Lemma 1 If p is a prime number, then $p^2 \nmid p!$.

Proof.

Since $(p-1)! \equiv -1 \mod p$ and $-1 \equiv p-1 \mod p$, $(p-1)! \equiv p-1 \mod p$. Moreover, $p! \equiv (p-1)p \mod p^2$. Hence $p! = kp^2 + (p-1)p$ for some integer k. Since p > 1, $0 < (p-1)p < p^2$. Thus (p-1)p is the remainder when p! is divided by p^2 . Since the remainder is nonzero, $p^2 \nmid p!$.

Lemma 2 For all integers $n \ge 2$, $p^n \nmid p!$.

Proof.

For all integers $n \ge 2$, let P(n) be the proposition that $p^n \nmid p!$. Suppose P(n) is false. So, by well-ordering, there is a least integer $m \ge 2$ for which P(m) is false. Since P(2) is true, $m \ne 2$, hence m > 2. and $2 \le m - 1 < m$. Thus P(m-1) must be true. But P(m) is false. Hence $p^m \mid p!$ and thus $p^{m-1} \mid p!$. In other words, P(m-1) is false, a contradiction.

Lemma 3 If G is a finite group and $H \neq G$ is a subgroup of G such that $|G| \nmid i(H)!$, then H must contain a nontrivial normal subgroup of G.

Proof.

This is Lemma 2.9.1 in [1].

Theorem 1 Any subgroup of order p^{n-1} in a group G of order p^n , p a prime number, is normal in G. *Proof.*

The proof is by induction on n. Suppose the result is true for n-1. To show that it then must follow for n. Let G be a group of order p^n and H be its subgroup of order p^{n-1} . Since $|G| \nmid i(H)!$, that is $p^n \nmid p!$ by Lemma 2, H must contain a normal subgroup $N \neq (e)$ of G. Thus $|N| = p^k$ such that $1 \leq k \leq n-1$. Since p divides |N|, by Cauchy's theorem, N has an element $p \neq e$ of order p. Let p be the subgroup of p generated by p. So p is a group of order p is its subgroup of order p of order p is its subgroup of order p is the induction hypothesis p is normal in p. To conclude p is normal in p.

References

[1] I.N.Herstein, *Topics in Algebra*, John Wiley & Sons, New York, 1975.