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Abstract We offer a realist interpretation of non-relativistic quantum mechanics in which 

dynamical properties are properly possessed by the system in question, and are supposed to 

have definite values at any time. Like the QBists, we employ Bayesian probability, but we 

adopt something closer to the Bayesian statistics of E. T. Jaynes than to the subjective 

Bayesian statistics of B. de Fenetti employed by the QBists. Accordingly, we view calculated 

Bayesian probabilities as rational degrees of expectation of dynamical property values rather 

than as personal degrees of expectation of future (measurement) experiences. Probabilities 

are, for us, based on knowledge of the value of some dynamical property of the system, not 

on knowledge of previous experiences unassociated with system dynamical properties.  As 

some Bayesians might, we take a probability equal to 1 not generally to indicate certainty but 

only (full) expectation; and we disallow probabilities of conjunctions of propositions 

claiming incompatible properties. Then, by reinterpreting and adding a little to the quantum 

formalism, we argue that we can maintain the advantages of the QBist interpretation. So, for 

us (as for the QBists), there is no unexplained collapse of the wave function, no need for 

‘spooky action at a distance’, and no problem raised by the double slit experiment, the 

Kochen-Specker paradox or Bell type theorems. By holding on to a realist perspective, 

modelling (of ideal measurements, of system preparation processes etc.) is possible, and we 

can claim certain dynamical laws of quantum mechanics without leading to contradiction. 

 

Keywords Quantum Mechanics, uncertainty principle, Bayesian probability, Realism, 

QBism. 

 

 

1 Introduction 

 

In this paper we offer a new realist and probabilistic interpretation of pure-state non-

relativistic quantum mechanics1.  

 To understand the sense in which it is realist we need to clarify what we consider to 

be properties of a quantum mechanical system – properties that we take to be real, and 

actually possessed by the system. We take a ‘property’ of a system to be an aspect of it 

quantified by one or other of the eigenvalues of any one complete set of commuting 

observables relating to the system. The quantified value of a property (in certain units) is thus 

a single number when the complete set contains just one member, but more generally it is a 

set of numbers each associated with a particular observable of a complete set. Even so, we 

                                                 
1 Throughout this paper we will assume non-relativistic conditions apply. So by ‘quantum mechanics’ we will 

always mean non-relativistic quantum mechanics. 
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will always refer to the ‘value’ of a property (meaning a single number or a set of numbers) 

much as one speaks of the ‘value’ of a vector –meaning all three (or more) of its components.  

 We note that the term ‘system’ used here may refer to a particular aspect of a larger 

system, an aspect of which we could have pure knowledge. For example, in a single electron 

system, we may single out the electron’s orbital motion as a ‘system’, concerning which we 

might (under certain circumstances) have pure knowledge (the electron’s spinning motion 

being then independent of its orbital motion and not entering into consideration at all). We 

may speak of properties of this ‘system’ (e.g. the electron’s position in space or its 

momentum in momentum space) as properties possessed by the ‘system’ (i.e. by the 

electron’s orbital motion). We may similarly single out the electron spinning motion as an 

aspect of the electron system, and speak of the properties of this ‘system’ (e.g. its spin 

component in the z-direction of one particular Cartesian coordinate frame, or its spin 

component in the z-direction of another Cartesian coordinate frame). These various properties 

of the electron system are supposed to be real, properly possessed properties, in any 

circumstances, whether or not the orbital and spinning motions are independent and 

regardless of whatever knowledge we may or may not hold about the dynamics of the 

electron’s motion. 

 

Our interpretation is realist in the direct sense that we take any property (as defined above) to 

be an actual real property of a quantum mechanical system – a property which at any time is 

supposed to have a definite value (whether we know that value or not). It is probabilistic in 

that we view the pure-state quantum formalism as providing the means to calculate 

probability distributions over the possible values of any one property supposing knowledge of 

the value of another.  

 Our interpretation of the quantum formalism has something in common with the 

recent QBist interpretation (well described in [1]) yet differs markedly from it. In common 

with the QBist interpretation, we employ Bayesian statistics, but we employ a form of 

rational Bayesian statistics closer to that of Jaynes [2] than to the Bayesian statistics of Finetti 

[3] used by the QBists. Crucially, as we have said, we attach full reality to all properties 

associated with complete sets of observables at all times, whereas the QBists deny (or do not 

commit to) the reality of such properties. The probabilities derived in our interpretation are 

our logical degrees of expectation of actual values of system properties. They are not (or not 

just) personal degrees of expectation of our future (measurement) experiences as the QBists 

would say. We are not QBists for the same reason that Marchildon [4] is not. That is, we do 

not see physics as merely a set of rules relating our experiences, but see it as having, as its 

central aim, the discovery of the nature of the real physical world and our place in it. We see 

physics as performing the job of ‘saving the appearances’. Without contradicting this view of 

physics, we do however believe a quantum state (or wave function) is representing our 

knowledge regarding the physical state of the system rather than representing the physical 

state itself. We see wave functions as providing (in the form of their squared moduli) 

probability distributions over the possible values of system properties given our knowledge of 

the value of a particular system property. 
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In most interpretations of quantum mechanics (including the Copenhagen and QBist 

interpretations) the uncertainty principle is, we argue, taken further than it should be. In its 

original or simplest form it claims that some knowledge (like knowledge of the position and 

momentum of a particle to arbitrarily fine precision) is unobtainable in principle owing to the 

very nature of matter, and, therefore, of any measuring apparatus we might employ to try to 

obtain that knowledge. However, in its (let us say) ‘more developed’ form it is taken further 

to imply that dynamical properties themselves (like a particle’s position or a particle’s 

momentum) are generally non-existent or do not have precise values. Hence an electron can 

be ‘in two or more places at once’, or ‘nature herself generally does not know where an 

electron is’, etc. 

 We take this ‘more developed form’ to constitute a Mind Projection Fallacy, and 

instead of denying or blurring the possession of properties, we will take the uncertainty 

principle in its simplest sense - that simultaneous knowledge of more than one possessed 

property is sometimes impossible. That way we keep the classical notion of ordinary 

possession of exact properties by systems, and admit only to not being able to know or 

accurately measure every combination of them at once. Most importantly however, we do 

take the simplest form of the uncertainty principle as signalling the need to change the way 

we reason about the quantum world as opposed to the classical world. That is, the rules of 

(knowledge based) Bayesian probability (as an extension of logic) should, in quantum theory, 

be changed from the form they take in relation to classical physics (or ordinary life). Of 

course, in classical physics the uncertainty principle is of no significance on account of the 

relatively imprecise nature of our knowledge and of the measurement means by which that 

knowledge is obtained, and classical probability is the appropriate theory of probability to use 

then. 

 

The detailed nature of quantum mechanical systems is unknown at present, and this prevents 

us forming clear physical pictures of processes in quantum mechanics. The only thing we 

know for certain is that some system properties have classical analogues and that in the 

classical limit these properties follow the classical laws of motion. Quantum mechanical 

processes can therefore only be pictured clearly in the classical limit. 

 However, rather than proceeding in a purely formal manner with regard to quantum 

mechanical properties (a procedure which has its problems, in particular, with regard to 

continuity to the classical limit) we will commit ourselves to a certain physical picture of the 

quantum world, all be it incomplete. This picture will help fix ideas, at least for the present. 

 To form this picture, we take particles to be real material points (as in classical 

mechanics) but we drop the differentiability of particle position coordinates with respect to 

time normally assumed in classical mechanics. 

 We thus claim that quantum mechanical systems are made up of particles (material 

points) in the classical sense, except that their motions, though continuous, are irregular even 

at the smallest scales; that is, they move rather like pollen particles in Brownian motion. So, 

with regard to a system of particles, the representative point in configuration space 

accordingly moves in an irregular fashion also. 
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 The continuous but irregular motion (of a single particle or of a representative point in 

configuration space) is, we suppose, present even over vanishingly short times. The motion 

over vanishingly short times can be thought of as occurring in addition to the drifting motion 

over any ordinary (non-vanishing) time period. The momentary values of the quantum 

mechanical spin components and momentum components of a particle (in relation to any one 

particular Cartesian coordinate system) are, we suppose, associated with the irregular motion 

going on during vanishingly short times. (In fact, any one of the inferred momentary 

dynamical properties of a system claimed in section 5.4, is supposed to be associated in one 

way or another with the irregular motion going on during vanishingly short times.) These 

properties will need more than the simple differential calculus to describe mathematically. 

We make no attempt here to provide such a description, but simply postulate that one day it 

might be found possible to characterise the irregular motions in vanishingly small times, and 

thus to define particle velocities, spins, and all dynamical properties in a definite 

mathematical way. This might account for why particle momenta components take 

continuous values while particle spin components can only be multiples of 
2

1
 etc. 

 For the present (i.e. in the theory we offer now) we simply claim that the momentary 

components of a particle’s spin or of its linear momentum are internal properties of the 

particle, which differ, and take different values, depending on the Cartesian coordinate frame 

employed. We claim that all the momentary dynamical properties of a system (including the 

inferred properties claimed in section 5.4) are generally associated with internal properties of 

the particles and differ depending on the Cartesian coordinate frame employed. As we have 

said, particle positions change in a continuous but irregular way, and we distinguish between 

internal properties of particles (properties of their motion in infinitesimal times) and their 

drifting motions through space (during non-infinitesimal times). 

 As in classical physics, particles may be moving in external (scalar or vector) 

potential fields associated with macroscopic sources. For example, they may be moving in 

the electric field (electric potential gradient) between electrodes, or in the magnetic field (the 

curl of an electromagnetic vector potential) due to an electromagnet. Charged particles (e.g. 

electrons) generate electric potentials and hence electric fields which they carry around with 

them. We take these fields to be quasi-static (see section 7.1). External potential fields and 

the potential fields due to particles themselves are at any time continuous and differentiable 

with respect to spatial coordinates. External potential fields may also be considered to be 

differentiable with respect to time, but this is not true of the (quasi-static) fields of quantum 

mechanical particles themselves owing to their irregular motion.  

 The internal properties of a particle are, we suppose, influenced by the spatial 

derivatives of external potentials in the particle’s vicinity whenever the particle is sensitive to 

the kind of potential in question. In particular, under an active external scalar potential, 

particle momentum is, we suppose, changed at a rate proportional to the spatial gradient of 

the potential field at the point occupied by the particle as in classical mechanics. Likewise, 

the components of a particle’s spin are supposed to undergo actual precession about the local 

external magnetic field at the rate quoted in quantum mechanics text books.  

 In this paper we postulate no detailed laws governing the effects of potentials on the 

drifting motion of particles, we claim only that a particle’s drifting motion is in some way 
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affected by the values of the potentials in its immediate vicinity, and we rely on the 

Schrödinger equation to calculate our probabilities for particle position at any time. This 

suggests, as is well known, an apparent tendency of a particle to drift from regions of high 

potential to regions of low potential. Because we suppose particle momentum is determined 

by the local spatial derivatives of the potentials, it is understandable, then, that there is a 

statistical correlation, in the classical limit, between the internal property of a particle’s 

momentum on the one hand, and the particle’s mass times the velocity of the particle’s wave 

packet on the other.  

 

Several apparent problems with property possession have been raised in connection with the 

double slit experiment, the Kochen-Specker paradox, Bell type theorems and so on. These 

have led many researchers to reject entirely the actual possession (by systems) of real 

dynamical properties. However, we reinterpret (and add to) the formalism of pure-state 

quantum mechanics in a way that renders those problems, and others, non-existent. To 

achieve this it will be necessary to state more precisely than usual (i) what probabilities mean 

and how they are to be calculated, (ii) when and how the collapse of a wave function can be 

carried out, and (iii) what constitutes the classical limit. 

 

Many of the ideas presented in this paper are similar to those employed in an earlier work [5] 

self-published by the author. In that earlier work certain rather general laws relating to the 

drifting motion of particles are included. (These are, for example, to do with the isotropy and 

homogeneity of space and time in relation to motion in general, and to the absence of a direct 

effect of local potential gradients on drifting motion.) Using these laws, we derive the usual 

quantum formalism (including the Schrödinger equation) on the basis of a proposed Bayesian 

(complex-valued) probability theory peculiar to quantum mechanics. In the present paper we 

provide a shorter (self-contained) theory relying on the usual quantum formalism for 

calculating ordinary (real-valued) probabilities. We thus have no need, in this paper, to 

formulate complex-valued probability theory, or to employ physical laws relating to the 

drifting motion of particles. Some of the illustrative examples in this paper are different from 

those in [5]. At certain points in the paper we make comparisons with the theory in [5], and 

take the opportunity to add to, improve and correct some of the ideas in [5].  

 

 

2 Probability theory in general 

 

We adopt, with Jaynes [2], a rational Bayesian view of probability and start out by claiming 

that the probability of an event (given our limited knowledge of the process in question) is 

our degree of belief that that event occurs. We suppose certain rules of probability hold and 

can be used to calculate probabilities. Probability theory is thus treated as an extension of 

logic. Or as Jaynes would say, probability is ‘the logic of science’.2 

                                                 
2 The expression ‘the logic of science’ (meaning probability theory) seems to have been coined by Jaynes and 

used in the title of his famous book on Bayesian probability [2] published shortly after his death. He uses the 

term ‘the logic of science’ to reflect the view of probability taken by Clerk Maxwell who, when writing to a 
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 We will, however, differ from Jaynes in one respect. For we will suppose that if a 

calculation gives the probability of an event equal to 1 , we should take that to mean we 

expect the event to happen, rather than to mean it must certainly happen given of our 

knowledge of the process and our knowledge of physical law. That is, an event whose 

probability is 1  might not be certain to occur, but will be expected to occur given our 

knowledge and our logical deduction (of its probability) from that knowledge.3 Similarly, an 

event whose probability is calculated to be 0  is (fully) expected not to occur.  

 In support of making this change (from certainty to expectation) we note the 

following two examples of common occurrence of probabilities equal to 1 . 

 

(i) With regard to a known probability density )(xp  which is a differentiable function of a 

continuous variable x , the probability that 41  x  might have a definite (non-zero) value 

equal to 
4

1
)( dxxp , and )(xp  may be finite and non-zero for 80  x , but the probability 

that x  (say) is then zero, and the probability that x  differs from   is equal to 1 . This 

does not, however, mean we are certain that x  differs from  . It means only that we expect 

x  to differ from  . 

 

(ii) It can sometimes be shown (given our knowledge) that the probability of a particular 

relative frequency of an outcome of a process is close to 1 , and equal to 1  in a certain limit. 

According to our view of probability, this does not mean we are then certain of that particular 

relative frequency even in the limit. It means only that we expect that particular relative 

frequency in the limit. This is as it should be, for there may be nothing physically causing this 

frequency, and if the frequency were a logical consequence of our knowledge, and therefore 

certain, contradictions would sometimes arise (see the third paragraph of Appendix A).4 

                                                                                                                                                        
friend in 1850, said ‘They say that Understanding ought to work by the rules of right reason. These rules are, or 

ought to be contained in Logic, but the actual science of logic is conversant at present with things either certain, 

impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for 

this world is the Calculus of Probabilities, which takes account of the magnitude of the probability (which is, or 

which ought to be in any reasonable man’s mind). This branch of Math., which is generally thought to favour 

gambling, dicing, and wagering, and therefore highly immoral, is the only “Mathematics for Practical Men,” as 

we ought to be. Now as human knowledge comes by the senses in such a way that the existence of things 

external is only inferred from the harmonious (not similar) testimony of the different senses, Understanding, 

acting by the laws of right reason, will assign to different truths (or facts or testimonies, or what shall I call 

them) different degrees of probability. Now as the senses give new testimonies continually, and as no man has 

ever detected in them any real inconsistency, it follows that the probability and credibility of their testimony is 

increasing day by day, and the more man uses them the more he believes them. … When the probability … in a 

man’s mind of a certain proposition being true is greater than being false, he believes it with a proportion of 

faith corresponding to the probability, and this probability may be increased or diminished by new facts.’ (p.80 

of [6]) 

3 Note that ‘expected’ is not here meant in the way it is in the expression ‘expected value’ (of a random variable) 

used in statistics. To avoid confusion, we will sometimes say of an event whose probability equals 1, that that 

event is ‘(fully) expected’. 

4 As well as expecting certain frequencies we may also expect certain resulting mean values (of physical 

quantities) to be present. These mean values, too, may not be physically determined or logically implied. They 

may therefore not be certain either. 
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 Note that we do not identify probabilities with relative long term frequencies in many 

trials (neither of course would Jaynes, the QBists or other Bayesians), but most physicists 

tend to do so, and in this we suppose they are mistaken.  

 Measurements of long term relative frequencies, however, play an important (or even 

vital) role in the validation and development of quantum mechanics (as in particle scattering 

experiments for example), and in the validation and development of a probabilistic theory of 

any process (quantum mechanical or not). For so long as expected relative frequencies agree 

with observed long term relative frequencies we are happy. When marked and recurring 

differences occur, we feel obliged to rethink the model assumptions on which our probability 

predictions were based, and to modify these till agreement is restored. 

 On account of the alteration in the meaning of probability 1 , we had better change 

from regarding probabilities as degrees of belief to regarding them as degrees of expectation. 

Otherwise a probability calculated to equal 1  would mean full belief which, in the scientific 

context, is the same as certainty. So, for consistency, we had better (and we will always 

henceforth) refer to probabilities as degrees of expectation.5 

 Finally we note that, when we claim, from observations, to hold particular knowledge 

(of the physical world), and base our calculated (Bayesian) probabilities on that knowledge, 

we are in fact never absolutely certain of the truth of the propositions expressing that 

knowledge. Therefore we should, and will henceforth, take the ‘knowledge’ on which 

probabilities are based to be represented by propositions whose truth we have come to (fully) 

expect rather than to know for certain.6  

 

The need for reconsideration of the meaning of probability and of its role in science, and in 

particular in quantum theory, has been forcibly expressed by Appleby [7], who makes a 

detailed study of the various interpretations of probability, and comes to the conclusion (like 

us) that a Bayesian approach to probability is more satisfactory for various reasons and 

seemingly more fitting in relation to quantum theory where probability plays a fundamental 

role. (See also Jaynes [8] and Marlow [9] for support of this view). 

 

 

3 Incompatible properties and non-existent probabilities 

 

In quantum theory we suppose, as we have said, that there are limitations to what we can 

claim to know (i.e. to (fully) expect). We will say that two or more properties of a system 

(properties present at the beginning of, or at any time into the natural evolution of the system) 

                                                 
5 In [5] the squared moduli of complex-valued probabilities were referred to as ‘degrees of belief’. It would have 

been better there too to have referred to them as ‘degrees of expectation’. 

6 This differs from the position taken in [5] where knowledge (of physical properties) was (ideally) assumed to 

entail certainty of the propositions claiming those properties. Relaxation of the meaning of knowledge (to 

expectation of the relevant propositions rather than certainty of them) seems essential for the consistency of the 

interpretation we are offering both here and in [5] (see, in particular, the end of section 6.6 of the present paper). 
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are ‘incompatible’ when it is not possible, on account of the uncertainty principle, to know 

them both at the start, nor to perform measurements to get to know them both at a time 

thereafter.7 (We will see, in section 6.3, that it is, in our interpretation, sometimes possible to 

get to know incompatible properties retrospectively.)  

 We will also stipulate (in common with the QBists) that joint probability distributions 

over incompatible properties do not exist. So for example, with regard to a particle with spin, 

we cannot speak of the probability that the particle has, at a certain time, a particular z  

component of spin and a particular x  component of spin.  

 This limitation on the existence of probabilities is not as obvious for us as it is for the 

QBists who relate probabilities to measurement outcome experiences rather than to possessed 

values. Since it is not possible, for example, directly to measure the z  component and the x  

component of a particle’s spin at one time, experience of such measurement outcomes is not 

possible, so it is naturally meaningless to speak of a probability for such an experience. 

 However, since we are supposing those spin components are real properties, and we 

are assigning probabilities to real properties, one might wonder why we cannot allow joint 

probabilities over them.  

 To explain this, we argue that rational thought is ‘economical’. That is, it need not and 

does not bother with concepts whose truth could never be tested. Since we clearly cannot, for 

example, directly measure the z  component and the x  component of a particle’s spin at one 

time in order to test (in repeated trials) any supposed joint probability distribution ),( xzp   

over those variables, there is no need for that joint distribution. Use of the product rule 

)()(),( zxzxz ppp   to derive ),( xzp   is not possible either, for, under our rational 

Bayesian interpretation, )( zxp   is the probability of x  having acquired knowledge of the 

value of z  (rather than under the mere supposition that z  has a certain value). Acquisition 

of knowledge of the value of z  likely alters the value of x  rendering the formula 

)()(),( zxzxz ppp   inappropriate. So joint probabilities over incompatible variables 

are both untestable and incalculable, and are therefore rightly regarded as non-existent.  

 

As well as properties (as defined in section 1) we have of course all manner of ‘attributes’ of 

a quantum mechanical system (or set of such systems) which are functions of the properties 

of the system(s).8  These attributes include functions of incompatible properties of the 

                                                 
7 Different properties of a system are sometimes compatible. For example, the momentum of a single free 

particle at one time is compatible with its momentum at another time. Knowledge of both is possible at the 

outset because momentum is conserved. Also, at any one time, the z components of spin of a particle in two 

Cartesian coordinate systems with a common z axis are compatible, one spin component being physically 

correlated with (but not the same property as) the other. 

8 We include no assumption (in the quantum formalism) to the effect that any attribute (function of properties) 

has an operator which is the same function of the operators of the properties as the attribute itself is of the 

properties themselves. That assumption is simply not needed in quantum theory. The sameness of the functions 

is in fact already demonstrable in (but only in) the case of functions of the compatible properties of a system in a 

particular representation (so, for example the kinetic energy operator for a particle is related to the operators of 
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system(s). Two or more attributes are taken to be compatible or incompatible according as 

their respective property arguments are compatible or incompatible.  

 Attributes too are taken to be real and properly possessed by a system (or by a set of 

systems), but probabilities over the possible values of an attribute, under any state of pure 

knowledge of system dynamics, are existent only when the attributes are compatible, for only 

then might it be possible to confirm the probabilities by way of measurements in repeated 

trials. Henceforth we will take ‘attributes’ to include ‘properties’ (in the sense that a property 

can be regarded as a simple function of itself). We will take ‘system’ to include a number of 

physically independent (non-interacting) systems (for example a pair of particles no longer 

interacting, or an ensemble of systems set up to perform repeated measurements, etc.). 

 So, in our interpretation, probabilities refer to observable attributes of systems given 

our knowledge. More precisely, if an attribute is unobservable on account of the uncertainty 

principle 9, there is simply no probability for it.10  

 

Finally we note the following rules relating to expectation and incompatible attributes. These 

rules are consequences of the non-existence of certain probabilities noted above, and reflect 

the necessity to change our way of reasoning about expectations on account of the uncertainty 

principle. (This does not mean we need to change the rules of propositional logic. We can 

leave those rules well alone.)  

 

 (i) If we calculate a probability 1  for proposition A  claiming the presence of attribute 

A  of a system at the beginning or at some time into the natural evolution of the system, and 

if we calculate a probability 1  for proposition B  claiming the presence of attribute B  of the 

system at the beginning or at some time into the natural evolution of the system, then we 

expect the truth of A  and we expect the truth of B , but we can only claim to expect the truth 

of the conjunction AB  (i.e. of the presence of the attribute ‘ A  and B ’) when attributes A  

and B  are compatible. If they are incompatible no such claim can be made, and this is related 

to the fact that the probability of AB  is then non-existent and is not demonstratively equal to 

1 . 

 The same applies to any number of propositions ,...,, CBA  claiming attributes of a 

system, or of an ensemble of systems, in natural evolution. If the truth of each of these 

attributes is expected, their conjunction is expected only when the attributes are compatible. 

  

 (ii) Suppose, as a result of physical law, that proposition Y  (claiming attribute Y ) 

implies proposition X  (claiming attribute X ). Suppose, also, that we (fully) expect Y  to be 

                                                                                                                                                        

its momentum components by )ˆˆˆ)(21(ˆ 222

zyx pppmK  , just as the value of the kinetic energy attribute is, by 

definition, related at any time to the values of the momentum components by ))(21( 222

zyx pppmK  .) 

9 as is any attribute that is a function of two or more incompatible properties 

10 This does not however prevent there being a probability of some other (observable) attribute different from 

the original attribute but physically correlated with it under our knowledge of dynamical properties of the 

system in question. See, for example the final paragraph section 6.3. 
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true. Then the probability of X  under our knowledge Y  should be set equal to 1  only when 

X  and Y  are compatible attributes. If they are incompatible that probability assignment may 

not be correct, i.e. expectation of X  does not automatically follow from expectation of Y . 

For, employing Jaynes’ [2] propositional logic notation, the formal proof that 1)( YXP  

when XY   is conducted as follows: we have YXXYYYXX  )(  so 

 )()( YYXXYPYXP  01)()(  YYXPYXYP . However, this proof involves non-

existent probabilities when X  and Y  claim incompatible attributes and is therefore invalid 

then.11 (We employ rule (ii) in section 6.6.) 

 

 

4 Laws of probability in pure-state quantum mechanics 

 

The laws of probability we should adopt for calculating rational Bayesian probabilities based 

on our knowledge depend on the circumstances.  

 Jaynes [2] has carefully formulated probability rules for applications of rational 

Bayesian probability in ordinary everyday circumstances and in classical physics. These 

include the usual sum and product rules, Bayes rule, and various rules for calculating prior 

probabilities (the principle of indifference, the method of transformation groups and the 

method of maximum entropy). He has done this in a way that transcends any other account of 

rational Bayesian theory, and this makes his book a very important contribution to 

knowledge. (See also his many very interesting papers, for example [8], [10] and those 

collected in [11].) In Appendix A we note just a few of Jaynes’ contributions to the Bayesian 

probability debate that are relevant to this paper. 

 Jaynes has also formulated (new) rules of rational Bayesian probability in connection 

with the theory of quantum mechanical mixed states (see sections 7 and 10 of [12]) and has 

thus formulated quantum mechanical mixed state theory in a rather unique way, giving it 

particular clarity and simplifying the derivations of distributions in quantum mechanical 

statistical thermodynamics. This has involved use of a principle of maximum (information) 

entropy defined (in section 7 of [12]) in terms of the weights in a particular array 

representation of the general mixed state of a quantum mechanical system.12  

 However, Jaynes did not try to formulate (new) laws of Bayesian probability for 

application to pure-state quantum mechanics. Yet this, together with the formulation of (new) 

                                                 
11 Note that, the ‘First Law of Extreme Values’ of complex-valued probabilities, claimed on p.9 of [5], needs 

qualification in this regard –a point not realised when [5] was written. 

12 According to Jaynes, any mixed state of knowledge is represented (in the ix  representation) by an array 

 mimi wwxx ,...);(),...( 11   of m  wave functions and associated positive weights (which sum to 1), subject to 

an equivalence relation whereby two arrays represent the same mixed state whenever their density matrices 

(defined as 



mn

knjnnjk xxw
,..1

* )()( ) are equal. See Chapter XIV of [5] for an account of, and 

development of Jaynes’ theory of mixed states. 
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dynamical laws of quantum mechanics, seems to be necessary if we want to reinterpret the 

formalism of pure-state quantum mechanics in a rational Bayesian manner.13 

  However in this paper we take a shortcut and simply suppose (as the QBists do) that 

(real-valued) probabilities are calculated directly, using the usual formalism of pure-state 

quantum mechanics; but, in keeping with our realist approach, we reinterpret that formalism 

in the following manner. 

 

 

5 Reinterpretation of the formalism of pure-state quantum mechanics 

 

Our interpretation of the quantum formalism differs from the traditional interpretation and 

from that of the QBists. It is as follows. 

 We take the state (ket) vector in Hilbert space to represent our supposed ‘pure-state’ 

of knowledge of the dynamical properties of the system in question, not the physical state of 

the system (and not just our expectations regarding our ‘future experiences’ relating to 

measurements made on the system). In the ‘Schrodinger picture’ this means that any wave 

function at any one time (representing the system’s (time evolving) ket at that time) also 

represents our supposed pure-state of knowledge of the (time evolving) system’s dynamical 

properties, not the physical state of the system at that time (and not expectations of future 

experiences).  

 Any pure-state of knowledge stays the same throughout the natural evolution of the 

system and the wave function (in the Schrödinger picture) evolves only because it is a 

function of variables whose meaning changes with time. (Those variables might, for example, 

be the coordinates of the particles of the system at time t , with time t  appearing as a 

parameter in the wave function). As a result, the time dependent Schrödinger equation is, for 

us, not a law of motion of the physical state of the quantum mechanical system, it is a law of 

evolution of the probability amplitude expressing our fixed pure-state of knowledge of that 

system on account of the changing meaning of the wave function’s variables. In the 

Heisenberg picture the state ket, and its wave function in a particular representation, stay 

constant, and either of them describes, in a time independent fashion, our pure-state of 

knowledge of the process the system is undergoing.  

 In itself, the change in interpretation just described, i.e. the change from ‘state of the 

system’ to ‘state of our knowledge of the system’, is not new. It was the view taken, for 

example, by Peierls [13]. 

 Given the composition of a system (the particles making it up, the potentials present 

etc.), a pure-state of knowledge of the system’s dynamics is a state of knowledge that is 

                                                 
13 In [5] this task is tackled by taking probabilities to be complex-valued and by supposing implication (of one 

proposition by another) carries a phase. A complex-valued probability theory is developed in [5] with its own 

sum and product rules and its own Bayes rule, and its own rules for calculating prior probabilities 

(generalisations of the prior probability rules adopted by Jaynes and mentioned above). This theory is used to 

calculate complex-valued probabilities based on certain general physical laws claimed in [5], and the results are 

demonstratively consistent with the usual quantum formalism when the (real-valued) probabilities calculated in 

that formalism are taken equal to the squared moduli of the corresponding complex-valued probabilities. 
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maximal given the uncertainty principle. It is knowledge on the limiting boundary of possible 

knowledge of the system’s dynamics. This is what is special about ‘pure-states of knowledge’ 

as opposed, for example, to ‘mixed states of knowledge’ in general, and to no knowledge at 

all about a system’s dynamics (which qualifies as a particular mixed state of knowledge). 

Which states of knowledge constitute pure-states of knowledge are well known to us through 

experience, and the claim that certain states of knowledge are both possible and pure, forms 

part of our interpretation of the formalism of pure-state quantum mechanics. 

 When working in the Schrödinger picture (as we will do throughout this paper) we 

take the squared modulus of a (normalised) wave function (in any one representation) to be 

our probability distribution over the various properties quantified by the variables of that 

wave function. In line with our realist approach, one such property must of course be the 

actual one present and the squared modulus of a (normalised) wave function gives the 

probability of each possibility. The squared modulus of a wave function is not the probability 

of ‘realising’ the ‘potential’ property on measurement as is traditionally claimed, though it is 

of course equal to the probability of finding this property on measurement if the measurement 

in question could in principle be made. For example, instantaneous measurement of a charged 

particle’s precise position is a possibility in quantum mechanics (see section 7.2) and the 

modulus squared of a single particle wave function (in the position representation referring to 

a particular time) gives both the probability density for the particle to actually be at a point in 

space at a particular time, and the probability density for finding it there on measurement.  

 We take the whole formalism of pure-state quantum mechanics, with its operators, 

eigenfunctions, eigenvalues, and commutation laws etc. to be a set of rules for deriving 

rational Bayesian probability distributions (as the squared moduli of wave functions in any 

representation) whenever our knowledge of the quantum mechanical process in question is 

pure. The QBists, too, see the quantum formalism as a procedure for probability calculation, 

but we differ from the QBists both with regard to what the probabilities refer to (for us - 

physical properties, for them – personal experiences) and with regard to the role of the 

formalism itself. To the QBists the formalism is the logical calculus of subjective 

probabilities, while, for us, it is a set of rules (for probability calculation) arising from a mix 

of laws of probability (viewed as laws of thought) and physical laws governing the dynamics 

of quantum mechanical processes. These laws are not clearly separated in the formalism,14  

but we do not attempt, and have no need, to unscramble this mix in the present paper.15  

 We do need, however, to incorporate a little more into the formalism of pure-state 

quantum mechanics. These additions are given in subsections 5.1, 5.2 and 5.3. 

 

 

                                                 
14 Jaynes (in [10]) has commented on this as follows: “We believe that to achieve a rational picture of the world 

it is necessary to set up another clear division of labour within theoretical physics; it is the job of the laws of 

physics to describe physical causation at the level of ontology, and the job of probability theory to describe 

human inferences at the level of epistemology. The Copenhagen theory scrambles these very different functions 

into a nasty omelette in which the distinction between reality and our knowledge of reality is lost.” 

15 We do try to unscramble the mix in [5] which has that task as its main objective. 



13 

 

5.1 Sum and product rules 

  

With regard to any one of the derived probability distributions mentioned above we suppose 

the usual sum rule and the usual product rule apply.  

 Suppose (only for simplicity of formulation) that our Hilbert space is of finite 

dimension N . Suppose, also, that ix  ( Ni ,...1 ) are the (mutually exclusive) propositions 

claiming the possible values ix  of the property x  employed in a particular representation. 

Then, if )( Yxi  is our wave function under a pure-state of knowledge Y  (acquired before 

the process in question starts), the probability of ix  is 
2

)()( YxYxP ii  . The probability of 

the attribute claimed by the disjunction ‘ 3x  or 5x  …etc.’ is  

 

...)()()..( 5353  YxPYxPYxxP      (1) 

 

where, following the notation used by Jaynes in [2], ‘+’ on the LHS means ‘or’.  

 Also, for any system attribute claimed by a disjunction A  of the ix  ( Ni ,...1 ), we 

have, for the probability of the conjunction of ix  and A  the product rule 

 

)()()( AYxPYAPYAxP ii  ,       (2) 

 

AY  being the conjunction of propositions A  and Y .  

 In the product rule (2) we take it that knowledge of the truth of A  can be acquired in 

such a way that AY  is, like Y , a pure-state of knowledge so that 
2

)()( AYxAYxP ii  . 

Only then can the product rule apply.  

 We can of course deduce from (1) and (2) the more general sum and product rules: 

 

)()()()( YABPYBPYAPYBAP  , 

)()()( AYBPYAPYBAP  , 

 

where A  and B  are any disjunctions of the ix  ( Ni ,...1 ) and the same requirement 

regarding AY  applies. 

 Hence the ordinary probability rules apply to the sample space whose atomistic 

propositions are the propositions ix  ( Ni ,...1 ) of any one representation which refers to one 

particular time. The only difference lies in the limitations imposed on conditioning (from Y  

to AY ) as noted. 
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5.2 Rule for collapsing a wave function 

  

Next we introduce a rule for collapsing a wave function. This relates to the product rule (2).  

 Suppose we hold pure knowledge represented by a time dependent wave function 

)( Yxi  based on pure knowledge Y  acquired, initially, as a result of system preparation at 

time 0t . Then it may be possible at time t , (with 0tt  ), to acquire knowledge A  that the 

true ix  (at time t ), is one of certain set A  of the propositions ix . (Here A  is the disjunction 

of the ix  in A .) Acquisition of this new knowledge might be achieved without disturbing the 

process of system evolution (or at least without changing which of the propositions ix  is 

actually true at time t ) and might be achieved in such a way that knowledge AY  is pure. 

 In that case, we claim that on acquisition of knowledge A , our wave function 

)( Yxi  at time t  should be replaced by the wave function )( AYxi  at time t  given by 

 



















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     0

)(

)(

)(

i

i

ii

i

x

xe
YAP

Yx

AYx      (3) 

 

 

where )( YAP  is the probability (under knowledge Y ) of A  at time t  and   is an 

indeterminate constant phase. Thereafter the new wave function evolves, as usual, according 

to the Schrödinger equation.16 

 This is our law of wave function collapse under pure-states of knowledge, and it is 

clearly consistent with the product rule (2) of probability. We are adding this law to the usual 

quantum formalism viewed as a set of rules for calculating probabilities.  

 As such, collapse of the wave function is not some (unaccounted for) physical 

process, but is rather a rule of logic. Collapse of the wave function is a logical consequence 

of the acquisition of more knowledge, not something caused physically. 

 Examples of situations in which wave function collapse may be applied are given in 

sections 6.1, 7.2 and 7.3. 

 

 

 

 

                                                 
16 Whether or not the acquisition of knowledge A  disturbs the particle’s subsequent motion, it is always the 

case that our narrower expectation distribution (3) over the possible ix  values at time t , is accompanied by a 

wider expectation distribution over the possible values of at least one other (basic or inferred) property at time 

t .  
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5.3 The classical limit 

  

Under certain states of pure knowledge, a particle’s wave function (in the position 

representation) takes the form of a compact wave packet moving in space. 

 Or it takes the form of a wave spread out in space with the de Broglie wavelength still 

very small compared to the region of space occupied by the wave.  

 Or these kinds of ‘waves’ may be in configuration space (in the case of a many 

particle system). 

 In other states of pure knowledge the wave function is a linear combination of such 

‘waves’. For example the stationary state wave function of a particle in a box is (for large 

quantum numbers) a standing wave made up of plane waves interfering to form an intricate 

pattern. Or inside a particle interferometer, the wave function of a single particle may be 

formed of two wave packets, one in one branch of the interferometer and one in the other. 

 In all these cases we postulate (as part of the quantum formalism) that the particle (or 

each particle of a many particle system) is in fact moving in an orbit close to a classical orbit, 

or at least that we should expect it to be so doing. We speak of the wave functions in such 

cases as being ‘quasi-classical’. Then, as the de Broglie wavelength tends to zero, we speak 

of approaching ‘the classical limit’ of full expectation of classical motion.  

 Related to this postulate is the correspondence principle which, for us, takes the 

following form. 

 

Correspondence principle 

Under ‘quasi-classical’ states of pure knowledge of a process in quantum mechanics 

when the particles are expected to move (to classical accuracy) in classical orbits, the 

probabilities of propositions concerning properties with a classical analogue 

(calculated using the rules of quantum mechanics and averaged if necessary over 

classically small domains) are interpretable as classical probability distributions over 

classical properties consistent with the laws of classical mechanics and classical 

probability. 

 

Here ‘classical probability’ refers to the Bayesian probability theory (as Jaynes has 

formulated it) for use in ordinary life and in classical physics. 

 When the correspondence principle applies, and whenever we can, if we wish, 

interpret our knowledge of the dynamical properties of the process in a classical manner, the 

quantum mechanical formalism always comes up with probabilities the same as the 

probabilities found using classical Bayesian probability theory applied to a classical model of 

the process.17 

                                                 
17 For example, the stationary state wave function of a particle in a box becomes quasi-classical at high values of 

the quantum numbers associated with the squares of the components of momentum in directions parallel to the 

three mutually perpendicular edges of the box. The squared modulus of this wave function averaged over 

classically small regions gives a uniform probability density over particle position in the box –exactly the same 

as the probability density given by Bayesian probability applied to motion of a classical particle in the box under 

knowledge only of the squares of the values of its three components of momentum. 
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 The classical limit is approached in the more general formalism of mixed-state 

quantum mechanics when each wave function in the array representing our mixed state of 

knowledge is quasi-classical. The correspondence principle holds then also. 

 As we approach the classical limit of certain mixed states of knowledge, the 

uncertainty principle no longer limits our possible knowledge of dynamical properties with 

classical analogue, i.e. we may know (fully expect) all these properties to classical accuracy, 

and hence maybe well enough for all practical purposes. Particles then effectively move 

classically, just as if Newtonian mechanics held exactly. As is well known, classical 

mechanics is effectively applicable when all the particles of a system have high enough 

masses (i.e. very much higher than the mass of an electron for example).  

 

That completes our ‘additions’ to the formalism of pure-state quantum mechanics. We now 

return to the question of our interpretation of that formalism. 

 

 

5.4 Inferred properties 

 

In the formalism of pure-state quantum mechanics any complete set of orthonormal ket 

vectors in the system’s Hilbert space (or of their wave functions in a particular 

representation) is traditionally said to be associated with an ‘observable’ (generally short for 

a ‘complete set of commuting observables’). That is, any complete set of orthonormal wave 

functions is associated with a process which if set in motion at a particular time would lead at 

once to the collapse of the system’s wave function into one or other of the wave functions of 

the complete set, with a macroscopic indicator showing us which. Such a process (not itself 

governed by the Schrodinger equation nor by any part of the quantum formalism) is thought 

of as performing a ‘measurement’ of the ‘observable’ without implying this ‘measurement’ is 

measurement of a property of the system properly possessed by it at the time in question. The 

property is said, at most, to be only somehow ‘potentially’ present before the ‘measurement’. 

 The QBists make a similar claim and see such a measurement as an intervention on 

behalf of the individual who participates in the process. In both the traditional and QBist 

interpretations of quantum mechanics, measurements take on a generally abstract quality. 

They are supposed possible when the physical manner in which they might be carried out is 

often unclear. For us, measurement is only possible if the means for doing it are 

demonstrable, i.e. if the measurement process can be modelled. We give examples of such 

modelling in section 7.  

 

In our interpretation of the formalism, we claim any complete set of normalised orthogonal 

kets, or their wave functions )( ij x  ( Nj ,...1 ) in any one representation, is associated with 

an ‘inferred’ dynamical property P  possessed by the system and taking possible values jP  

( Nj ,...1 ). The possible values of this property are distinct and equal in number to the 

dimension N  of the Hilbert space. Which of the possible values jP  of P  actually applies 

generally depends on the time. However, if wave function )( ij x  applies at time t  we should 
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(fully) expect P  to be taking value 
jP  at that time. This ‘knowledge’ of 

jP  at time t  

constitutes pure knowledge on its own, and accordingly we can set  

 

)()( ji

i

ij Pxex    

 

where jP  is the proposition claiming  jP  at time t , and   is an arbitrary constant phase. That 

is, we can regard our wave function as expressing our knowledge (expectation) of the truth of 

jP , rather than our original knowledge (whatever that was) that led in the first place to the 

wave function )( ij x  applying at time t .  

 Under any one state of pure knowledge Y , the value of an inferred property P  at any 

one time is generally unknown, and may not be instantly measurable,18 but we claim that the 

probability distribution )( YPP j  over the jP  can be obtained by expanding )( Yxi  at time t  

in the functions )( ij x  ( Nj ,...1 ) and equating )( YPP j  to the squared modulus of the 

coefficients. Thus 

 
2

)()( taYPP jj          (4) 

 

where 

 





N

j

ijji xtaYx
1

)()()( .       (5) 

 

Since each of the orthogonal (time independent) wave functions )( ij x  ( Nj ,...1 ) need only 

be specified to within a constant phase factor, the phases of the )(ta j  are indeterminate, but 

this is of no consequence because their squared moduli are determinate -they do not change if 

the absolute phases of the )( ij x  (for Nj ,...1 ) are varied. 

                                                 
18 It can sometimes (perhaps always) in principle be measured (after a delay), by supposing the system 

potentials are suitably changed from time t  onwards so that at a much later time t  the system wave function is 

quasi-classical (outward travelling spherical wave-packet in configuration space) and the particles of the system 

are expected to be freely moving in classical orbits. By observing the positions of the particles (to classical 

accuracy) at time t , the value of jP  at time t  can be inferred. That is, there is a (Bayesian statistical) 

correlation between the value of jP  at time t  and the classical particle positions at time t . The system 

potentials employed, from time t , to effect this measurement are such that if the system wave function is 

)( ij x  at time t , then the particles will have definite expected positions (to classical accuracy) at time t . In 

particular when the supposed system potentials from time t  are just zero (so the particles move freely from time 

t  onward) the particle positions at the much later time t  are correlated with the particle’s momenta at time t , 

as explained in Chapter 5 of [14]. We do not, however, take the suggestion of Feynman and Hibbs (p.96 loc. 

cit.) that momentum (or other properties) can be reduced to mere position occupation at a later time. 
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5.5 The possible implications of probability 1 in quantum mechanics 

  

If we hold pure knowledge Y  of a process, that is if we (fully) expect proposition Y  to be 

true, and if the probability of an event under this knowledge is calculated (using the quantum 

formalism) to equal 1 , it means (as we have claimed is always the case) that we (fully) expect 

the event to happen. Expectation of an event is a state of mind, and under it, we might claim, 

in the quantum mechanical context, any one of three possibilities. That the event is (i) a pure-

logical consequence of the proposition Y  expressing our knowledge, or (ii) certain to occur, 

supposing the truth of proposition Y , on account of some physical law governing the system 

in question independently of our knowledge of the system’s dynamical properties, or finally, 

we might feel we can make neither of these claims and must sit content with (iii) just (fully) 

expecting the event to occur.  

 In any particular case (when a probability of an event is calculated to equal 1) we may 

of course only make the first or second claim above if that leads to no contradiction with 

anything else we know or wish to claim. The possibility of sometimes being able to make the 

second claim above allows us (on the basis of our realist approach) to postulate dynamical 

laws not normally supposed to be active. 

 

 

5.6 Probability in relation to a number of physically independent systems 

 

Finally we note the rules of probability for a number of physically independent quantum 

mechanical systems where we have a pure-state of knowledge of each. These rules are the 

same as those normally applying in the formalism of pure-state quantum mechanics.  

 That is, if we take any one representation ix  ( 1,...1 Ni  ) in the first system with the 

ix  referring to the property x  at any one time 1t  during its natural evolution, take any one 

representation jy  ( 2,...1 Nj  ) in the second system referring to a time 2t ,… etc. , then there 

is a joint probability distribution over the conjunctions ...ji yx  ( 1,...1 Ni  , 2,...1 Nj  , …) 

given by 

 

...)()()......(
2

2

2

121 YyYxYYyxP jiji   

 

where ,..., 21 YY  represent our pure-states of knowledge of each system, and 

)( 1Yxi , )( 2Yy j … are the corresponding wave functions for each system. Also, as in 

section 5.1, the usual sum and product rules apply in the sample space whose atomistic 

propositions are the conjunctions ...ji yx  ( 1,...1 Ni  , 2,...1 Nj  , …). 

 In particular, if the representations employed in each system refer to the same time, 

then all the systems taken together form a system of which we have pure knowledge 
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...21YYY   ; and the propositions ...ji yx  ( 1,...1 Ni  , 2,...1 Nj  ,…) serve as a representation 

for the whole system, our wave function for the whole system being19  

 

)...()()...( 21 YyYxYyx jiji  . 

 

 Or, the systems may form an ensemble of identical (non-interacting) quantum 

mechanical systems evolving after preparation at the same time or after preparation at 

different times, each under the same pure-state of knowledge. Also, the representations 

employed may refer to the same property in each system at the same time into its natural 

evolution after preparation. Such an ensemble may be set up for the purpose of testing (by 

measurements) an expected long term frequency or an expected long term mean value of an 

attribute of the system. 

 In any above case, the individual systems are not only physically independent (i.e. 

non-interacting) but are claimed also to be logically independent on account of our 

knowledge of each being pure. That is, we claim that knowledge of the results of 

measurements on any number of the systems should have no effect on our probabilities for 

properties of any other of the systems. This ‘absolute’ logical independence is peculiar to 

pure-state quantum mechanical probability theory and is the thing that makes probabilities in 

quantum mechanics more fundamental than probabilities in classical mechanics or ordinary 

life where whether or not probabilities (of outcomes in repeated trials for example) are 

logically independent is generally hard to know for sure. 

 

That concludes our reinterpretation of (and additions to) the usual quantum formalism.  

 

 

6. Resolution of paradoxes 

 

We now look at various paradoxes or contradictions that are supposed to arise if one tries to 

adopt a realist point of view as we are doing. We show how these paradoxes or contradictions 

disappear under the rational Bayesian approach we adopt to probability in quantum 

mechanics and under our additions to, and reinterpretation of, the formalism of pure-state 

quantum mechanics.  

 The examples considered here should serve to show why many similar paradoxes or 

refutations of realism in the literature will also disappear.  

 

 

 

                                                 
19 Of course, as well as different systems, the separate wave functions may relate instead to different aspects of 

the one and the same system whenever these aspects evolve independently (e.g. to spin components and to 

positions of non-interacting particles of a multi-particle system in a uniform magnetic field). This enables us 

sometimes to restrict attention to limited aspects of a system (e.g. only to the spin components of the particles in 

a singlet state) and to regard our knowledge as pure knowledge of those aspects. 
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6.1 The double slit or particle interferometer argument 

  

It is often argued that if we try to hold on to the idea that a quantum mechanical particle (an 

electron for example) has a definite position at any time and moves continuously through 

space, then the interference of probabilities present in a particle double slit experiment or 

simple particle interferometer is inexplicable. 

 
  

Figure 1. A simple particle interferometer. The incoming wave packet is split into packets 1 and 2 by the first 

beam splitter. These are reflected by mirrors M and are each partly transmitted and reflected at the final beam 

splitter to form out-going packets 3 and 4. Under fine-tuning packet 4 is cancelled out. 

 

 With reference to the simple particle interferometer, the argument goes through 6 

steps as follows. (i) The particle has a certain normalised wave function   which after 

passage through the first beam splitter of the interferometer (Figure 1), divides into two (half-

normalised) wave functions, say 1  and 2 , setting off in different ways (way 1 and way 2) 

from the first beam splitter, each wave function evolving according to the Schrödinger 

equation thereafter, and (ii) these in time interfere (like real waves would) so that the 

probability density for the particle being at some point (i.e. 
2

21   at a later time) is not 

the same as 
2

2

2

1  in regions where 1  and 2  overlap (as in packets 3 and 4 in Figure 

1). (iii) If the particle moves continuously through space it must either set off from the first 

beam splitter in way 1 or in way 2. (iv) If it sets off in way 1 the probability density for the 

particle being at any point thereafter is 
2

12  and if it sets off in way 2 it is 
2

22  and (v) as 

the probabilities for the particle to set off one way or the other are each 
2

1 , (vi) the net 

probability density should be 
2

2

2

1

2

22

12

12

1
22   not 

2

21  . Hence we 

have a contradiction, and the claim of continuous particle motion must be false. 

 Steps (i), (ii), (iii) and (v) of this argument are fine. The particle is expected, with 

equal probability, to set off one way or the other from the first beam splitter, and the 

probability density correctly calculated by quantum mechanics is 
2

21   thereafter. The 

problem lies in steps (iv) and (vi). For according to our rational Bayesian approach to 

probability, we cannot speak of the probability of an event supposing the particle sets off in 

way 1 (or way 2) from the first beam splitter. We can only speak of the probability of an 

event knowing the particle sets of in way 1 (or way 2). Even if the acquisition of knowledge 

as to which way the particle goes might be achieved without disturbing the particle, it is still 

2 

M 

4 
3 

1 
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necessary that we acquire that knowledge before we can condition our probability distribution 

from 
2

21   to 
2

12  (or from 
2

21   to 
2

22 ). This is because we take probability 

to be set by knowledge not by physical conditions. 

 In the case of the interferometer, where the wave packets are moving in separate paths 

inside the interferometer, we are close to a classical limit, the de Broglie wavelength being 

very small compared to the packet dimensions. As explained in section 5.3, we should 

therefore expect the particle to be moving close to one or other of the paths followed by the 

packets (without being absolutely sure it must). We can find out which way the particle goes 

by placing a particle detector in one path. If this particle detector finds no particle, then 

(without having interfered with the particle’s motion) we know (fully expect that) the particle 

went the other way. We can then use our new knowledge to collapse our wave function (in 

the way explained in section 5.2) from 21   to 
12  (or from 21   to 

22 ). There 

is no contradiction, and position measurements conducted in many trials following null-

detection will confirm the correctness of our reasoning. 

 Now suppose the interferometer is fine-tuned so that (when no null-detection is 

performed inside the interferometer) the particle is found always to exit one way out the 

interferometer. It might then seem strange that an observation, a null-detection (on one path 

inside the interferometer) which causes no disturbance, can result in the particle sometimes 

exiting the interferometer in a way it would seem never to do without that observation. 

However, that is evidently the way things are and there is no actual contradiction. For without 

observation, even if the probability the particle exits one way is calculated to equal 1, this 

need not mean the particle is certain to exit that way. As explained in section 2, probability 1 

can mean only that we expect the particle to exit that particular way given our knowledge. So 

by passing from not performing to performing the null-detection we are simply passing from 

one degree of expectation (for exiting the particular way) to another, not from certainty to 

lack of certainty. After null detection and while the particle remains in the interferometer, our 

expectation distribution over particle position sharpens (reduces to one wave packet rather 

than two), but becomes less sharp (two wave packets rather than one) when the particle exits 

the interferometer. We see that application of the rules of quantum Bayesian probability to 

quantum mechanical processes can lead to results of a kind that cannot be replicated in 

applications of the rules of classical Bayesian probability to classical mechanical processes, 

but that does not imply there is something wrong with our quantum Bayesian probability 

theory or our realist perspective. 

 If the reader is thinking that the fact that (in repeated trials without null detection) the 

particle exits the interferometer the same way over and over again, is proof that it is certain to 

do so, they are relying on philosophical induction. The reliability of induction has, however, 

long been disputed by philosophers, and we now have further reason to believe it is not 

always applicable. We suppose it is not valid here, and consequently we are not forced to 

think that null detection in one branch must sometimes affect particle motion. 

 The important thing is that, when we have knowledge of a process (that constitutes 

pure knowledge), and when we have applied the rules of quantum Bayesian probability 

consistently, we get agreement between theory and observation in as much as our (full) 
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expectations (of individual events or of relative long term frequencies) are always confirmed. 

Happily this is generally the case, and if sometimes it is not, we should put that down to not 

having the correct quantum mechanical model of the process under study. We then have to 

adjust that model in some way, to take account of effects we wrongly thought could be 

neglected, etc. 

 

 

6.2 Bell type inequalities 

  

Certain Bell type inequalities relate to a system composed of a pair of spin one-half particles 

produced in a singlet spin state and sent flying out from a source S in opposite directions each 

towards apparatus designed to measure particle spin components in any direction (of our 

choice) in a plane P  perpendicular to their line of motion (Figure 2).  Let the directions 

chosen be denoted a  for particle 1 and b  for particle 2, and let the experiment be repeated a 

large number times, say M  times. If ia  denotes the result of the measurement on particle 1 

 
Figure 2. Spin one-half particles in a singlet state immerging from source S, and the directions in which their 

spins are measured. 

 

in the 
thi  trial, being 1  when spin is ‘up’ in the a  direction and 1  when it is ‘down’, and 

if ib  denotes in the same way the result of the measurement on particle 2, then quantum 

mechanics predicts the correlation coefficient between ia  and ib , or the mean value20  

 




M

i

iiba
M 1

1
, 

 

is equal to ab cos  where ab  is the angle between the directions a  and b . So at least, in 

the limit as M  we expect 

 

                                                 
20 See p.84-85 of [15] for the proof that this mean value is equal to the correlation coefficient, and p.41 of [15] 

for the proof of (6) using quantum mechanics. [15] also provides a general account of Bell type inequalities and 

their implications for property possession and locality on the basis of certain assumptions. 
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ab

M

i

iiba
M




cos
1

1

        (6) 

 

 Adopting our realist view, we take the ia  and the ib  to have definite values 

quantifying properties of the particles in the 
thi  trial (whether or not those values are 

measured) and we take the LHS of (6) to be an attribute of the M  trials having a definite 

value (independent of any measurements). The RHS of (6) is (from quantum theory) the 

value (fully) expected for that attribute (at least in the limit M ). 

 If we consider another pair of directions a  and b  in the planes P  then each of the 

following equations is expected to hold, 
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where the four angles ab , ba  ,… etc. are supposed given. Associated with each of these 

equations we have, respectively, the propositions abA , baA  , baA   and baA   claiming that 

certain attributes of the set of trials (expressed by the LHSs of (7)-(10)) have certain values 

(the values on the RHSs of (7)-(10)). 

 Now while we might, in principle, test the truth of any one of the propositions abA , 

baA  , baA   and baA  , we cannot test the truth of their conjunction. Measurement of ia  and ia  

for example, is disallowed by the uncertainty principle. So while the truth of each of the 

propositions is (fully) expected (at least in the limit M ), the truth of their conjunction is 

not (see rule (i) of section 3). It is this change in our way of reasoning that saves us from the 

contradiction that would otherwise arise. 

 If we where to expect the truth of the conjunction of the propositions abA , baA  , baA   

and baA  , then we would have, by (7)-(10), to expect the attribute  

 





M

i

ii

M

i

ii

M

i

ii

M

i

ii ba
M

ba
M

ba
M

ba
M 1111

1111
 

 



24 

 

of the set of trials to have the value  

 

abbababa   coscoscoscos . 

 

Now, as explained on p.84 of [15], since the ia  and the ib  and their primed forms can only 

take values 1  we have  

 

2
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Hence we would have to expect 

 

2coscoscoscos   abbababa . 

 

This inequality is, however, demonstratively false for some values of the angles. Since 

something certainly false cannot be expected, we would have a contradiction.  

 As we have said, we avoid this contradiction by disallowing expectation of the truth 

of any proposition claiming an attribute unobservable on account of the uncertainty principle. 

We are thus not obliged to give up the idea of possession of spin components by the particles, 

nor are we obliged to believe that measurement of a spin component of one particle must be 

instantly changing spin components of the other through some kind of ‘spooky action at a 

distance’. 

 

 

6.3 Validity of the EPR argument 

 

In relation to section 6.2, we note that, according to our realist approach, the argument of 

Einstein, Podolsky and Rosen (as applied to a singlet spin state) may be perfectly correct. 

Equal and opposite particle spin components in any one direction a  (as expected by quantum 

theory) may, according to us be a natural property of the particles of the singlet system, 

ensured by its preparation or the way the particles were formed.21  Then if a  and b  are in the 

same direction we have, for certain, the relation ii ba   between particle spin components. 

This means measurement of a spin component of particle 1 enables us to (fully) expect a 

particular spin component of particle 2 in the same direction without affecting that spin 

component (or any other spin component of particle 2). If we follow up this measurement by 

a measurement of a spin component of particle 2 in another direction c , and assume all spin 

                                                 
21 This is an example of the possibility of us establishing a physical law by adopting option (ii) in section 5.5. 

The probability (in the singlet state) of equal and opposite spin components in any direction equals 1, and we 

here claim that equal and opposite spin components (in any direction) is due to a physical law (of spin 

component addition) and to the fact that the total spin component of the particle pair (in any direction) is known 

to be zero because of the way the particles are prepared.  
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components stay constant when not measured22, we can get to expect that two particular spin 

components of particle 2 applied at times before the measurement performed on particle 2. 

This is an example of the acquisition of knowledge (full expectation) of incompatible 

properties retrospectively. 

 The above EPR argument therefore seems, from our point of view, to provide valid 

support for the real existence of properties (or the actual possession of properties by systems 

including the simultaneous possession of incompatible properties). 

 We note, however, that the uncertainty principle still acts to restrict what we can get 

to know retrospectively. We cannot for example get to know the spin component of particle 2 

in a third direction because we have, by now, disturbed the spin components of both particles 

in all other directions without being in any way able to take account of, or correct for, the 

changes we have caused.  

 In a system composed of a pair of spin one-half particles produced in a singlet spin 

state, we have a joint probability distribution over the spin components of particles 1 and 2 in 

given directions a  and b , and, because of the natural relation ii ba   holding when 

directions a  and b  are the same, the property of the particles in which they have particular 

values of spin components in any one pair of directions a  and b  is fully correlated with the 

attribute according to which particle 2 on its own has a particular pair of spin components (in 

directions a  and b ). The property in question is directly measurable, but the attribute in 

question is not, and while there is a probability for the property, there is no probability for the 

attribute. For as we have said, we do not allow joint probabilities of incompatible properties.  

 

 

6.4 The system considered by Greenberger et al 

 

An argument (due to Greenberger et al [16]) which claims to show the impossibility of 

possession of properties by systems, is one that leads to contradictions between propositions 

claiming properties of a single system rather than properties of an ensemble of identical 

systems undergoing independent trials. 

 In the system considered, four distinguishable spin one-half particles are emerging in 

different directions from a source where they have been prepared. They may each be passed 

into apparatus designed to measure their spin components in directions of our choice. We 

suppose we have pure knowledge Y  of their spinning motions represented by the wave 

function 
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22 This assumption is supported by the fact that measurement of a free particle’s spin component in any one 

chosen direction is reproducible any number of times (see section 7.3). After one such measurement the 

probability for the same result of the next is 1, and a physical law of conservation of a free particle’s spin 

components can be (and is) claimed by us using option (ii) in section 5.5. 
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using the z  components of spin basis 4321   in Cartesian coordinate system O .23 This 

basis takes the possible values 
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The wave function is thus a superposition of two states in which the particles would be said 

to have certain known spin components. 

 When we refer spin components of particles 4,3,2,1  respectively to fixed coordinate 

systems 4321 O,O,O,O  of orientations generally different from that of our original coordinate 

system O , our wave function changes to  
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where 

 

)()()()()( 4433221143214321    (12) 

 

in which each factor on the RHS has the form 
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,  and   being the Euler angles (as defined in paragraph 6-6 of [17]) of coordinate rotation 

from O . Let the Euler angles for each coordinate system 321 O,O,O  and 4O  be denoted 

111 ,,  ; 222 ,,  ; 333 ,,   and 444 ,,  , and let 
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so that in the matrix notation 

 

                                                 
23 For simplicity we omit commas between the variables 321 ,,   and 4 . 
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and similarly for the other factors on the RHS of (12). 

 Using these equations we find, for the wave function (11) in the 4321   

representation and in column vector form, the results 
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whenever 4321   is equal to 0  or   respectively. 

 In the first case the probability is only non-zero for odd numbers of negative spin 

components among the 4321  , while in the second case the probability is only non-zero 

for even numbers of negative spin components.  

 Whenever 4321   is equal to 0  the probability for an odd number of 

negative spin components (a particular attribute of the system) is 
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                … (13) 

 

Whenever 4321   is equal to   the probability for an even number of negative spin 

components is 
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                … (14) 

 

 Because the probabilities are equal to 1 , we expect an odd number in the first case and 

we expect and even number in the second case. 

 Following the argument of Greenberger et al, we define a function )( 1A  to be 1  

according as 
2

1

1  , i.e. according as the spinning motion of particle 1  actually possesses 

the property that its z  component of spin in 1O  is 
2

1
 . Similarly we define functions 

)(),( 32  CB  and )( 4D  in relation to the z  components of spin 32 ,  and 4 . Then, from 

the definition of these functions, and on account of the results (13) and (14), we expect 

 

1)()()()( 4321  DCBA        (15) 

 

whenever 04321   and we expect 

 

1)()()()( 4321  DCBA        (16) 

 

whenever  4321 . 

 However, we cannot reason with relations (15) (and/or (16)) for more than one set of 

qualifying   values at a time. For such relations generally reflect expectations of 

incompatible attributes of the four particle system. Since Greenberger et al are not restricted 

in this regard they are able to derive contradictions. For example, if they set all   values 

equal to zero in (15) and set 1  and all other   values equal to zero in (16), and then 

multiply the two resulting equations together they can show that 1)()0( AA ; but by 

multiplying the four equations based on (15) with ),0,0,0,0(),,,( 4321  ),0,,0,(
22


 

),0,0,(
22


 and ),,,0,(

22


  they get the contradictory result 1)()0( AA . 

 We, however, are unable to reason in this way. Nor, of course, can expectations of 

(15) (or (16)) with more than one set of qualifying   values be generally confirmed by 

measurement because this would necessitate measurement of incompatible properties which 

is forbidden by the uncertainty principle.  

 However, the argument of Greenberger et al serves to show that we definitely cannot 

claim that expectations (15) and (16) (for beta values satisfying 04321   and 

 4321  respectively) reflect physical laws controlling the numbers of positive 

and negative spin components. Although physical laws can be the reason for calculated 

probabilities of events being equal to 1 , they evidently are not the reason in this case. Neither 

can either of the meanings (i) and (ii) of probability 1  (in section 5.5) apply. For, then, 
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relations (15) and (16) would apply simultaneously to all qualifying   values, and 

contradictions would arise. 

 Since the attributes expressed by equations (15) and (16) (for different qualifying   

values) cannot all be present, at least some must be absent (on any one occasion) so we might 

expect at least occasionally to find one of the attributes absent. We might expect, for 

example, to sometimes find an even number of negative spin components when 

04321  . Why do we not? Well to account for why we do not we should 

calculate the probability for there being an even number of negative spin components. This 

we have already done using the quantum formalism as the way to calculate probabilities, and 

the result is zero. So we do not expect to find an even number of negative spin components 

when 04321  , and it seems we never do.24 This may appear amazing but no 

contradiction between theory and experiment can actually be demonstrated. As we have 

noted before, the repeated fulfilment of our expectations (in many trials) should not lead us 

necessarily to think (by induction) that what we expect to be true must always be true. 

 

 

6.5 The Kochen-Specker paradox 

 

Accounts of the Kochen-Specker paradox are given in [15], [18] and [19]. The paradox arises 

in connection with the inferred properties (of section 5.4), when we imagine assigning values 

(at any one time t ) to all the inferred properties of a system. Using a certain logical argument 

it can seem impossible to make such an assignment, while our realist approach clearly 

requires that it be possible.  

 Starting with one inferred property going with a particular complete set of orthogonal 

functions )( ij x  ( Nj ,...1 ), we can set up N  orthogonal unit vectors jv  ( Nj ,...1 ) from 

the origin of the function space of N  dimensions. Then, with our quantum mechanical 

system in any particular condition, we can imagine each vector jv  ( Nj ,...1 ) to be labelled 

1  or 0  according as P  is (at time t ) quantified by that particular value of j  or not. So only 

one of those vectors will carry the label 1 , the rest being labelled 0 . We can imagine 

appropriately labelling the vectors jv  ( Nj ,...1 ) similarly associated with property P  

according as P  is in fact quantified by j  or not, and similarly labelling the jv    associated 

with property P  , …etc. The set of vectors jv  or jv   …etc. can be formed by rotating the 

original set jv  (as a whole) about the origin of the function space in an appropriate manner.  

                                                 
24 It is as if nature plays a trick on us - fulfilling our expectations whenever we test them but evidently not 

always fulfilling them when we choose not to! This is undoubtedly the strangest result of the present 

interpretation, but one which may come, in time, to be regarded as natural. (Zeno’s four famous paradoxes once 

caused a crisis in Greek thought, but, in time, we got not to worry about Zeno’s theoretical objections to the 

possibility of motion. We got to believe that an infinite number of steps could sometimes be completed in a 

finite time, and so on.) 
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 Then whenever a set 
jv  (formed by such a rotation) shares a common member with 

another set jv   similarly formed, Kochen and Specker feel the logical need to assign the same 

label (1  or 0 ) to the shared vector; but, when applying that rule generally, consistent 

labelling of the vectors in the sets formed by all possible rotations of the set jv  is shown by 

Kochen and Specker to be impossible (at least when 3N  which of course is very often the 

case).25 

 Now, there would indeed be a need to assign the same label (1  or 0 ) to a shared 

vector, say jv  and kv   (equal for a particular value of j  and a particular value of k ) if the 

properties jP  and kP   associated with the vectors where the same or where physically 

correlated with each other (so that one was present if and only if the other was). We need not, 

and do not, claim such sameness or correlation. We claim only that when we (fully) expect 

jP  to be present we should also (fully) expect kP   to be present, and vice versa, and therefore 

that 

 

1)()( 
jkkj PPPPPP .       (17) 

 

-a result that in fact follows easily from (4) and (5) of section 5.4. 

 The Kochen-Specker paradox is therefore only telling us that we cannot interpret (17) 

as meaning properties jP  and kP   (for the particular values of j  and k ) are the same or are 

physically correlated. We therefore simply suppose that knowledge ((full) expectation) of one 

property entails (full) expectation of the other. We do not commit to viewing proposition jP  

as implying proposition kP   or vice versa. Hence, for us, there is no paradox. 

 

 

6.6 The paradox of particle reflection by a drop down in potential 

 

Pedro, L. et al [20] have drawn attention to the fact that the one-dimensional Schrödinger 

equation of quantum mechanics predicts the possibility (non-zero probability) of reflection of 

a particle by a drop down in potential, i.e. by a region in space in which potential )(xV  falls 

monotonically from one constant value to another. They show how a one-dimensional 

particle wave packet approaching the drop down in potential is partially reflected and 

partially transmitted by it, and therefore that the particle momentum may be reversed. 

 

 

                                                 
25 For the purpose of the proof it is sufficient to consider only complete sets of orthogonal wave functions 

derived from the one set )( ij x   by rotation (in function space) using real-valued rotation matrices, so that the 

orthogonal vector sets jv , jv , jv  ,… can be pictured in a Euclidian space of N  dimensions, and a proof of 

impossibility in the case 3N  is effectively given in the argument on pp166-168 of [19]. 
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 Figure 3. Wave packet (incident from the left) partially reflected by and partially transmitted through a drop 

down in potential. 

  

 This, of course, violates Newton’s second law of motion according to which particle 

momentum (mass times velocity) must be increased by motion of the particle into a region of 

negative potential gradient. It also seems to pose a paradox for us, if we claim (as we do) that 

Newton’s law applies to the rate of change of the particle’s internal property of momentum as 

it drifts through a scalar potential field (see section 1). For, we could start off fully expecting 

the particle to have a certain definite momentum 0p  -as in a very long wave packet of 

uniform de Broglie wavelength approaching the potential drop (a packet that could extend as 

far as we like to the left). Then, at a later time, quantum mechanics gives two long 

(transmitted and reflected) wave packets and a non-zero probability for momentum 0pp  . 

This seems to violate our law of momentum change.  

 Note, however, that the uncertainty principle tells us that the particle’s initial 

momentum and the particle’s final momentum (after impact with the potential drop) are 

incompatible properties. They cannot both be known ((fully) expected) from the start under 

any initial conditions. This has an effect on our logical reasoning.  

 If Y = ‘the initial particle momentum 0p ’ and X = ‘the final particle momentum is 

greater than or equal to 0p ’, then, according to us, proposition Y  implies proposition X  

(because the potential drop can only increase the momentum). However, because X  and Y  

claim incompatible attributes it does not follow that the probability 1)( YXP . Rule (ii) in 

section 3 prevents us from drawing this result. To find )( YXP  we must instead apply 

quantum mechanics, and this gives a positive value less than one. The probability )( YXP  for 

the final momentum being less than 0p  is calculated to be greater than zero. These results can 

be confirmed by measuring the final momentum in many trials. If the final momentum in one 

trial is measured to be  0p  no contradiction arises because (a) our inference regarding final 

momentum is one of expectation only, and (b) our initial knowledge (of momentum being 

x 
O 

V(x) 

x 
O 
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0p ) amounted again only to (full) expectation of the momentum value -not certainty with 

regard to its value. We thus avoid contradiction.26 

 We see in this example the importance of not claiming to be sure of the dynamical 

property on which pure knowledge is based, but only claiming (full) expectation of it inferred 

from measurements or system preparation. Our theorising (using the quantum formalism) is 

still useful however, because our (properly calculated) expectations seem always to be 

confirmed when we test for them; that is macroscopic effects (individual events or 

frequencies in repeated trials) can be reliably predicted. 

 

 

6.7 Why do our expectations seem always to be fulfilled when we test them, while they 

are evidently not always fulfilled when we do not? 

 

There is no logical need to answer this question, and in the interests of simplicity we are 

probably better not doing so. However if we should really feel the need to do so, it might be 

possible to proceed as follows.  

 We note first that when we test an expectation under a pure-state of knowledge, we 

need to set up measuring apparatus. The presence of this apparatus and the way it is set (to 

measure, for example, particular particle spin components rather than others) might, for all 

we know, be somehow ensuring that our expectation is actually brought about: be that an 

expectation of a particular system attribute (such as an odd number of negative spin 

components in section 6.4) or of a particular mean value over many trials (as in section 6.2). 

That is, the presence of the apparatus, set the way it is, might be partly determining (through 

physical laws we do not know) the motion of the quantum mechanical system under study in 

such a way that leads to our expectations being fulfilled.  

 Let us suppose this is the case. 

 Then to preserve the consistency of our interpretation, we need to claim that while 

this new knowledge (regarding the effect of settings of measuring apparatus) is of physical 

import, it is nonetheless redundant knowledge. That is, redundant as far as our pure-state 

quantum mechanical calculation of probabilities of system properties is concerned. The 

calculation of those probabilities need be based only on knowledge of the system dynamics 

acquired from the state of the apparatus used to prepare the system. That knowledge is of 

course necessarily limited on account of the uncertainty principle, and the possibility is left 

open that the existence and settings of measuring apparatus employed in the future are indeed 

contributing to the determination, right from the start, of those initial properties of the system 

                                                 
26 In [5] we took knowledge of a physical property to reflect certainty of that property. On that assumption, our 

initial knowledge (of momentum being 0p ) means that that particular momentum certainly applies initially, and 

when we attain (by measurement) knowledge that the final momentum is 0p  this is certainly the final 

momentum. Hence the paradox of reflection is present under this interpretation of knowledge, and we cannot 

then maintain the claim (declared in the ‘third law of potential action’ in [5]) that momentum always increases 

at the rate it does in classical mechanics. We may, however, maintain that claim when we take (as we do in the 

present paper) knowledge to reflect only (full) expectation. 
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that we do not know. Since we have no knowledge of how this part-determination (by future 

measuring apparatus) of those unknown properties comes about, our (newly claimed) 

knowledge of the reality of this part-determination is naturally redundant; it is information 

that cannot contribute to our probability calculations.  

 While our new knowledge (of this part-determination) is redundant in the way 

described, it does serve in our assessment of the meaning of probabilities calculated to equal 

1 . So, for example, when in section 6.4, we calculate a probability equal to 1  for an odd 

number of negative spin components in a particular set of directions, we may now take this to 

mean that, with future measuring apparatus set up to confirm this expectation we can be 

certain that an odd number is present. While, with future measuring apparatus not set up in 

that way we just expect an odd number of those spin components to be present without being 

certain this follows from our initial knowledge of system dynamics. 

 We stress that this in no way implies that a change in the directional settings of the 

spin component measuring apparatus after system preparation in the pure state (11) must be 

changing spin components of the particles during their flight. Rather we can still assume (as a 

physical law) that all particle spin components (in the absence of a magnetic field) remain 

constant during particle flight (whatever the apparatus settings) but that those spin 

components are, from the time of system preparation, partly determined by the settings of the 

measuring apparatus present at the later time.  

 Similarly, when we try to confirm our expectation regarding the value of the 

correlation coefficient (6) between spin components of two particles in a singlet state, it is not 

that setting a spin measuring apparatus to measure a particular spin component of one particle 

sometimes instantly alters the spin component of the other particle which is about to be 

measured. It is rather that nature knows already which spin components are to be measured 

even if these are chosen at the last minute, and it sees to it that the spin components at the 

moment the particles are prepared (ejected from the source in a singlet state) are such as to 

fulfil our expectations when the spin components are measured. So there is no need for any 

‘spooky action at a distance’. Instead, as Bohr might have said, the whole experimental set up 

contributes to the determination of the motions of a quantum mechanical system under study.   

 Interestingly this rules out the possibility of free will on our part. That is, we cannot 

outdo nature by making a choice (of apparatus settings) that nature does not already know 

about! This should really not surprise us, for we have good reason to believe (from the space-

time picture in relativity theory) that the state of all matter is fixed throughout time once and 

for all. 

 

Another case in which (full) expectation might be taken to mean certainty occurs with regard 

to particle motion in the fine-tuned interferometer in section 6.1.  

 There (without null detection) the sum rule (1) gives, for the probability that the 

particle exits the one way, the result 

 

1)( 32

 rr dY , 
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where the integral is taken over the space occupied by the exiting wave packet, r
3d  being a 

volume element of space, Y  our pure-state of knowledge of the particle motion, and )( Yr  

the wave function (in the position representation) at a time when the particle has left the 

interferometer. We are thus led to expect the particle to leave the interferometer the one way 

without being certain it must. Put that way, our view of the matter is the same as that given in 

section 6.1 of the present paper.  

 There is, however, an alternative view (coinciding with the main line taken in [5]) 

according to which exiting one way from the fine-tuned interferometer is a physical 

consequence of the experimental setup, i.e. that (full) expectation (that the particle exits one 

way) reflects certainty on account of physical law. In [5] it is suggested that when a particle 

moves from one place to another its motion can be affected not only by the potential fields it 

experiences in its vicinity as it travels but also in general on the potential fields along paths it 

might have taken but did not. (This is reminiscent of the principle of least action formulation 

of classical mechanics where, in effect, the whole potential field determines the path actually 

followed by a particle.) Then, in the fine-tuned interferometer of section 6.1, the potential 

associated with the mirror the particle does not hit might still contribute to determining the 

particle’s motion through the final beam splitter ensuring it exits always one way, and when 

null detection is achieved (in the way discussed in section 6.1), the apparatus used for this 

null detection then effectively eliminates one possible path through the interferometer so 

removing any influence of the mirror in that path. That is, potentials associated with the null 

detection itself contribute to determining the path taken by the particle when it leaves the 

interferometer.27  

 It happens often in physics, that the detailed assumptions of, ways of looking at, or 

ways of formulating a theory are to some extent up to us. That is, a certain amount of 

personal choice is possible in this regard.28 So whether or not, in quantum mechanics, a 

particle’s motion is partly determined by the presence of apparatus in the future designed to 

measure a property of it, or whether or not a particle’s future motion is taken to be dependent 

on potentials in paths the particle might have taken in the past but did not, may be a matter of 

personal choice. Only in the one case, when future apparatus and potentials outside the paths 

followed by particles are assumed to have no effect on particle motions and the question why 

our expectations are seemingly always fulfilled when we test them is considered not to be in 

need of answering, might our theory of the physical world qualify as a ‘local’ theory –a 

                                                 
27 Only under this view of things can we adopt the claim made in [5] (see page 406 of [5]), that inferred 

properties are physically brought about by acquisition of pure knowledge that renders them (fully) expected. 

This is because that claim implies null detection must generally affect particle motion. To show this connection, 

we can take the two wave packets inside the interferometer together at one time to form one of the complete set 

of orthogonal wave functions )( ij x  of section 5.4. The property value jP  associated with this wave function 

then certainly applies without null-detection but does not necessarily apply just after null-detection (when just 

one packet is present), and this is inconsistent with the null-detection having no effect on the particle’s motion. 

28 We make personal choices, for example, in choosing which fields are fundamental in classical 

electromagnetism, or in choosing whether to base classical mechanics on Newton’s laws or on the principle of 

least action. 
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theory in which the motion of particles is claimed to be influenced only by the fields they are 

experiencing in their immediate localities. 

 

 

7. The modelling of measurements 

 

In the usual interpretation of pure-state quantum mechanics, the modelling of measurements 

is not really possible. It is the one ‘no go’ area of the subject because the collapse of the wave 

function is not covered by the theory. For us, however, measurements can be modelled within 

the theory, and without having to employ photons or other matter not present in the (non-

relativistic) theory itself. 

 Several examples of ideal measurement modelling are provided in Chapter XIII of [5] 

together with explanations for the (unpredictable) effects those measurements can have on 

properties incompatible with the property being measured. The fuller theory in [5] is not 

however needed for this purpose. We give, in sections 7.2 and 7.3, brief accounts of these 

models using only ideas presented in this paper, but first we pause to reflect on the form the 

theory of the electromagnetic field should take in quantum mechanics, because this is crucial 

in relation to our measurement modelling. 

 

 

7.1 The electromagnetic field in quantum mechanics 

  

Since our quantum mechanical theorising is all non-relativistic, it would be unfitting to 

employ the full Maxwell electromagnetic field theory which is really a relativistic theory.  

Instead, for consistency, we should employ a form of Maxwell’s equations that is Galilean 

invariant (not Lorentz invariant). That means leaving out displacement currents and adopting 

only the quasi-static and quasi-stationary equations of the theory. Then, moving point charges 

do not generate magnetic fields but only electric fields, and the currents generating external 

magnetic fields cannot be modelled by moving charges but must be taken as sources in their 

own right distinct from charge sources.29  

 In employing this theory of electromagnetism, we should not consider it to be an 

approximation of the ‘proper’ theory, but as the actual theory going with quantum mechanics. 

That way there is no problem in understanding, for example, why electrons in an atom do not 

radiate electromagnetic waves (since there are no electromagnetic waves in the theory), and 

we can model apparatus suitable for measurements that in principle our non-relativistic 

theory allows. Only in relativistic quantum theory is there need for a fuller (Lorentz 

invariant) form of electromagnetism. 

 

 

 

                                                 
29 See Appendix C of [5] for a fuller discussion of this. 
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7.2 Measurement of the position of a charged particle and the effect on its momentum 

 

In modelling ideal measurements we may employ any apparatus built of matter allowed in 

quantum mechanics. We may use (in principle) particles of any mass and charge with any law 

of inter-particle potential we care to invent.30  

 By employing particles (material points) of very high mass, carrying charges and 

sensitive to appropriate inter-particle potentials of non-electromagnetic kind, we can 

‘construct’ means for generating any specified time dependent electric field )(tE  in a region 

R  of space that may be as small as we please. We just have to imagine suitable particles 

assembled near the boundary of the region and to let the inter-particle potentials vary in time 

so as to move those particles about keeping them always close to the boundary. By using 

equal numbers of particles with a positive and with (an equal) negative charge, and by 

choosing that charge small enough and the number of particles large enough, we can make 

the particles form a layer with a charge density (charge per unit area) and a dipole density 

(normal dipole strength per unit area) variable over the boundary, and variable in time 

(subject to a zero net charge). In this way the jump in electric potential and the jump in the 

normal component of electric field across the boundary can be independently adjusted to 

produce any specified field inside region R  and any field (that does not require a net 

boundary charge or sources at infinity) outside that region. Being of very large mass, the 

particles move according to the laws of classical mechanics (i.e. quantum theory is not 

needed for them). Our measuring apparatus is therefore purely classical. 

 The ‘apparatus’ described can be designed to produce a large pulsed uniform electric 

field in the x  direction inside region R  with no electric field outside that region at any time 

(see Figure 4).31 This apparatus thus sits dormant producing no electric field till, at a certain 

time, it generates its pulsed uniform electric field within the region (which region, as we have 

said may be as small as we please), and then falls silent again. 

                                                 
30 Of course, in non-relativistic atomic and molecular physics for example, the particles (electrons and nuclei) 

have charges that are multiples of the electronic charge and masses that have certain restricted values, and the 

inter-particle potentials are all of Coulomb type. This is not, however, a requirement of quantum mechanics. The 

only fundamental constant of the theory is Planck’s constant, and there is no theoretical restriction on particle 

charges and masses or on inter-particle potentials. 

31 Strictly speaking, we should let the masses of the particles tend to infinity, their number tend to infinity and 

their charge tend to zero. The electric field they produce is then a collective effect and the field of any one 

particle is vanishingly small and has no effect on a charged particle whose position is to be measured (this is 

more fully explained in section 2.3 of Chapter XIII of [5]). 



37 

 

  
Figure 4. Swarm of charged particles in the boundary of region R producing a uniform electric field E(t) in the 

region. Left: Simply bounded region, Right: Region between two closed boundaries. (The boundaries are shown 

with exaggerated thickness.) 

 

 Now envisage a free quantum mechanical particle (for example an electron), our pure 

knowledge of its motion being represented by a wave function )(r  occupying a volume W  

of space comparable to the size of our apparatus. Let p  be the expected mean value of the 

particle’s momentum and suppose our apparatus is placed in or over W  so that an electric 

field pulse appears over only part of W  (as, for example in Figure 5).  

 

 
Figure 5. Left: Wave function confined to region W. Right: Apparatus placed over W so electric field will act 

over a part of W only. 

 

Before and after the pulse, our apparatus has no effect on the particle (the charge and dipole 

densities in the boundary of region R  being zero then and the electric potential being zero 

everywhere). The effect of the pulse can be judged using the Schrödinger equation in which, 

owing to its very large magnitude, the potential dominates in the Hamiltonian all be it for a 

short time only. The effect is to leave the part of the wave function outside R  unchanged, 

and to multiply the part of the wave function inside R  by 
kxie  where k  is the (large) 

electric field strength times the particle’s charge and   the duration of the pulse. With 

pk   (as we suppose it is), this has the effect of setting the part of the wave function in R  

at the time (we call this the sub-packet) into uniform motion in the x  direction at a high 

velocity (Figure 6).  

E(t) 

R 

E(t) 

R 

ϕ(r) 

W 
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Figure 6. Part of the wave function left behind (on the left) and the remaining part of wave function (on the 

right) set in fast motion by the electric field pulse and, by now, far away from its original position in W. 

 

The remaining wave function (which we call the ‘new’ wave function )(r ) now occupies a 

smaller region of space and it starts to evolve differently as a result. This evolution is 

relatively slow and unimportant, while the motion of the sub-packet is fast, and it is soon far 

away. The sub-packet is a wave packet containing many de Broglie wavelengths and 

therefore, on its own, would represent a particle expected to move closely to a classical path.  

 Just after the applied pulse, we expect the particle must have either remained behind 

in the region occupied by the ‘new’ wave function or have set off with the sub-packet. 

Supposing we fail to detect a particle in a particle detector placed in the path of the sub-

packet. We then expect the particle to have stayed behind, and we may (in accordance with 

our rule in section 5.2) collapse our wave function to the (renormalized) ‘new’ wave function 

)(r . 

 Our expectation distribution of the particle’s position is then sharper than before, and 

by shaping and positioning the region R  and by employing an inner and outer boundary to R  

so that R  covers all but a small part of W , we can, by chance, effectively get to know the 

particle’s position to any required accuracy. We might get to know just its x  coordinate as 

accurately as we please by applying our electric field pulse in two regions R  one to the left 

and one to the right of two closely spaced planes perpendicular to the x  axis and crossing W  

 

 
 

Figure 7. Apparatus used to improve knowledge only of the x coordinate of the particle 

 

as in Figure 7. 

 We might thus measure the particle’s position (or just its x  coordinate), but in doing 

so, do we affect its momentum? Well we might do, because in the boundary (or boundaries) 

Δx 

ϕ´(r) 
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of R  there are very large electric field strengths lying within the dipole layer(s) and these 

might change the particle’s momentum greatly. 

 When narrowing our expectation of the particle’s x  coordinate, for example, the 

electric fields in the dipole layers (over the plane boundaries of the two R  regions) point in 

the x  direction and tend to infinity as the dipole layers are made infinitely thin. Taking the 

expected change in momentum proportional to the electric field (as in classical 

electrodynamics) the expected momentum imparted to the particle (when it is not detected in 

the sub-packet) stays the same. That is, it cannot be made smaller and smaller by diminishing 

the thickness of our dipole layers. An order of magnitude calculation (section 2.4 of Chapter 

XIII of [5]) shows that the expected (i.e. the mean) disturbance xp  to the x  component of 

momentum is at least as great as the uncertainty relation  xpx  would imply, x  being 

here the spacing between the two plane boundaries into which the particle’s wave function is 

collapsed. 

 Note that the relation  xpx  above, is not a general formula for the expected 

increase xp  in uncertainty of the x  component of momentum following a measurement in 

which our uncertainty of the particle’s x  coordinate falls to x . As we saw in section 6.1, 

when the wave function of a particle takes the form of two wave packets in separate regions 

of space, it is quite possible (by null detection in one of the regions) to acquire narrower 

expectation distributions over both the particle’s position and the particle’s momentum. We 

must be mindful of the difference between the likely physical effect of a measurement on a 

property incompatible with the one being measured, and the change in our expectations in 

relation to the value of that property following the measurement and the new knowledge the 

measurement gives us. These are generally quite different things. 

 By repeating the position measurement procedure in many trials of the same quantum 

mechanical process, and counting the relative number of successful measurements, we can 

confirm (as far as is possible) the probability for the particle being in any selected region of 

space as predicted by the quantum theory.  

 Also, if a successful position measurement in a particular trial is immediately 

repeated, the result will evidently be the same. That is, position measurement is reproducible, 

supporting the claim that such a measurement does not change the particle’s position. 

 

 

7.3 Measurement of the z  component of spin of a particle and its effect on other spin 

components 

 

In Chapter 5 of [17], Feynman et al describe Stern-Gerlach type filtration apparatus that 

might be used to determine, by chance, the component of spin of a (charge-free) particle in 

any chosen direction (say the z  direction) while leaving that spin component unchanged. The 

particle moves near the classical limit in a well-defined path (along the y  axis) through the 

apparatus. The magnetic field zH  has a strong gradient in the z  direction causing the path to 

bend by a small amount depending on the component of spin in the z  direction. By 

employing three Stern-Gerlach magnets in series each possible path can be bent back to the 
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path the particle would have taken if no Stern-Gerlach magnets were present. By blocking all 

but one of the paths inside the central Stern-Gerlach magnet we can filter out all spin 

components except one. 

 In section 3 of Chapter XIII of [5] a somewhat different method for spin component 

measurement is suggested which effectively accomplishes the measurement instantly and 

returns the particle to the same position as it was before. We now briefly describe this 

method. 

 Supposing, as in section 7.2, that the spatial component of our particle wave function 

is confined at some time to a small volume W  of space. At that time, a magnetic field zH  

with a strong gradient in the x  direction (rather than the z  direction) is applied over W .32 

The field is pulsed, i.e. switched on and then off again. The particle experiences an effective 

potential gradient in the x  direction, the potential being the potential of its magnetic moment 

in the magnetic field zH . This potential gradient is proportional to its spin in the z  direction. 

This causes the region W  occupied by the wave function to start moving as a wave packet in 

the x  direction at a velocity that depends on the component of the particle’s spin in the z  

direction. The bigger that component, the faster the packet travels. Generally, however, the 

spin component will be unknown, with the particle’s wave function containing the z  

component of spin as one of its variables. This wave function can be expressed as the 

superposition of wave functions each of which is a product of a function of position and a 

(delta) function of spin component indicating a definite value of that component.  Under the 

magnetic impulse the wave packet therefore divides into as many parts as there are possible 

spin components. At some time after the magnetic impulse is applied, the parts of the wave 

packet are well separated in space and an impulse of opposite sign and twice as great as the 

first is applied to each one of the separate wave packets. This has the effect of reversing the 

velocity of those packets and returning them, in time, to the position of the original wave 

function. At the moment they arrive back a third impulse is applied, equal to the first, to bring 

the packets to rest again. All this can be accomplished quickly, i.e. in a time small compared 

to the time of natural evolution of the wave packets (aside from the motions induced in them 

by our apparatus). The reassembled wave packets brought back to rest add up (in the limit as 

the impulses are made greater and greater) to exactly the same wave function that we started 

with.33  

 If, during the process, we switch on particle detectors in the paths of all but one of the 

flying wave packets, and if no particle is detected, we expect the particle to be in the packet 

                                                 
32 This requires a uniform current density source to be present in the y direction filling the space between two 

planes (perpendicular to the x axis) one on either side of region W. This current need not interfere with the 

particle whose spin component is being measured. (See Note on the relativistic modelling of macroscopic 

electromagnetic field sources in Appendix C of [5].) 

33 Note that the argument used on pp 350-351 of [5] to confirm that the particle itself returns to the same 

position in the limit is too much of a stretch. It depends on taking two limits (of region W  tending to zero and 

of the applied magnetic impulses tending to infinity). These limits are incompatible. Nonetheless, we may 

reasonably argue the particle is returned to the same place (in the limit of infinite magnetic impulses) just 

because its velocity relative to the wave packet motion during measurement, is expected to be finite, while the 

wave packet is returned instantly (in the limit). 
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that was not subjected to momentary detection, and therefore expect it to have the 

corresponding component of spin. The wave function is then collapsed to the part carrying 

that particular value of spin component. 

 The measurement is evidently repeatable supporting the view that a spin component is 

a real attribute of a particle that can be measured without changing that spin component. 

 By switching on particle detectors in all but a number of flying wave packets, we can 

determine by chance, through null-detection, that one or other of the corresponding spin 

component values is expected to apply just before and just after our measurement. This 

allows us to collapse the particle’s wave function in a general manner with respect to its spin 

component variable. 

 Does a measurement of the spin component in one direction affect the components of 

spin in other directions? Well, yes it does, at least if we assume, as we do, that spin 

precession in a magnetic field is a real process. During the motion of each wave packet 

induced by the measurement, we have no way to deduce that the particle retains exactly the 

same position inside its wave packet. It may drift a little. Therefore the magnetic field it 

experiences, and the rate of precession of any one spin component, is likely quite different at 

the different stages of the measurement process due to the high gradient of the applied fields. 

So the net turning (by precession) of any spin component (other than the z  component) is not 

zero.34 If a spin component in another direction (say the y  direction) is initially known, and 

we successfully measure the z  component in the way described, then the y  component will 

have undergone precession about the z  direction, and after the measurement of the z  

component, the y  component value will apply to a different axis in the xy  plane, and the 

component value in the y  direction will now be different, being the unknown component in 

the direction which precession caused to turn into the y  direction. This makes it impossible 

for us to measure the particle’s spin components in more than one direction at once. 

 

 

7.4 Modelling the preparation of pure-states 

 

Related to the modelling of measurements is the modelling of pure-state preparation 

processes. Both are possible under the realist interpretation of quantum mechanics we are 

proposing. 

 As an example of pure-state preparation, suppose, using classical apparatus, we have 

managed to establish that a single electron is present in an enclosure with perfectly reflecting 

walls and that its kinetic energy is less than or equal to a known amount T . Taking this to be 

all our information about the electron’s dynamics, we are in a mixed state of knowledge of 

that dynamics. This mixed state can be represented (in the position representation) by an 

array made up of the wave functions of all the orthogonal stationary states of the electron in 

the enclosure (except those of energy greater than T ) and associated positive weights (one 

                                                 
34 This remains true even in the limit as the magnetic field gradients tend to infinity and the wave packets are 

instantly returned. 
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for each wave function). Using Jaynes’s theory of probability in connection with mixed 

states35, we can apply the principle of maximum entropy or the (extended) principle of 

indifference to deduce that the positive weights are all equal. If we switch off the potential 

field enclosing the electron and successfully perform an accurate measurement of the position 

of the particle following the method of section 7.2, each wave function of our array collapses 

to one-and-the-same delta function of position. Our array then represents a pure-state with 

the electron in a known position.36 With the aid of suitable potential fields applied from this 

time onward, we can arrange for the wave function to evolve into any other form we wish. 

Any pure-state of knowledge of the electron’s orbital motion can thereby be prepared. 

 

 

8. Concluding remarks 

 

By passing from a frequency interpretation to a kind of rational Bayesian interpretation of 

probability, it seems possible to construct a realist interpretation of quantum mechanics. In 

this realist interpretation, what were previously viewed as only ‘potential properties’ (like 

particle positions and particle momenta) become actual properties possessed by a quantum 

mechanical system, and probabilities refer not just to future ‘personal experiences’ of an 

individual (as the QBists think with their subjective Bayesian approach to probability) but to 

actual physical properties supposed real.  

 In proposing this realist view we have to relax the interpretation of probability equal 

to 1 , and take it to imply (full) expectation rather than certainty, just as the QBists (and 

subjective Bayesians generally) might. We thus take (full) expectation to be a state of mind in 

which, by calculation, we fully expect the event in question to occur but do not generally 

claim it is certain to occur.  

 This change, from certainty to expectation, seems generally necessary anyway in 

order to resolve a contradiction that arguably arises when applying the principle of 

indifference to deduce certain (rational Bayesian) probabilities in ordinary life or in classical 

mechanics (as in the biased die rolling example in Appendix A). It also usefully allows the 

possibility of recalculating conditional probabilities based on a proposition claiming an event 

whose probability (before conditioning) is calculated to be zero. 

 In our proposed Bayesian probability theory for quantum mechanics, the idea that a 

calculated probability equal to 1  implies ‘expectation’ (rather than certainty), seems to be an 

essential requirement. For it appears that, while we might sometimes calculate a probability 

equal to 1  for each of two (or more) incompatible system properties (properties incompatible 

under the uncertainty principle), and while our expectations of those individual properties 

seem always to be borne out by measurement, we should not expect the compounded 

property of the two (or more) of them together37, for then contradictions will arise. This 

                                                 
35 See sections 7 and 10 of [12], or sections 5 and 6 of Chapter XIV in [5]. 

36 See section 12.1 of Chapter XIV of [5] for more detailed explanation of the realisation of this pure-state. 

37 Neither, of course can we test whether or not the two (or more) properties are present together, because the 

uncertainty principle prevents this.  
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change in our way of reasoning, accompanying the uncertainty principle, may seem strange, 

but it is forced on us. It is connected to our claim that joint probabilities of incompatible 

properties are non-existent, and is thus arising from a change in probability theory rather than 

a change in the axioms of propositional calculus. (Even though we view (with Jaynes) 

probability as an extension of logic, there is evidently no connection between our work and 

the work trying to establish a new quantum propositional logic, as discussed, for example, in 

Section 7.4 of [15].) 

 It is surely not so strange that probability theory should change as science progresses. 

We have seen already (in relativity theory) how our notions of geometry and of absolute time 

(both once thought to be unalterable) must change, and change in a way not easy to 

comprehend at first, and there is likely no limit to the subtle changes we will need to make in 

our ways of thinking according as new experiences may demand.  

 

In our realist interpretation of quantum mechanics we have adopted the physical picture of 

quantum mechanical particles performing both irregular motions in space over infinitesimal 

distances in infinitesimal times, and irregular drifting motions through space over ordinary 

distances in ordinary (non-infinitesimal) times. We have supposed that a particle’s spin and 

linear momentum components are properties of its infinitesimal motion, and that all the 

inferred properties of a system of particles (properties represented by complete sets of 

observables in the quantum formalism) are momentary properties generally dependent on the 

infinitesimal motions of its particles, and are properties generally dependent (both 

qualitatively and quantitatively) on the Cartesian coordinate system to which they are 

referred. It may be that (without invalidating the uncertainty principle or the probabilistic 

theory of quantum mechanics presented here) more detailed mathematical laws of motion 

governing the irregular infinitesimal and drifting particle motions (under the action of 

external and inter-particle potentials) will one day be postulated. This would provide a much 

deeper insight into the nature of the physical world at the quantum level (even if this nature 

could never be substantiated by direct observation nor employed to make new predictions). 

 

Now the rational Bayesian probability theory for quantum mechanics presented in this paper 

relies on the formalism of pure-state quantum mechanics (with the additions we have noted in 

sections 5.1-5.3). This formalism serves (in this paper) as the set of rules for calculating our 

probabilities under any pure-state of knowledge we might hold of a system’s dynamical 

properties. As we have said already, we view this set of rules as resulting from a mix of 

probabilistic rules and physical laws. As Jaynes has remarked, it is necessary to separate out 

this mix.38 This is the task tackled in [5], where the simplest possible rules of complex-valued 

probability and the simplest possible physical laws are sought that lead, through Bayesian 

reasoning, to the same predictions as those of the quantum formalism. Because of this 

equivalence with the usual formalism, there are no new predictions in [5], but by 

unscrambling the ‘mix’, a new probability theory emerges, and some light is cast on the 

nature of the physical world (at the quantum level). 

                                                 
38 See footnote 14. 
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 There is no space in this paper to provide a full account of the theory in [5]. In 

Appendix B, however, we provide a flavour of that theory by (i) explaining the role of phases 

(of complex-valued probabilities) in relation to what (full) expectation might mean, (ii) 

giving some of the assumed physical laws, and some of the deduced physical laws, and (iii) 

giving an example of the use of the principle of indifference and of the method of 

transformation groups as formulated in the theory of complex-valued probability. 

  

The task of constructing a Bayesian theory of complex-valued probabilities for application to 

quantum mechanics has been tackled by other researches. 

 In particular Saul Youssef has written several papers ([21]-[25]) suggesting how this 

task might be accomplished, and he has maintained a list of papers [26] by others pursuing 

the same end. Youssef argues that a complex-valued probability calculus for quantum 

mechanics can be provided using Cox’s logical derivation (of the Bayesian probability 

calculus) in [27] (or Jaynes’ similar derivation in Chapter 2 of [2]) but dropping the 

assumption made by Cox (and Jaynes) that probabilities must be represented by real numbers. 

Youssef derives a complex-valued form of the probability calculus in this way. A difference 

between Youssef’s calculus and ours (in [5]) lies in the sum rule for mutually exclusive 

propositions. For two such propositions ( A  and B ) claiming compatible properties, the sum 

rule is (for us) as in (18) of Appendix B with )( YAB  put equal to zero, but for Youssef it is 

 

)()()( YBYAYBA  . 

 

)( YA  denoting the complex-valued probability of A  under knowledge Y , …etc. This is in 

line with Feynman’s theory of probability amplitudes, but it raises problems for 

normalisation, and the idea that the probability of a disjunction of propositions claiming 

compatible attributes can be zero while the probabilities of the component propositions are 

different from zero seems hard to reconcile with probabilities reflecting degrees of belief or 

degrees of expectation under given knowledge.  

 

QBists have tended not to develop a theory of complex valued probabilities as such. Instead, 

they stick to ordinary positive-valued probabilities (of an individual’s future measurement 

experiences) and try to explain how the quantum formalism used for calculating such 

probabilities comes about through one or other supposed rational principle for gambling – a 

principle from which the Born rule follows as the coherent way of formulating probabilities. 

They are adopting De Finetti’s approach to probability and are trying to account for why a 

basic entity (wave function or density matrix) in the quantum formalism serves (through the 

Born rule) as a compendia of rational probabilities. In particular Fuchs and Schack [28] and 

Benavoli, Facchini and Zaffalon [29] are working on this kind of theory.  

 However, it is unclear to us how the quantum formalism can be regarded as (or 

reinterpreted as) pure probability theory, as these researchers seem to think. The reason is 

that the formalism contains at least one dimensional quantity – the unit of action, or Planck’s 

constant which appears in some of the commutation rules. Physical constants (for example a 
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particle’s mass) also appear in the Schrödinger equation. Calculated probabilities based on 

knowledge of properties (or of past experiences) are generally dependent on the values of 

these constants. This seems to us to mean that the calculation of probabilities using the 

formalism is in part a reflection of physical laws. In other words, the formalism should surely 

be conceived as arising from physical laws as well as from laws (or principles) of probability. 

 By denying physical laws play a part in accounting for the formalism, these 

researchers seem to us to be missing something, and their work cannot cast light on what is 

most important for physicists, namely the nature of the physical world. Whereas the approach 

we are putting forward (particularly as developed in [5]) can do that.  

 

  

Appendix A: The resolution of some problems in rational Bayesian 

probability theory  

 

 Jaynes [2] has done much to counter criticism of Bayesian methods used to calculate 

probabilities in ordinary life and in classical physics.  

 In particular he has indicated (in section 12.3 of [2]) how measure theory can be 

employed to avoid ambiguity in the way the principle of maximum entropy is applied when 

probability distribution functions are continuous. The point here seems to be that, in applying 

the principle of maximum entropy to a continuous distribution function (or, indeed, the 

principle of indifference to a continuous distribution function), one should employ the 

natural measure associated with the variable space in question. For example, if the 

distribution required is one over the continuous variable x  denoting the position of a classical 

particle along a straight line, the natural measure is that of distance along the line. So if we 

know only that the particle lies between two points A and B on the line, then, on applying the 

principle of maximum entropy (or the principle of indifference), we should partition the line 

between these two points into equal intervals of distance, and set the probability for the 

particle lying in any one interval the same. Our prior probability distribution (probability 

density) is therefore a constant between A and B and zero elsewhere. 

 In section 9.2 of [2] entitled ‘The poorly informed robot’, Jaynes draws attention to a 

paradox concerning the principle of indifference. Supposing, he says, we roll a biased die 

many times, say n  times, and denote the result as nrrr ...21 , where integers ir  are in the range 

61  ir  (all i ). Then suppose we give a robot (programmed to calculate probabilities 

according to Bayesian rules) limited information about the process, namely that a process (of 

‘order n ’) has been run and this process has 
n6  possible outcomes symbolically labelled as 

nrrr ...21 , where 61  ir  (all i ). We will denote this information by I . The robot is 

indifferent between the outcomes and assigns probability 
n6

1  to each. Using the sum rule of 

probability it accordingly assigns a probability 
6

1
 for 1r  being 3, and 26

1
 for 1r  being 3 and 2r  

being 3, etc. If we were to tell the robot the values 1r  and 2r , it would use the product rule to 

deduce, for the probability of any value of 3r , the result  
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In this way the robot calculates that the probability of any one value of any one term ir  is 

independent of given values of the others. Of course the robot is quite mislead by not being 

told that nrrr ...21  denotes an outcome of a set of biased die rolls, and so it is not in a position 

to learn anything from the information given it about the actual values of some of the ir . The 

robot calculates that when n  is large, the number three (or any particular number from 1 and 

6) is likely to occur in nrrr ...21  close to 
6

n
 times, i.e. close to the fraction 

6

1
 of the time. More 

precisely the robot calculates, using the sum rule and simple counting, that the probability for 

just m  threes occurring in nrrr ...21  is given by the binomial distribution 
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and therefore that the probability for 3 occurring in nrrr ...21  a fraction between 
6

1
 and 

6

1
 

of the time tends to 1 as n  for any positive value of   however small. The robot appears 

to be certain about this limiting relative frequency of occurrence. In other words the robot 

seems to logically deduce something to be true that isn’t true. Jaynes talks a little about this 

kind of problem on p. 337 of [2] in connection with coin tossing, and it seems he would have 

argued that the limit n  is not physically possible (something we did not tell the robot!). 

Nonetheless there seems to be a contradiction here in principle, and, as noted in section 2, 

this is one of the motivations for us regarding probability 1 as expressing (full) expectation 

rather than certainty. 

 If we replace the robot by a person, all the last paragraph still of course applies (so 

long as our person reasons in a proper Bayesian manner). Now, if we go on to tell this person 

the actual limiting relative frequencies (in nrrr ...21 ) of each of the values 1 to 6 (as judged by 

us secretly rolling our biased die very many times) then this person must rethink their 

calculations. They must condition on a proposition whose probability they had determined 

(under information I ) to be zero, but because we take zero probability to indicate only 

expectation of non-occurrence rather than certainty of non-occurrence, the person is happy to 

condition on the new information provided. They might use their imagination (in a way that a 

robot might currently not be able to do) and come up with the theory that (i) occurrence 

nrrr ...21  is the result of n  trials of a random process each with 6 possible outcomes labelled 1 

to 6, (ii) the probabilities of the outcomes in one trial are equal to certain values (taken equal 

to the limiting relative frequencies given to them) and (iii) the outcomes of each trial are 

logically independent. Then they would have satisfactorily taken into account their new 

knowledge. 
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Appendix B: Some details of the complex-valued probability theory 

 

B.1 Complex-valued probabilities 

 

In [5] probabilities take complex values whose squared moduli should be termed degrees of 

expectation ranging from 0  to 1 , and whose arguments should be termed ‘phases of 

expectation’ ranging from 0  to 2 . Accordingly, the complex numbers representing 

probabilities lie within or on the unit circle in the complex plane. 

 Wave functions in the quantum formalism are (in [5]) complex-valued probability 

distributions over the possible values of the dynamical property employed in the 

representation. These complex-valued probability distributions (and the complex-valued 

probabilities of disjunctions of the basic propositions of a representation) are deducible using 

a certain complex-valued probability calculus and assumed physical laws together with rules 

for assigning prior probabilities (generalisations of the rules formulated by Jaynes for 

assigning real-valued prior probabilities).  

 Under pure knowledge Y  of the dynamical properties of a system, (full) expectation 

of an event arises when the probability (denoted )( YA ), of the proposition A  claiming the 

event, is calculated to be of the form 
ie  where   is the real-valued phase of the probability 

(defined modulo 2 ). That is, an event is expected when its probability lies on the unit circle 

in the complex plane.  

 In [5], much as in section 5.5 of the present paper, an event that is expected, may (i) 

be a pure-logical consequence of the proposition Y  expressing our knowledge, (ii) be a 

consequence of Y  by physical law (independently of our knowledge of truth of Y ) or (iii) be 

brought about (or ensured) physically by the acquisition of our knowledge Y . Or it may be 

(iv) that none of these apply and we can say only that the event is expected to occur without 

being certain it does. 

 In [5] we postulate that when the phase   is determinate (has a definite calculated 

value) then (i) or (ii) above must be true, but when   is indeterminate which of (i)-(iv) 

applies remains an open question. 

 Indetermination of the phase of some probabilities arises in [5] through the sum rule 

for complex-valued probabilities which we state here in the form 

 

222

)()()()( YABYBYAeYBA i  
   (18) 

 

where   is a phase which is generally indeterminate, and (both in (18) and (19)) A  and B  

are propositions in the sample space whose atomistic propositions (like the ix  in section 5.1) 

are claiming basic properties of any one representation. ( A  and B  are thus general 

disjunctions of those atomistic propositions.) 

 The product rule (in the same sample space) takes the form 
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)()()()(  kieAYBYAYAB       (19) 

 

where AY  constitutes a pure-state of knowledge, and k  and   are the phases characteristic 

of knowledge Y  and of knowledge A  respectively and are generally indeterminate.  

 The rule for wave function collapse (i.e. equation (3) in the present paper) is a 

consequence of the product rule (19). 

 

 

B.2 Physical Laws 

 

 One of the assumed physical laws in [5] (as in this paper) is that any quantum 

mechanical particle moves continuously but not smoothly through space. So its motion is 

irregular even at the smallest scales. A particle therefore moves rather like a pollen particle in 

Brownian motion. Indeed, the derivation of the Schrodinger equation in [5] using the 

complex-valued probability calculus and Bayesian rules for assigning prior complex-valued 

probabilities, has much in common with a similar (classical Bayesian probability) derivation 

of the diffusion equation for Brownian motion of a classical particle (see Appendix H of [5]). 

 To mention some of the other assumed physical laws, we claim in [5] that (i) particle 

momentum is an internal property of a particle just as particle spin angular momentum is, (ii) 

spin components stay constant over short times but (in a magnetic field) may jump 

occasionally from one of their possible discrete values to another, (iii) any particle system in 

motion can move in exactly the same way when displaced or rotated as a whole in fixed 

space or when displaced in time, (iv) for every possible motion of a particle system in an 

external field, the time-reversed motion in the time-reversed field is also a possible motion, 

(v) potentials are more fundamental than fields, affecting particle motion even when they are 

uniform throughout space, and (vi) that two full rotations are required to bring a coordinate 

system39 (or any rigid body) back to occupying space in the same way. 

 Certain physical laws are derived in [5] as consequences of certain calculated 

probabilities taking the form 
ie  where   is a known (determinate) phase. Of these derived 

laws, we have (i) that the momentum of a particle stays constant during free motion, (ii) that 

in a potential of uniform gradient the momentum of a particle increases at a constant rate the 

same as in Newtonian mechanics, (iii) that the spin components of a particle stay constant 

when there is no magnetic field and (iv) undergo precession about a magnetic field at a 

certain definite rate equal to that calculated in textbooks on quantum mechanics.  

  

The physical laws assumed in [5] may be adopted as assumed physical laws in the simpler 

theory presented in the main part of this paper, and the physical laws derived in [5] can be 

                                                 
39 A coordinate system can be modelled in quantum mechanics as a structure of very many particles of very high 

mass held together by inter-particle potentials. It can include synchronised clocks at every point of the space it 

marks out. It is a classical system, at rest, or moving in a specified way, and not in interaction with the quantum 

mechanical particle system under study. 
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adopted as well, by claiming certainty applies to particular (real-valued) probabilities 

calculated to equal 1 . We have done this already to some extent, and in this way we have 

provided (as we have in [5]) a partial description of physical dynamics at the quantum level. 

 

 

B.3 The complex-valued probability calculus and laws of prior probability assignment 

 

Along with the sum rule (18) and product rule (19) we claim, in [5], various other rules of the 

complex-valued probability calculus. In particular, we adopt the well-known rule  

 





N

j

jjii YyyxYx
1

)()()(       (20) 

 

connecting wave functions in any two representations ( x  and y ), as a rule of the complex-

valued probability calculus. It is a rule that determines the extent to which the distribution of 

our degrees of expectation over property x  values become less sharp as the distribution of 

our degrees of expectation over property y  values becomes sharper. In adopting (20) as a 

rule of the complex-valued probability calculus, we thus incorporate the uncertainty principle 

into probability theory itself. Rule (20) leads to the ‘interference of probabilities’, and the 

transformation functions )( ji yx  in it (themselves wave functions) are derivable using 

physical laws and laws of prior probability assignment (claimed in [5]). 

 One law of prior probability assignment is the principle of indifference which we here 

state as follows. 

 

Principle of indifference 

 

If, on the basis of knowledge Y , we are indifferent between the mutually exclusive 

propositions ix  ( mi ,...1  where Nm ) claiming basic dynamical properties of a 

system in one representation, then we should set our degrees of expectation equal, i.e. 

we should set 

 
22

2

2

1 )(...)()( YxYxYx m . 

 

If, in addition, the differences between the properties claimed by the ix  cannot be 

expressed absolutely using natural measures, natural orders, natural directions or other 

such concepts, then we are absolutely indifferent between the alternative propositions 

and we should set our phases of expectation equal also, and so set 

 

)(...)()( 21 YxYxYx m .  
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We claim no converse to the principle of indifference. (So the above relations being true do 

not imply indifference.) We do however make the following claim. 

 

Principle of indifference (cont.)40 

If we are indifferent but not absolutely indifferent between the propositions ix  

( mi ,...1 ) we should by default set the phases of their probabilities (under 

knowledge Y ) unequal, unless of course we have reason (other than indifference) to 

do otherwise. 

 

 To illustrate the use of this principle of indifference, we consider the problem of 

finding the position/momentum transformation function )( 33
pr dd  for a free particle. This is 

the complex-valued probability for the particle being in volume element r
3d  at r , knowing 

its momentum is in element p
3d  (of momentum space) at p . 

 Taking the volume elements to be equal cubical elements filling all space (i.e. 

elements of equal natural measure), and noting that (knowing only its momentum) we are 

indifferent between the particle occupying any one or any other of these elements of space, 

we should assign probabilities whose squared moduli are all equal, i.e. we should put  

 

rrpr p

333 )()( ddd     with   
),()( pr

p r
fike  

 

where k  is independent of r , and ),( prf  is a (non-dimensional) real valued function. The 

square root over the volume element r
3d  is evidently necessary on account of the form of the 

sum rule (20) according to which our degree of expectation for the particle lying in r
3d , i.e. 

2
33 )( pr dd , should be proportional to r

3d .  

 Since there is only one fundamental constant in quantum mechanics (the fundamental 

unit of action,  ), we can form only one absolute vector of displacement, namely p . In 

any plane perpendicular to this vector we are absolutely indifferent between the particle 

occupying one or other of the points on this plane, because we have no natural way of 

distinguishing them. Therefore f  can only be a function of pr. . So we see how we have 

got so far toward calculating the required transformation function using our principle of 

indifference. 

 We can get further by applying Jaynes’ method of transformation groups generalised 

to complex-valued probabilities. Consider a coordinate system O  displaced from our 

coordinate system O  by Δ . Under the same knowledge p , the problem of finding )(rp
  in 

                                                 
40 The continuation of the principle of indifference differs here from the form given it in [5].  The continuation 

as stated in [5] was too strong, leading to inconsistency. However, as restated above it serves the desired 

purpose well enough, (the purpose being to fix (on p.249 of [5]) the anti-symmetry of the wave function for two 

or more identical fermions). 
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O  is similar to that of finding )(rp  in O . Therefore these probability distributions can 

differ only in a phase factor independent of r  (but possibly a function of Δ  and p ). So we 

have 

 


 iiffi ekeek ).().(  prpr  

 

when rr  , the LHS representing )(rp
  and the RHS being )(rp  times a phase factor 

independent of r . On the other hand, the probabilities for the same event must be the same, 

i.e. 

 
)).(().(  pΔrpr 

 iffi keek . 

 

Using both these relations we have  

 

 ).()).((  prpΔr ff  

 

for all r  . So )( pr.f  can only be a linear function of its argument, and we find )( pr  has 

the form 

 
pr

p r
.)(  ike  

 

where k  and   are independent of r , and   is real.  

 See section 3 Chapter 6 of [5] for an alternative derivation of the position/momentum 

transformation function in which   and k  are fully evaluated. See also [5] for the derivation 

of many other transformation functions of the quantum formalism. 
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