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Current text is to be considered as an addendnm for the earliel text: "Turbulence as structured Route of
Energy from Order into Chaos, by Udo E. Steinemann, viXra.com/abs/1801.0037". Ttre recent script introduced
a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a
turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time
of the article mentioned above. By the current text I have tried to justify the former model-idea on account of
outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theorv.

AUdo E. Steinemann, Justification of Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid, 01{8-2019.



L.Introduction.

Most Information contained in this chapter has been extracted from [1].

L.1. Fluid propert'ies.

A set of properties presented in the scheme below maybe appropriate for the chatacterization of a turbulent
fluid during subsequent discussions.

)density:p( o
)pressure in turbulence fluid: afu,t)= äk)+a'(r,t)K o

) speed-vector of turbulence fluid: c(Lt) = QE)+S'E,t)K a o
conposed of, + +

)mean portion: ek)K O o
)mean portion:eG)KrlO = const( o o

)stochastic portion representing fluctuation: g'(t,t)K a o
)stochastic portion due to fluctuation: a'(r,t)( a

+ +
)(location-vector: 1) n (time.variable; t)K a o

deconposed into + + +
äcomponents: crAcrAcr(r>components: etAezAe,<r>components: c'rAc'rAc'*( a o C

accading to I + + +
)rectangular coordinate.system( o o o

with + + +
)(x1-axis) A (x2-axis) A (x3-axis)( o O o

P ropefti es of tu rbulent F I u id

,,-.;-

As shown below there is direct way from NAVIER-STOKE equation for a non-stationary fluid to the
RtrYNOLDS-equation, which finally will deliver fluid-tensions due stochastic fluctuations of the fluid.

>NAVIER-STOKE.equation for non.stationary fluids( o
represented by I +

/de/ dt = (o e/ otl+e(V.d = g-s-1(Va)+u(Ad( o

)dc,/dt = {O c, / Et)+co(äc,/ Oxj = fi-e-l(äa / O x,\+v(02 c, / O *o,\ K o o o
where l

).Li,k = (1,2,3)J 4 [f; = external forces] n [v = viscosi§]( o
takes into consideration I 1 | teals to + +

)fluctuation-propefi : c = e+c'K a

)time-everage of a property: «...»< o
>@ e 

i / O ü+ek(A e 
i / AxJ = f:*I-l( O ä, / O x,l+v(Az e, f A xu21 - @n @ c i / O xol\ § o o

+
)(cu'(dc,'/dxu)) = (d(cot,')/dx*)-(c,'(dc,'/dx"))( o

)continuity-equation: Oci / Ox,= A( o
leads to +

>REYNOLDS.equation( o
I represented hy +

> @ ö 
i / A q + ek(A e 

i / A xkl = t r a-r (O d / O x il +u (Oz ä, f A xo2)-(d(cn,c, J /diJI< o o
+

* lv (O z 
ä., / O xoz) = p- t (O r,* / O xull n [(d(co! ]/ax)1 = (d(co'c, ) /dxn)l ( o
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{eads to +
> {A e i / A q + eo(O e, / o x*l = f . - I -1( aä / O x,) + p-L (O/ äxn [.r,o- p (c, ?n)] ) o o

resalts in I +

)stress-tensor: -g(cr'c*) =

((c1J2)(clt rl(icr'cr)
(-p ) -(.r'"r)((c212)(c2'ca)

(c*t, )(c*'c,'»((c"')ry<
o a o

giyes + +
)normal tensions, {(-p.((c:')'?)) * CI = 1,2,3)}( o
)shear-tensions: {(-p.(coco)) ---*(p,q = 1,2,3)}( a

REYIUOTDS-Iensions

L . 3 . P hg si, cal I nt er pr et ati,an a f the REY N O L D S -T ensz ons .

Obviously exist an analogy - as demonstrated by scheme below * between
mechanics and those entities introduced by O. REYNOLDS, which can rightly

tensions as they exist e.g. in
be called tensions.

)r*: shear-tensions: {(*p.([c,'"")) n (p,q = 1,2,3)]( a
)normaltensions: {(-S.«c,l')) A (i = 1,2,8)}< o a

represent I 1 | consilered as I I I acting as I + +
)macroscopic anisotropic analogy(rlpendant( o a

)parallel.motion in (x,,x2)-plane( a a
I intercectinq +

)A-plane within (x2,xu)'plane( o o
attackedbyl I I caases + l

)shear-tensions: rrKt *shear-force: F = A.Tr = gA(c2'cr)( o a
of + +

)molecular-motions in kinematic gas.theory( o o
I where is specified +

I teads to + +
)statistical pressure: p = 3-1m.n((s2)4rpr* = q(A/FXcrtrT€ o ür

)in x,-directionr {(pj = O.((c:')')) n (i = 1,2,3)}< o
with +

)number of molecules per unit-volume: n( o

)molecule-mass: m + (m.n = A)< o

*mean kinetic.energy per molecule.mass: (s2)4 a
Physical I nterpretation of th e REYIUOTDS-Iensrbns

; :. i:.,,; l't,r ;;. :i:,,i,ir'ii., :r.,' it:'i,':i,,'.,, , ,...,, .,:' .,,.,,,.

Local non-stationary time-modifications of energy in a trubulent fluid-volume are clue to interactions of
four different time-dependent effects: production, dissipation, convection and diffusion. Two of them -production and dissipation - have to be considered as source and sink of turbulent energy, the other two effects -convection and diffusion - are responsible for transportation of the energy through the turbulent fluid-voiume.
Wliile production is strongly related with REYNOLDS-tensions and creates order in fluid-volume on this base.
dissipation on the other hand transforms turbrilent energy by fiction into heat and creates cha,os thereby.
Production and dissipation - equally sized - turn out to be counterparts in creation and destruction of order.

)in complete flow.area of the fluid( o
)local non-stationary time.modification of turbulent energy( o

contains I I I is cnnstantly fitlfitled + +
)terms( o

for I +
)production: acceptance of turbulent.energy from tensions( o o o o o o

dae to + +
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}normal-tensions: -,=1X' [((c'i)1] ( A e, / O x,)l§ a a
as | | | can be eonpared with + +

}shear-tensions: -(c'rc'r|l@ e1/ Ox2) +@ e2 / A x)l-
(c'1c'3)[(äö r/ O xr) +(O eu / 0 x)7-
((c'rc'") [( ä6, /Ex")+( äe" /Ox")l €

o a

)source( O
I can be conbined to +

ä,=rX"( u=tDö Ir,u( 0 e, / äx* )l )K
)dissipation: waste of turbulent.energy by transition into heat( a O a a o o

specifred by I ) I as I | | in specific sease of 
, + +

yu{2[p1x3((acjaa)2]+
([(O c' j Ox2) +(O c' 2 / Oxr)1'z]+([(Ac' r/ Oxr)+(O c' rl 0xr)12]+

(l(O c' 2 / Oxs\ +( O c' 
" 
/ Ox, )l 2)K

a

),sinkKr Penergy.transition from order into chaos( a a
)convection: transpoftation of turbulent.energy due to mean.motion( o a

speciliedbyl | | represent + +
/ -Yz {i=1E3(aei(k=1»3( c' )z) / Ox,)}§ O

)diffusion: transportation of turbulenlhenergy due to fluctuations( a o
specilied by I +

} -,=.x' ( ä (c',{p' f p+Yz[u=, x' (.'u )'] ]) / ax, ) I K O
)energy-changes in the considered fluid.volume( o

Production for Creation of Order and Dissipation for Destruction into Chaos playing
the roles of Caunterparts in turbulent Fluid-Volume

1.5. Measure far S'izes of energeti,cVorti,ces and dissi,patingVortices in a Diss,ipation-
S tate'i,ndepend ent o f HEY N O LD S -Numb er s.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about measures of average-
sizes (L) for energetic vortices and (\) for dissipating vortices as well. This is made obvious in the following
scheme:

)dissipation: waste of turbulent.energy by transition into heat( a
as specified by +

}'u{2 [.,=183(( Ocjax)z]+
{[( O c' 1 / o x2) + ( o c' 2 / O xr ) I'?]+( [( A c', / d x r) + ( 0 c', / o xr)lz§ +

([( D c' 2 / ö x3\.a ( O c' * / A x, ) I 
2]( o

written nore densely +
)uI i*=rX'([( äc',äx*)+( äc'oäx, )] ( äc'uäx,)[( o a

leads to +
}- v((äs)'»/\'< o o

il ll I where + +
)turbulent state independent of REYNOLDS.numbers( o a

>\ = r=rx'( (c' r)2 / (a cr/ Ex,)2)r/24 o a
except fa I I I to he considercd as I 1 I necones independent for I + + +

)small structures strongly influenced by: u <r>typical size (micro.scale) of dissipding vortices( a a
>REYN0LDS-number: Re,. = (L/X)2< o

I wherel +
)>T,: "integral correlation-lengths" or §pical size of energetic vortices( a

Measuresfor Mean-Sizes of Vortices in a Dissipation-Staüe independentfrom REYITIOTDS-IVumbeE

Further measures were added by PRANDTL on base of his "mixing distance hypothesis". Uncler assumptions:

. 01 =er(xr) nCz =ös = 0Aci,=1_3i10

he developed an impulse-exchange-model fbr turbulent shear-tensions. Starting from kinetic gas-theorv he
specified a molecular viscosit5i as product of molecular speed and average-free-distance of the molecules and
proposed for the pendant - the turbulent motion - a similar connection will have to exist. This means, he
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proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-
called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

)transported quality( o
)turbulent motion of a fluid( a a

assuned to be | 1 | transports I 1 | becones I + +
)macroscopic pendant(r>quality: q(xz)< o a

)Q = ("', [(q(*r)r)-q(r, )r])K a a
of, + +

+
)kinetic gas-theory( o o

)a tqlbulence.ball( I )q(*r)r-(q(xr)r) = q(*r+Ax2)1-(q(xr)r)€ o a
expanded into I +

)TAYLOR-series( o
leads to + +

with + +
)molecular viscosity: y = L(b2»t/2( r )velocity: c'2( a a

} Q = (c'rAx2)(dq/dx2\l 2+Yz (c' 2(Lx2 ) 
2)(d2 q/d( r, ) ) l, +. .. < o

)a similar correlation( o a
wherel | | neansl I I acrossl 1 | leadstol + + +

Zmean distance between molecules: \m<r>vortex-viscosity( o t
)Q = ("'rAxr)(dq/dx2)12( o a

beconesl I I furl I teads to + +
)speed of a molecule: §<r>product(Ilvery small: AxrK a a

of +
ächaracteristic speed( I 5»Q = -l*((c', )2)1/24 o a

whae I +
*chafacteristic length(r äAxz = (xz)z-(xz)r( o O

)-(c'2Ax2) = l*((c'z)'»t/'< o O
lorlllwhere + +

/c' 2Lx2 < 0< I >exchange.length: l*( o o
Overview of PRA rDft's Mirtng-Distance-Hypothesis

As outcome - in connection with the above considerations - a length (1* = mixing-distance-length) can be
be estimated, which informs about the average-distance a turbulent-ball (vortex) mrxt travel until it loses its
individuality - being transformed into another vortex or due to viscosity into heat. This is further demonstrated
in the following scheme:

*[c'r = Ax2(dc1/dxr)ln [((c'Jz = (Ax2z(dcl ldxzl'»l A [(c'r) - (c'r)]K o o
)quality: q(x2)< o

identifrbd by | | leads to t +
)impulse:(p) = p(c.)K o o

>(( c'2 ) 
2»'/? - (Axr2(d c1 / dxrlzyr t z 

= (Ax,) 1/, 
I 
(dc, /dx,) I ( o o

leads to + +
where +

*c'r = (cr x1))-(c1(x2))( o
shear-tension : r, = -p(c'rc'r) = -{l*(Axrzn 

tlz 
| 
((ac/ay) 

| 
(dc1/dy)( a o

)r, = -pl*2 [(dc, /dv) | 
(dcr /dv)K o o

where I +
*l-'= l*(ax »t/'< o a

specifies +
)measure for distance wtere in transported entity loses its individuali§( a

Conseguences from Mixing-Distance-Hypothesis

Udo E. Steinemann, Justilication of Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid, 01-08-2019. 4



',;..{1-i.! r'i-'i.:r,ijl,, i''1',,;'',t;,..,1' -.1,;ll.,ili,',i i,l i'.;1,.,';;.}',.,iiij;t. i-.1 ,.

,f , j ii.'1.:1,1 j.1 ,;11;:r .'r ,,;j;::i.,I ij rt.. .l::r:: j iJ',;:i :i.,',,r,,i * ,,,,i1,;,.1 ,, r,-

The existence of REYIt{OLDS-tensions within a turbulent fluid-volume give rise to a picture of sub-
stmctures within the fluid-volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development
of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with
individual slrrface-tensions, directly or indirectly related to the RtrYNOLDS-tensions. The spheres are filled
with certain amounts of turbulent translation- and rotation-energy and due to the dynamic of the turbulence
permanent fbrces will act on their surfaces, which finally cause a cascade of splitting*steps.

':.-": . 1jr,,,;r,r1,.,,'i.... ::., j.i :.i::tl ii;,i .';r j':': .-:-t i ,'.;t,i :,:;i:,,.1.;,,,;,-{ 'r.. , ,. ,,

Discussions [2] are relevant in a turbulence-range with dissipation independent from REYNOLDS-numbers;
the REYNOLDS-equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical
size-measures:

o L: for energetic vortices and
. \: for dissipating vortices

could be obtained from REYNOLDS-equations as well; these estimates are of relevance in discussions [2]
because:

e The splitting-cascade starts with a vortex of size (L) and
o Difference between (L) and (\) is decisive for the step-number of the splitting-cascade.

A final parameter (1,") of turbulence could be estimated from PRANDTLs "mixing-distance-theory" and is
decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

o Measure for the distance where energetic vortices will split into follower-vortices and
o Measure where dissipating vortices are transformed into heat on account of the fluids viscositv (u).

'. :. i rir.:,''ir,ril::t,; iai ljrr',,:'i.,r ii,,,i.:'t i.i'rt.i:.,i.ii- j,, i.]r..,,..,,.r.ri:i. .*l

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious tliat the
assumption of discussion [2] seems to be appropriate, to consider edclies in turbulent flow as spheres. The
assumption seems appropriate because it harmonizes with turbulent-tensions and measures as outcomes from
REYI{OLDS-equations and PRAIIDTLs "mixing-distance-theory". Moreover is an existence of a splitting-
cascade - fi'om energetic to dissipating vortices with the final dissolution of the latter ones into heat - sgpported
bv PRANDTLs "mixing-distance-theory".

. r .;l:. i'i t ,: i:' t ii't ,-..,
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