A remark on a golden arbelos in Wasan geometry

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We consider a problem in Wasan geometry involving a golden arbelos.

Keywords. golden arbelos.

Mathematics Subject Classification (2010). 01A27, 51M04.

1. INTRODUCTION

We consider the arbelos appeared in Wasan geometry, and consider an arbelos formed by three semicircles α , β and γ with diameters AO, BO and AB, respectively for a point O on the segment AB (see Figure 1). We denote the arbelos and the radii of α and β by (α, β, γ) and a and b, respectively, and call the perpendicular to AB at O the axis. Circles of radius $r_{\rm A} = ab/(a+b)$ are said to be Archimedean, and the incircle of the curvilinear triangle made by α , γ and the axis is Archimedean, which is denoted by δ . Let σ be the reflection in the perpendicular to AB at the center of γ . We consider the following problem in [11] (see Figure 2).

Problem 1. Let ε be the circle touching α^{σ} externally γ internally and the axis from the side opposite to A. If ε and α have the same radius, find the radius of ε in terms of the difference of the radii of γ and δ .

The same sangaku problem proposed in 1891 [1]. If $a/b = \phi^{\pm 1}$, then (α, β, γ) is called a golden arbelos, where $\phi = (1 + \sqrt{5})/2$. We will show that the figure of the problem forms a golden arbelos and the circles δ and ε touch. We will also give a condition in which the circles δ and ε touch in the case $a \neq b$.

2. Circles touching a perpendicular to AB at the same point

We use a rectangular coordinate system with origin O such that the farthest point on α from AB has coordinates (a, a). We use the next proposition.

Proposition 1. It two externally touching circles of radii r_1 and r_2 touch a line at two points P and Q, then $|PQ| = 2\sqrt{r_1r_2}$.

Theorem 1. Let ζ be the semicircle of diameter BO' constructed on the same side as γ for a point O' on the segment AB, and let ε be the circle touching γ internally, ζ externally and the axis from the side opposite to A. Then the following statements are equivalent.

- (i) The circles δ and ε touch.
- (ii) The circle ε has radius $b r_A$.
- (iii) The semicircle ζ coincides with α^{σ} .

Proof. Let e and z be the radii of ε and ζ , respectively, and let y be the ycoordinate of the center of ε (see Figure 3). Then we have $(a + b - e)^2 = (-e - (a - b))^2 + y^2$ and $(z + e)^2 = (-e - (-2b + z))^2 + y^2$. Solving the equations for eand z, respectively, we get

(1)
$$e = b - \frac{y^2}{4a}$$

and

(2)
$$z = b - e + \frac{y^2}{4b}.$$

While (i) is equivalent to $y = 2\sqrt{ar_A}$ by Proposition 1. Therefore (1) implies that $y = 2\sqrt{ar_A}$ if and only if $e = b - r_A$, i.e., (i) and (ii) are equivalent. Substituting (1) in (2), we get

$$(3) y^2 = 4zr_A$$

The equation gives that $y = 2\sqrt{ar_A}$ if and only if z = a, i.e., (i) and (iii) are equivalent.

We now consider the figure of Problem 1 and assume that the radius of the circle ε equals *a* (see Figure 4). Then by the equivalence of (ii) and (iii) in Theorem 1 we have

$$(4) a = b - r_{\rm A}.$$

Let c be the radius of γ . Then $2a = a + b - r_A = c - r_A$, i.e., $a = (c - r_A)/2$, which is an answer of Problem 1. Solving (4) for b, we get $b = \phi a$. Therefore (α, β, γ) is a golden arbelos, where notice that r_A, a, b, c form a geometric progression with common ratio ϕ . Also (4) implies that there is an Archimedean circle concentric to γ touching the axis and the circles α , α^{σ} and ε externally.

The Archimedean circle touching ε externally and the axis at O can also be obtained in the case $b \neq \phi a$. Notice that the radius of the circle touching ε externally and the axis at O from the side opposite to A equals $y^2/(4e) = (z/e)r_A$

by Proposition 1 and (3) in the proof of Theorem 1. Therefore we get (see Figure 5):

Theorem 2. Let ζ and ε be the semicircle and the circle in Theorem 1, and let η be the circle touching ε externally and the axis at O from the side opposite to A. Then η is Archimedean if and only if ζ and ε have the same radius. In this event, (α, β, γ) is a golden arbelos if and only if ζ and η touch.

We have considered two circles touching a perpendicular to AB from the opposite side at the same point in a general way in [5]. Theorem 1 gives a special case in which such a pair of circles appears. Another condition using the reflection in the axis can also be found in [6].

3. Application of division by zero

We consider the relations (1), (2) with the recent definition of division by zero: z/0 = 0 for any real number z [3].

We consider (1). Notice that this relation is obtained only from the assumption that the circle ε touches the axis from the side opposite to A. If a = 0, then the semicircle α degenerates to the point A, β and γ coincide, and $y^2/(4a) = y^2/0 = 0$ by the definition of division by zero. Hence (1) implies e = b. Therefore the half part of the circle ε coincides with γ (see Figure 6).

If b = 0, then β and ε degenerate to the point B, i.e., e = z = 0, and $y^2/(4b) = 0$. Therefore (2) still holds (see Figure 6).

For more applications of division be zero to Wasan geometry see [2], [4], [7], [8], [9, 10].

4. A CONFIGURATION ARISING FROM THE GOLDEN ARBELOS

Let τ be the product of σ and the homothety of center A and ratio ϕ^{-1} . Let p be the x-coordinate of a point P on AB. Then we have $(p + p^{\sigma})/2 = a - b$ and $(p^{\sigma} - 2a)/\phi = p^{\tau} - 2a$, where p^{σ} and p^{τ} are the x-coordinates of the points P^{σ} and P^{τ} , respectively. Then $p^{\tau} = 2a + (p^{\sigma} - 2a)/\phi = 2a + (-2b - p)/\phi = -p/\phi$. Therefore τ coincides with the homothety of center O with ratio $-1/\phi$. Hence $p^{\tau^n} = (-1)^n p/\phi^n$, i.e., P^{τ^n} has x-coordinate $(-1)^n p/\phi^n$, and the axis is fixed by τ . Notice that γ^{τ} passes through the point of tangency of δ and ε by Proposition 1, because $(2\sqrt{ar_A})^2 = 2a \cdot 2\phi a = |A^{\tau}O||B^{\tau}O|$ (see Figure 8).

Figure 10: \mathcal{K}_0 with it reflection in AB.

Let \mathcal{K} be the figure consisting of γ , α , α^{σ} , δ and ε in the case $b = \phi a$, which is obtained from Figure 2 by removing AB and the axis. Let $\mathcal{K}_i = \mathcal{K}^{\tau^{i-1}}$ for $i = 1, 2, 3, \dots$, and $\mathcal{K}_0 = \bigcup_{i \ge 1} \mathcal{K}_i$. It is a custom of Wasan geometry to describe the arbelos by three circles so that their centers lie on a vertical line. The original figure of Problem 1 is also described by \mathcal{K} with the axis and its reflection in ABso that AB is a vertical segment as in Figure 9. Following to this custom, we also describe \mathcal{K}_0 so that AB is a vertical line with its reflection in AB (see Figure 10).

HIROSHI OKUMURA

References

- [1] Fukushimaken Wasan Kenkyū Hozonkai (福島県和算研究保存会) ed., The Sangaku in Fukushima (福島の算額), Sōju Shuppan (蒼樹出版), 1989.
- [2] Y. Kanai, H. Okumura, A three tangent congruent circle problem, Sangaku J. Math., 1 (2017) 16–20.
- [3] M. Kuroda, H. Michiwaki, S. Saitoh, M. Yamane, New meanings of the division by zero and interpretations on 100/0 = 0 and on 0/0 = 0, Int. J. Appl. Math., 27(2) (2014) 191–198.
- [4] T. Matsuura, H. Okumura, S. Saitoh, Division by zero calculus and Pompe's theorem, Sangaku J. Math., 3 (2019) 36–40.
- [5] H. Okumura, The arbelos in Wasan geometry: Chiba's Problem, Glob. J. Adv. Res. Class. Mod. Geom., 8(2)(2019) 98-104.
- [6] H. Okumura, A note on the arbelos in Wasan geometry: Satoh's problem and a circle pattern, Mathematics and Informatics 62(3) (2019) 301–304.
- [7] H. Okumura, Solution to 2017-1 Problem 4 with division by zero, Sangaku J. Math., 2 (2018) 27–30.
- [8] H. Okumura, Wasan geometry with the division by zero, Int. J. Geom., 7(1) (2018) 17–20.
- [9] H. Okumura, S. Saitoh, Wasan geometry and division by zero calculus, Sangaku J. Math., 2 (2018) 57–73.
- [10] H. Okumura, S. Saitoh, Applications of the division by zero calculus to Wasan geometry, Glob. J. Adv. Res. Class. Mod. Geom., 7(2) (2018) 44–49.
- [11] Ono (小野以正) ed., Keiteki Sampō Shinan Taisei (啓廸算法指南大成), 1855, Tohoku University Digital Collection.