Vector Subspaces

Anamitra Palit

palit.anamitra@gmail.com

Cell:+91 9163892336

Abstract

We endeavor to show certain contradictions in the theory of linear vector spaces.

Introduction

The article endeavors to bring out contradictions in the theory of linear vector spaces.

Calculations

Consider a linear vector space^[1] V,dim V = n and a subspace^[2] $W \subset V$,dim W = k

V contains n linearly independent basic vectors, $e_1, e_2, e_3 \dots e_n$. W contains the basic vectors $e_{k+1}, e_{k+2}, e_{k+3} \dots e_n$. V – W contains n-k linearly independent vectors: $e_1, e_2, e_3 \dots e_{n-k}$.

We consider a case where

$$\alpha = \sum_{i} c_i e_i \in W; e_i \in V - W; \alpha \neq 0$$
(1)

Since $\alpha \in W$ we may write,

$$\alpha = \sum_{j} d_{j} e_{j}; e_{j} \in W (2)$$

From(1) and (2)

$$\sum_{i} c_i e_i = \sum_{j} d_j e_j \Rightarrow \sum_{i} c_i e_i - \sum_{j} d_j e_j = 0$$
(3)

But the vectors e_i and e_j form a linearly independent set. Therefore

$$c_i = d_i = 0 \Rightarrow \alpha = 0$$

But right at the outset we have assumed that $\alpha \neq 0$

Therefore we simply cannot have

$$\alpha = \sum_i c_i e_i \in W$$

if $e_i \in V - W$

Thus we have the following theorem

Theorem 1

If $e_i \in V - W$

 $\alpha = \sum_{i} c_i e_i \in V - W$

Theorem 2

If $a \in W$ and $b \in W - V$ then $a + b \in W - V[a, b \neq 0]$

Proof: If possible let $c = a + b \in W$

b = c - a (4)

Since
$$c \in W$$
, $a \in W$ the RHS of belongs to W while $b \in W - V$. Therefore (4) is not possible

Therefore $c = a + b \notin W \Rightarrow c = a + b \in V - W$

We consider $\beta \in V - W$ and $\alpha \in W$

By theorem 2,

$$\beta' = \beta + \alpha \in V - W (6)$$
$$\beta' - \beta = \alpha \in W$$
$$\beta' - \beta \in W (7)$$

But by theorem 1

$$\beta' - \beta \in V - W(8)$$

Now β and β' cannot be linearly independent. If they were so, then, $\beta = \lambda \beta'$

$$\alpha = \beta - \beta' = \lambda \beta' - \beta' = (\lambda - 1)\beta'$$
$$\beta' = \frac{1}{\lambda - 1}\alpha$$
$$\Rightarrow \beta' \in W (9)$$

which is not true: equations (6) and (9) contradict each other

Therefore β and β' are linearly independent we expand this linearly independent set to'n' vectors which obviously span V, β and β' belonging to V - W. We have β and β' as tow of the n-k linearly dependent vectors [from the basis of V]that lie in V-From theorem2 a superposition of n-k vectors cannot give rise to any vector in W.That contradicts (7)

Alternative Treatment

Next we go for an alternative treatment

We take $e \in V - W$ and N vectors $y_i \in W$; $i = 1,2,3 \dots N \gg n$. All y_i are not linearly independent.

We form the sums

$$\alpha_i = e + y_i$$

We consider the equation

$$\sum_{i} c_{i} \alpha_{i} = 0 (10)$$
$$\sum_{i} c_{i} (e + y_{i}) = 0$$
$$\Rightarrow e \sum_{i} c_{i} = -\sum_{i} c_{i} y_{i} (11)$$

The right side of (11)belongs to W while the left side belongs to V - W

[To note that if $e \in V - W$ then scalar $\times e \in V - W$. Indeed if scalar $\times e \in W$ then $e \in W[W$ being a subspace]But $e \notin W$]

This is not possible unless is not possible unless all $c_i = 0$. That again makes the N, α_i from (10) linearly independent. But N>>n=dimension of V

Conclusions

As claimed at the outset, there are contradictions in the theory of the linear vector spaces. A restructuring of the subject could be necessary

References

- 1. Dym H., Linear Algebra in Action, American Mathematical Society, Vol 78, Second Indian Reprint 2014, page 2
- 2. Hoffman K,Kunze R;Linear algebra,Second Edition, PHI Learning Private Limited, New

Delhi,2014[India Reprint], Chapter 6=2:Section 2.2, Subspaces[Definition],p34