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Abstract

A new method for multi-dimensional global optimization is pre-
sented. The fundamental idea is to obtain the Chebyshev norm from
a set of Lp-norms; an original extrapolation procedure is used to con-
verge to the optimum value, which is identical to the Chebyshev norm.
This allows the optima to be efficiently pin-pointed by repeatedly bi-
secting the domain. Estimates of computational cost indicate that the
method is fast.

1 Introduction

The generic optimization problem that CHEBYCHOP has been devised for
is:

FMAX(D) = max
x∈D

f(x), (1)

where f(x) is a continuous function of a D-dimensional vector, x, and D
is the domain. As well as calculating the optimum, FMAX , the set of vectors,
X , where the optimum occurs also needs to be obtained.

In order to calculate the optimum, the approach taken is to calculate
the Chebyshev norm, since FMAX = ‖f‖∞. The Chebyshev norm is the
asymptotic limit of the Lp-norm:

1



‖f‖p =

(∫
D
|f |p dµ

)1/p

,

and

FMAX = lim
p→∞
‖f |‖p.

The extrapolation process is discussed in the next section.
The set X is determined by ‘chopping’ the original domain into two sub-

domains, Da and Db; then FMAX(Da) and FMAX(Db) are calculated. The
smallest is discarded and the chopping process is repeated until the optima
are located with sufficient accuracy; if the maxima are almost identical then
both sub-domains are retained.

2 The extrapolation process

Pragmatically we are extrapolating the data set,

SN = {‖f‖1, · · · , ‖f‖n, · · · , ‖f‖N}

to its asymptotic limit, FMAX . I have devised an efficient procedure
that converges to the limit. It was obtained by performing a Taylor series
expansion about p = 1 and involves a fair amount of ‘handle turning’. The
derivation of that procedure will be the topic of the next article.

The means by which the data set is obtained and the computational cost
involved is the subject of this first article. This is in order to demonstrate
that CHEBYCHOP is feasible and fast.

Let ‖f‖n = I1/nn , where I =
∫
D f(x)ndµ. The extrapolation procedure

requires the condition, f(x) ≥ 1. This is obtained through a linear trans-
formation of the original function, given easily obtainable upper and lower
bounds for it. Furthermore, the process of converting a minimization problem
into a maximization problem also involves a linear transformation.

3 Classes of test problems

A good example of a standard test problem is the Rosenbrook function con-
strained to a disk [1]:
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f(x, y) = (1− x2)2 + 100(y − x2)2

The domain is a disk defined by x2 + y2 ≤ 2 and the minimum is
f(1.0, 1.0) = 0. The function is a polynomial and this is likewise for many op-
timization problems. Furthermore, many optimization problems have func-
tions that can be feasibly approximated by polynomials. Project CHEBY-
CHOP will initially tackle these types of problems.

The algebraic manipulation involved in forming f(x)n is too much for
a manual approach and so computer algebra is required. Contained within
this initial article are some estimates of the computational cost of integrating
f(x)n, assuming ‘brute force’ polynomial multiplication. A better approach
might be to decompose f(x) into orthonormal polynomials, through a gen-
eralisation of the Legendre polynomials.

The classes of test problems that will be considered in the early stages of
Project CHEBYCHOP are restricted to polynomials constrained by three
types of domains: ‘CIRCLOIDAL’, SIMPLEX, or HYPERCUBE. ‘CIR-
CLOIDAL’ domains include disks and hyperspheres. The very first class of
problems that will be dealt with are polynomials constrained by hypercubes;
let this class be called VANILLA. An important sub-problem is finding the
integral of a generic term of each polynomial:

T = a

∫
D

D∏
d=1

xnd
d dx1 · · · dxD,

where D is a hypercube that needs to be specified in terms of a format.

4 Estimating computational cost

The VANILLA class of optimization problems will be used here, in order
to gauge how computational complexity increases as the most fundamental
parameters of problems increase.

Clearly, when the domain is a hypercube, the integral of a function can be
obtained from the indefinite integrals at the vertices and the number of ver-
tices is 2D. Let the cost of computing the indefinite integral of a polynomial
be CP and the total cost of computing the integral be CT multiplications and
divisions; clearly, CT = 2DCP . The indefinite integral of term T is:
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a

D∏
d=1

xnd+1
d

nd + 1

The powers of the independent variables are reusable. This implies that
CP is proportional to the numebr of dimensions, D, i.e. CP = αD, where
α ≈ 2. Therefore the cost of computing the definite integral of a polynomial,
C multiplications and divisions, can be expressed by the following formula:

C = αD2DNT ,

where NT is the number of terms. Let Cn be the cost of computing
In. Also, let the n − th polynomial have Mn terms, given that the starting
polynomial has M = M1 terms. It may be shown that an upper bound on
Mn is M + n − 1. Let Cn be the cost of computing In. A working formula
for this is:

Cn = αD2D(M + n− 1)

This formula can be used to obtain a formula for CS(D,M,N), the cost
of obtaining the data set, S:

CS(D,M,N) = αD2D(M +N(N + 1)/2− 1)

This then needs to be multiplied by an estimate of the number of itera-
tions or ‘chops’, Ch, in order to gauge the cost of solving a problem; let this
total cost be CTOTAL. The number of ‘chops’ will be roughly proportional
to the number of dimensions, D, so let Ch = kD. Therefore, a formula for
estimating CTOTAL is:

CTOTAL = αkD22D(M +N(N + 1)/2− 1)

This formula indicates low computational cost, unless D is large. To
obtain an idea of how it grows, let α = 2, k = 100 and M = 10. Hence
CTOTAL(D,N) = 200D22D(9 +N(N + 1)/2).

CTOTAL(1, 5) = 9, 600
CTOTAL(1, 20) = 87, 600
CTOTAL(5, 5) = 3.8× 106

CTOTAL(5, 20) = 3.5× 107
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CTOTAL(10, 5) = 4.8× 108

CTOTAL(10, 20) = 4.5× 109

CTOTAL(20, 5) = 2× 1012

CTOTAL(20.20) = 1.8× 1.813

The above calculations are for a range of problems from small to very
large and the costs are feasible using current computing technology.

5 Conclusions

Project CHEBYCHOP is new and non-commercial. It has the aim of putting
theory into practise through software development. Estimates of computa-
tional cost indicate that CHEBYCHOP is very fast. However, the amount
of software development could be considerable. The intention is to use com-
puter algebra software, such as Symbolic C++, in order to reduce the amount
of software development required. A useful introduction to Symbolic C++
is [2].

The author would welcome feedback and any offers of collaboration and
co-publication! As mentioned in the section on the extrapolation process, the
next article on vixra.org will focus on how to efficiently converge to FMAX ,
using a small data set, SN .
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