′c₄′》= (–ϱ)∙《c₂′c₁′》《(c₂′)²》《c₂′c₃′》		•	•	•
$\langle\!\langle c_3' c_1' \rangle\!\rangle \langle\!\langle c_3' c_2' \rangle\!\rangle \langle\!\langle (c_3')^2 \rangle\!\rangle \ll$				
gives			+	Ŧ
≫normal tensions: $\{(-\varrho \cdot \langle (c_j')^2 \rangle) \rightarrow (j = 1, 2, 3)\}$ ≪			•	
≫shear-tensions: $\{(-\varrho \cdot \langle c_p c_q' \rangle) \rightarrow (p,q = 1,2,3)\}$ ≪				•
REYNOLDS-Tensions	Ne State and According provider and the state			

1.3. Physical Interpretation of the REYNOLDS-Tensions.

Obviously exist an analogy – as demonstrated by scheme below – between tensions as they exist e.g. in mechanics and those entities introduced by O. REYNOLDS, which can rightly be called tensions.

1.4. Energy-Balance of turbulent Fluid-Motion.

Local non-stationary time-modifications of energy in a turbulent fluid-volume are due to interactions of four different time-dependent effects: production, dissipation, convection and diffusion. Two of them – production and dissipation – have to be considered as source and sink of turbulent energy, the other two effects – convection and diffusion – are responsible for transportation of the energy through the turbulent fluid-volume. While production is strongly related with REYNOLDS-tensions and creates order in fluid-volume on this base, dissipation on the other hand transforms turbulent energy by fiction into heat and creates chaos thereby. Production and dissipation – equally sized – turn out to be counterparts in creation and destruction of order.

≫in complete flow-area of the fluid ≪		1					•	
≫local non-stationary time-modification of turbulent energy	•							
contains 🔹 is constantly fulfilled	+					1	ł	
≫terms≪	•							
for	+					1		
≫production: acceptance of turbulent-energy from tensions	•	•	•		•	0		
due to	Λ	+	Ŧ					

≫normal-tensions: ${j=1} \Sigma^3 [\langle (c'_j)^2 \rangle] (\partial \hat{c}_j / \partial x_j)] \ll$		•		•		Τ				
as 🔶 can be compared with				Λ				Ŧ	Ļ	=
≫shear-tensions: $-\langle c'_1 c'_2 \rangle [(\partial \hat{c}_1 / \partial x_2) + (\partial \hat{c}_2 / \partial x_1)] -$							1			
$\langle c'_1 c'_3 \rangle [(\partial \hat{c}_1 / \partial x_3) + (\partial \hat{c}_3 / \partial x_1)] -$			•	•						
$\langle c'_2 c'_3 \rangle [(\partial \hat{c}_2 / \partial x_3) + (\partial \hat{c}_3 / \partial x_2)] \langle \langle c'_2 c'_3 \rangle [(\partial \hat{c}_2 / \partial x_3) + (\partial \hat{c}_3 / \partial x_2)] \rangle \langle c'_2 c'_3 c'_3 \rangle \langle c'_2 c'_3 c'_3 \rangle \langle c'_2 c'_3 c'_3 c'_3 c'_4 c'_3 c'_3 c'_4 c'_3 c'_4 c'_4 c'_3 c'_4 c'_4 c'_4 c'_4 c'_4 c'_4 c'_4 c'_4$										
≫source≪								•		
can be combined to				Ŧ				\wedge		
$\gg_{\mathrm{j=1}}\Sigma^3\langle_{\mathrm{k=1}}\Sigma^3[au_{\mathrm{jk}}(\partial\hat{\mathrm{c}}_{\mathrm{j}}/\partial\mathrm{x}_{\mathrm{k}})] angle$										
Solution: waste of turbulent-energy by transition into heat	•			•	•			•	•	•
specified by 🔶 as 🔶 in specific sense of	Λ				Ŧ			Ŧ	ł	
$\gg \nu \{2 [j_{j=1} \Sigma^3 \langle \langle (\partial c'_j \partial x_j)^2 \rangle \} +$										
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2 \rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2 \rangle\!\rangle +$					•					
$\langle\!\!\langle [(\partial c'_2/\partial x_3) + (\partial c'_3/\partial x_2)]^2 \rangle\!\!\rangle \ll$										
Sink ≪■ Senergy-transition from order into chaos								•	•	
Sonvection: transportation of turbulent-energy due to mean-motion	•					•				
specified by the represent	^					Ŧ		Ļ		
$ \gg - \frac{1}{2} \{ {}_{j=1} \Sigma^3(\partial \hat{c}_j \langle\!\!\!\langle_{k=1} \Sigma^3(c'_k)^2 \rangle\!\!\!\rangle / \partial x_j) \} \not \ll $						•				
≫diffusion: transportation of turbulen]t-energy due to fluctuations	•						•			
specified by							Ŧ			
$ \gg_{j=1} \Sigma^3(\partial \langle\!\!\langle c'_j \{ p'/\varrho + \frac{1}{2} [_{k=1} \Sigma^3(c'_k)^2] \} \rangle\!\!\rangle / \partial x_j)] \ll $							•			
≫energy-changes in the considered fluid-volume								•		
Production for Creation of Order and Dissipation for Destruction into Chaos playing										NUMBER OF STREET
the roles of Counterparts in turbulent Fluid-Volume										

1.5. Measure for Sizes of energetic Vortices and dissipating Vortices in a Dissipation– State independent of REYNOLDS–Numbers.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about measures of averagesizes (L) for energetic vortices and (λ) for dissipating vortices as well. This is made obvious in the following scheme:

		and the second second			
>>dissipation: waste of turbulent-energy by transition into heat <>>	•				
as specified by	+				
$\gg \nu \{ 2 [_{j=1} \Sigma^3 \langle \! \langle (\partial c'_j \partial x_j)^2 \rangle \! \rangle +$					
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2 \rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2 \rangle\!\rangle +$	•				
$\langle\!\!\langle [(\partial c'_2/\partial x_3) + (\partial c'_3/\partial x_2)]^2 \rangle\!\!\rangle \ll$				-	
written more densely	Ŧ				
$\gg \nu [_{j,k=1} \Sigma^3 \langle \langle [(\partial c'_j \partial x_k) + (\partial c'_k \partial x_j)] (\partial c'_k \partial x_j) \rangle \rangle \langle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c$	•	•			
leads to		Ŧ			
$\gg \sim \nu \langle \langle (\partial \underline{c}')^2 \rangle / \lambda^2 \langle \langle $		•	•		
if ♦ where		ŧ	Ļ		
≫turbulent state independent of REYNOLDS-numbers		•			•
$\gg \lambda = \sum_{j=1} \sum^{3} \langle \langle (c'_{1})^{2} / (\partial c_{1} / \partial x_{j})^{2} \rangle \rangle^{1/2} \ll$			•	•	
except for to be considered as becomes independent for		Ŧ		Ŧ	4
Small structures strongly influenced by: v ≪■>typical size (micro-scale) of dissipating vortices		•		•	
$ ightarrow$ REYNOLDS-number: $ m Re_L pprox (L/\lambda)^2$					•
where					+
\gg L: "integral correlation-lengths" or typical size of energetic vortices \ll					•
Measures for Mean-Sizes of Vortices in a Dissipation-State independent from REYNOLDS-Numbers					and the second

Further measures were added by PRANDTL on base of his "mixing distance hypothesis". Under assumptions:

•
$$\hat{c}_1 = \hat{c}_1(x_2) \wedge \hat{c}_2 = \hat{c}_3 = 0 \wedge c'_{(j=1\rightarrow 3)} \neq 0$$

he developed an impulse–exchange–model for turbulent shear–tensions. Starting from kinetic gas–theory he specified a molecular viscosity as product of molecular speed and average–free–distance of the molecules and proposed for the pendant – the turbulent motion – a similar connection will have to exist. This means, he

proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

	and an other states of the second							
≫transported quality≪					•			
≫turbulent motion of a fluid		•		•				
assumed to be transports to becomes		ŧ		Ŧ	4			
\gg macroscopic pendant \ll \blacksquare \gg quality: $q(x_2)$ \ll		•		•				
$ Q = \langle c'_2 [\langle q(x_2)_2 \rangle - q(x_2)_1] \rangle $					•	•		
of		ŧ		Ŧ				
with	-					Ŧ		
≫kinetic gas-theory <i>≪</i>	•	•						
a turbulence-ball $q = q(x_2)_1 - q(x_2)_2 = q(x_2 + \Delta x_2)_1 - q(x_2)_2$				•		•		
expanded into						Ŧ		
TAYLOR-series ≪						•		
leads to	Ŧ					Ŧ		
with		Ŧ		Ŧ				
\gg molecular viscosity: $\nu = \lambda_m \langle \underline{s}^2 \rangle^{1/2} \ll \blacksquare \gg$ velocity: $c'_2 \ll$	•			•				
$ \gg \mathbf{Q} = \langle \langle \mathbf{c}_2' \Delta \mathbf{x}_2 \rangle \langle \langle d\mathbf{q}/d\mathbf{x}_2 \rangle _2 + \frac{1}{2} \langle \langle \mathbf{c}_2' (\Delta \mathbf{x}_2)^2 \rangle \langle d^2 \mathbf{q}/d(\mathbf{x}_2)^2 \rangle _2 + \dots \ll $						•		
≫a similar correlation≪		•	•					
where	Ŧ		Ļ	₽		ł		
\gg mean distance between molecules: $\lambda_m \ll \blacksquare \gg$ vortex-viscosity \ll	•		•					
$\mathbf{Q} = \langle \langle c_2 \Delta \mathbf{x}_2 \rangle \langle \langle dq / d\mathbf{x}_2 \rangle \rangle _2 \ll$						•	•	
becomes 🔶 for leads to	Λ		Ŧ			+	ł	
\gg speed of a molecule: $\underline{s} \ll \blacksquare \gg$ product $\ll \blacksquare \gg$ very small: $\Delta x_2 \ll$	•		•			0		
of			Ŧ			.38		
≫characteristic speed			•				•	
where			Λ				Ŧ	
≫characteristic length \ll ■ ≫ $\Delta x_2 = (x_2)_2 - (x_2)_1 \ll$			•	•				
$ = \frac{\langle c_2 \Delta x_2 \rangle}{=} l^* \langle (c_2)^2 \rangle^{1/2} \ll $							•	•
for 🔶 where							Ŧ	Ŧ
$c_{2}^{\prime}\Delta x_{2} < 0 \ll \mathbf{I}$ exchange-length: $l^{*} \ll$							•	•
Overview of PRANDTL's Mixing-Distance-Hypothesis								

As outcome – in connection with the above considerations – a length ($l_m = mixing$ -distance-length) can be be estimated, which informs about the average-distance a turbulent-ball (vortex) must travel until it loses its individuality – being transformed into another vortex or due to viscosity into heat. This is further demonstrated in the following scheme:

$ \gg [c'_1 = \Delta x_2 (dc_1/dx_2)] \wedge [\langle\!\langle (c'_1)^2 \rangle\!\rangle = \langle\!\langle \Delta x_2^{-2} (dc_1/dx_2)^2 \rangle\!\rangle] \wedge [\langle\!\langle c'_1 \rangle\!\rangle \sim \langle\!\langle c'_2 \rangle\!\rangle] \ll $			•	•		
$partial q(x_2) > q(x_2)$	•					
identified by ♦ leads to	Ŧ		Ŧ	Λ		
\gg impulse: $\langle p \rangle = \varrho \langle c_1 \rangle \ll$	•	•				
$\gg \langle (c'_2)^2 \rangle^{1/2} \sim \langle \Delta x_2^2 (dc_1/dx_2)^2 \rangle^{1/2} = \langle \Delta x_2 \rangle^{1/2} \langle dc_1/dx_2 \rangle \ll$			•	•		
leads to	Ŧ			↓		
where		+				
$\gg c'_1 = \langle c_1(x_1) \rangle - \langle c_1(x_2) \rangle \ll$		•				
shear-tension: $\tau_T = -\varrho \langle c'_1 c'_2 \rangle = -\varrho l^* \langle \Delta x_2^2 \rangle^{1/2} \langle dc_1/dy \rangle \langle dc_1/dy \rangle \ll$	•			•		
				V		
$\gg \tau_{\rm T} = -\varrho l_{\rm m}^2 \langle dc_1/dy \rangle \langle dc_1/dy \rangle \ll$				•	•	
where					Ŧ	
$\gg l_m^2 = l^* \langle \Delta x_2^2 \rangle^{1/2} \ll$					•	•
specifies						+
≫measure for distance where in transported entity loses its individuality <						•
Consequences from Mixing-Distance-Hypothesis						

2. Effects on Vortex-Model in Discussions [2].

2.1. About Eddies shaped as spherical Fluid-Elements.

The existence of REYNOLDS-tensions within a turbulent fluid-volume give rise to a picture of substructures within the fluid-volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with individual surface-tensions, directly or indirectly related to the REYNOLDS-tensions. The spheres are filled with certain amounts of turbulent translation- and rotation-energy and due to the dynamic of the turbulence permanent forces will act on their surfaces, which finally cause a cascade of splitting-steps.

2.2. Measures relevant for Sizes of the Splitting-Cascade.

Discussions [2] are relevant in a turbulence—range with dissipation independent from REYNOLDS—numbers; the REYNOLDS—equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical size—measures:

- L: for energetic vortices and
- λ : for dissipating vortices

could be obtained from REYNOLDS—equations as well; these estimates are of relevance in discussions [2] because:

- The splitting-cascade starts with a vortex of size (L) and
- Difference between (L) and (λ) is decisive for the step-number of the splitting-cascade.

A final parameter (l_m) of turbulence could be estimated from PRANDTLs "mixing-distance-theory" and is decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

- Measure for the distance where energetic vortices will split into follower-vortices and
- Measure where dissipating vortices are transformed into heat on account of the fluids viscosity (ν) .

2.3. Concluding Remarks with regards to Discussion [2].

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the assumption of discussion [2] seems to be appropriate, to consider eddies in turbulent flow as spheres. The assumption seems appropriate because it harmonizes with turbulent-tensions and measures as outcomes from REYNOLDS-equations and PRANDTLs "mixing-distance-theory". Moreover is an existence of a splitting-cascade – from energetic to dissipating vortices with the final dissolution of the latter ones into heat – supported by PRANDTLs "mixing-distance-theory".

3. References.

[1]	Fiedler, H.E.	Turbulente Strömungen, Vorlesungsskript, TU Berlin (Hermann– Föttinger–Institut) & TU Braunschweig (Institut für Strömungsmechanik), 2003
[2]	Steinemann, U. E.	Turbulence as structured Route of Energy from Order into Chaos, 2018, http://viXra.com/abs/1801.0037