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Abstract

Dempster-Shafer (D-S) evidence theory has been used in many fields

due to the flexibility and effectiveness in modeling uncertainties, which is

the extension of classical probability. Recently, quantum probability which

can express uncertainty has been used in many fields due to the existing

of interference. Especially for human decision and cognition, interference

can better model the process of decision. In order to better expand the

applications of D-S evidence theory, the paper proposed quantum model

of mass function which can consider the interference. In proposed quan-

tum method, quantum mass function uses euler formula to represent. The

paper also discusses some operations in quantum model of mass function.

Moreover, the paper also discusses the relationship between quantum mass

function and classical mass function by using some numerical examples.

Classical mass function is the special case when there is no interference in

quantum mass function.
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1. Introduction

Uncertainty is very important in many fields, which has attracted many

researchers attention [1]. There are virous models to handle uncertainty, in-

cluding fuzzy sets [2], rough sets [3] and Dempster-Shafer (D-S) evidence

theory [4, 5]. D-S evidence theory attract more and more attention due

to it needs more weaker condition than the Bayesian theory of probabili-

ty [6]. Besides, D-S evidence theory can handle imprecise and unknown

information by assigning probabilities to the power set of events [7]. For

this reason, D-S evidence theory has been used in many fields thanks to

the flexibility and effectiveness in modeling uncertainties, such as target

recognition, decision-making, classifier and so on.

In D-S evidence theory, there are many operations involving superpo-

sition of different events or evidences. Hence, considering the superposi-

tion of the different events or evidences is also an open issue. Quantum

mechanics provides a new view to consider the superposition. Quantum

mechanics are different from classical physical mechanics [8, 9, 10]. The

classical systems can be obtained accurately, but there are non-classical cor-

relations among the physical attributes of quantum systems, which make

these quantities not accurately obtained, but exist as linear superposition

state vectors [11, 12]. There are various experiment used to illustrate the

properties of quantum mechanics which includes uncertainty, interference

and entanglement and so on [12], such as Schrodinger’s Cat [13], double-

slit experiment [14] and so on [15]. Based on the properties of quantum

mechanics, the quantum information is gradually developed, which has

been used many fields, such as communication complexity [16] and game

theory [17]. Besides, the quantum theory can better describe the way hu-
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mans make judgments towards uncertainty and decisions under conflict

environment [18, 19, 20]. At a more fundamental level, it has become clear

that an information theory based on quantum principles extends and com-

pletes classical information theory [12].

By the above discussion, it can be seen that quantum theory is a hot and

interesting topic. Hence, using D-S evidence theory into quantum mechan-

ics provide a new thought to better analyse the process of superposition

and expand the application of evidence theory. Vourdas study the con-

nection between quantum mechanics and D-S evidence theory [21, 22, 23].

Deng [24] proposed a meta mass function expressed by complex number-

s in DCS evidence theory. Xiao [25] proposed extension of belief function

by using complex number. The paper proposed quantum model of mass

function by using euler formula which consider the amplitude and phase

angle of variables. Quantum model of mass function can better explain the

interference of different variables. Quantum mass function can degenerate

classic mass function when all variables are orthogonal, namely, the inter-

ference of different variables is 0. The paper also proposed the quantum

combination rule which is more application and general than Dempster’

combination rule. In this context, the quantum model of mass function

provides a promising way to model and handle the process of uncertain

information. Consequently, several numerical examples are provided to

illustrate the efficiency of the quantum evidence theory.

The paper is organized as follows. In Section 2. the preliminaries D-S

evidence theory and euler formula are briefly introduced. Section 3 pro-

posed the quantum model of mass function. In Section 4, there are some

numerical example be used to explain the proposed method. Finally, this

paper is concluded in Section 5.
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2. Preliminaries

In this section, the preliminaries of D-S theory [4, 5] will be briefly in-

troduced.

2.1. Dempster-Shafer theory

Definition 2.1. ( Frame of discernment)

Let Θ be the set of mutually exclusive and collectively exhaustive events Ai, name-

ly

Θ = {A1, A2, · · · , An} (1)

The power set of Θ composed of 2N elements of is indicated by 2Θ, namely:

2Θ = {φ, {A1} , {A2} , · · · , {A1, A2} , · · · , Θ} (2)

Definition 2.2. ( Mass Function)

For a frame of discernment Θ = {A1, A2, · · · , An}, the mass function m is de-

fined as a mapping of m from 0 to 1, namely:

m : 2Θ → [0, 1] (3)

which satifies

m (φ) = 0 (4)

∑
A⊆Θ

m (A) = 1 (5)

In D-S theory, mass function is often called a piece of evidence or belief

structure or basic probability assignment (BPA). The m(A) represents the

belief degree to A, namely, the degree of evidence supports A. In m(A),
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there is a focal element, namely A. BPA is an essential tool for uncertainty

measure, there are some researches for BPA.

Definition 2.3. (Belief function)

The belief function (Bel) is a mapping from set 2Θ to [0,1] and satisfied:

Bel (A) = ∑
B⊆A

m (B) (6)

Definition 2.4. (Plausibility function)

The plausibility function (Pl): 2Θ → [0, 1], and satisfied:

Pl (A) = ∑
B∩A 6=φ

m (B) = 1− Bel(Ā) (7)

As can be seen from the above, ∀A ⊆ Θ , Bel(A) < Pl(A), Bel(A), Pl(A)

are respectively the lower and upper limits of A, namely [Bel(A), Pl(A)],

which indicates uncertain interval for A.

Definition 2.5. (Dempster Combine Rule)

There are two BPAs indicated by m1 and m2, the Dempster combination rule is

used to combine them as follows [4]:

m(A) =

 1
K−1 ∑B∩C=A m1(B)×m2(C)

0

 (8)

with

K = ∑
B∩C=φ

m1(B)×m2(C) (9)

Definition 2.6. (Pignistic Probability Transition )

Let m is a BPA under frame of discernment Θ, and the pignistic probability tran-
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sition is defined as follows [26]:

p(B) = ∑
B⊆A

m(A)

|A| (10)

where |A| represents the cardinality of A.

Besides, the pignistic probability transition also named PPT.

2.2. Euler formula

Definition 2.7. The Euler formula is defined as follows:

a = ejθ = cos(θ) + isin(θ) (11)

where e is natural logarithm, i is imaginary number, θ is angle. Besides, the

amplitude of a is always 1, namely, |a| = 1.

Besides,

|aejθ | = a2 (12)

|aejθ1 + bejθ2| = a2 + b2 + 2abcos(θ1− θ2) (13)

where

inter f erence = 2abcos(θ1− θ2) (14)

Interference is the term of quantum mechanics, which is superposition

of micro-particles and is similarly with interference of light in classical me-

chanics. The Eq. 13 and 14 has been used in many fields [27, 28]. There are

various methods to calculate the interference which has been used many

fields [27, 28].
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3. Quantum Model of Mass Function

Quantum probability has been used in many fields [29]. In order to bet-

ter explore the connection of different evidence and expand the application

of D-S evidence theory, the paper proposed the quantum model of mass

function.

Definition 3.1. (Quantum Frame of Discernment)

Let Θ be the set of mutually exclusive and collectively exhaustive events |Ai >,

namely

|Θ >= {|A1 >, |A2 >, · · · , |An >} (15)

The power set of |Θ > composed of 2N elements of is indicated by 2|Θ>, namely:

2|Θ> = {φ, {|A1 >} , {|A2 >} , · · · , {|A1, A2 >} , · · · , |Θ >} (16)

Definition 3.2. (Quantum Mass Function)

In quantum frame of discernment, the quantum mass function Q is defined as

follows:

Q(|A >) = ψ1ejθ1 (17)

which is a mapping of Q from 0 to 1 and satisfies :

Q (φ) = 0 (18)

∑
|A>⊆|Θ>

|Q (|A >) | = 1 (19)

where |Q (|A >) | = ψ2
1

The quantum mass function also is called as quantum basic probability

assignment(QBPA), where |ψ1|2 represents the belief degree to |A >, name-
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ly, evidence supports the proposition or hypothesis |A >. The θ represents

phase angle of |A >.

Remark 1 : If the phase angle of quantum mass function equals 0◦, the

quantum mass function can degenerate the classical mass function.

Remark 2 : The quantum mass function does not satisfy additivity, as

Eq. 20.

Q(A) + Q(B) 6= |Q(A)|+ |Q(A)| (20)

Definition 3.3. (Quantum Belief Function)

In quantum frame of discernment, the quantum belief function QBel is defined as

follows:

QBel(|A >) = ∑
|B>⊆|A>

Q(|B >)

= ψA1ejθA1 + ψA2ejθA2 + · · ·
(21)

Definition 3.4. (Quantum Plausibility Function)

In quantum frame of discernment, the quantum plausibility function QPl is de-

fined as follows:

QPl(|A >) = ∑
|B>∩|A> 6=φ

Q(|B >)

= ψA1ejθA1 + ψA2ejθA2 + · · ·
(22)

Apparently, |QBel(|A >)| represents the lower probability of support-

ing proposition |A > and |QPl(|A >)| represents the upper probability of

supporting proposition |A >. Hence, [|QBel(|A >)|, |QPl(|A >)|] is the

interval of proposition |A >.

Remark 3 : If the phase angle of quantum mass function equals 0◦ or

the interference of different events equals 0, the quantum belief function

and plausibility function can degenerate the classical belief and plausibility
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function.

Proof : Suppose there are some QBPAs under a quantum frame of dis-

cernment Ω = {|A >, |B >, |C >}, the QBPs are given as follows:

Q(|A >) = aejθ1, Q(|B >) = bejθ2, Q(|A >, |C >) = cejθ3

where a2 + b2 + c2 = 1. The QBel and QPl of |A > are shown as follows:

QBel(|A >, |B >) = aejθ1 + bejθ2, QPl(|A >, |B >) = aejθ1 + bejθ2 + cejθ3

If the all phase angle of QBPAs equal 0◦, the QBel and QPl are given as

follows:

QBel(|A >, |B >) = a + b, QPl(|A >, |B >) = a + b + c

which is equal with classical Bel(A, B) and Pl(A, B).

If the phase angle of QBPAs does not equal 0◦, the |QBel(|A >, |B >)|

and |QPl(|A >, |B >)| are given as follows:

|QBel(|A >, |B >)| = a2 + b2 + 2abcos(θ1− θ2)

|QPl(|A >, |B >)| = a2 + b2 + c2 + 2abcos(θ1− θ2)+ 2accos(θ1− θ3)+ 2bccos(θ2− θ3)

when the interference of |QBel(|A >, |B >)| and |QPl(|A >, |B >)| are

equal 0, the |QBel(|A >, |B >)| and |QPl(|A >, |B >)| is similar with

classical Bel(A, B) and Pl(A, B).

Definition 3.5. (Quantum Combination Rule)

There are two QBPAs Q1 and Q2, the quantum combination rule is defined as
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follows:

Q(|A >) =

 1
1−|K| ∑|B>∩|C>=|A> Q(|B >)×Q(|C >) |A > 6= φ

0 |A >= φ


(23)

After normalization:

|Q(|A >)| = |Q(|A >)|
|Q(|A >)|+ |Q(|B >)|+ · · ·+ |Q(|A >, |B >)|+ · · · (24)

where K is defined as follows:

K = ∑
|B>∩|C>=φ

Q1(|B >)×Q2(|C >) (25)

In quantum combination rule, K is the quantum probability and |K|

represents the conflict degree between the QBPAs Q1 and Q2.

Remark 4 : The conflict |K| of quantum combination rule can gener-

ate the classical conflict k when the interference of K is 0, namely the two

elements are orthogonal to each other.

Proof : Suppose there are the two QBPAs Q1 and Q2 in the quantum

frame of discernment |Θ >= {|A >, |B >}, and the two QBPAs are given

as follows:

Q1(|A >) = a1ejθ11, Q1(|A >) = b1ejθ12, Q1(|A >, |B >) = c1ejθ13

Q2(|A >) = a2ejθ21, Q2(|B >) = b2ejθ22

where QBPAs satisfies that a2
1 + b2

1 + c2
1 = 1 and a2

2 + b2
2 = 1
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The K is calculated as follows:

K = a1b2ejθ1 + a2b1ejθ2

|K| = (a1b2)
2 + (a2b1)

2 + 2a1b2a2b1cosθ (26)

In Eq. 19, the inter f erence = 2a1b2a2b1cosθ represents the interference.

If the interference is 0, the |K| can generate the classical conflict coefficient

k.

Remark 5 : The quantum combination rule is only application for QB-

PAs Q1 and Q2 under the condition K 6= 1

Remark 6 : The quantum combination rule can generate the classical

Dempster’s combination rule when quantum evidence theory does not ex-

ist interference, namely interference=0.

Proof : Using the Example 1, the fusion results are as follows:

Q(|A >) =
a1a2ejθ3 + a2c1ejθ4

1− |K|

Q(|B >) =
b1b2ejθ5 + b2c1ejθ6

1− |K|

|Q(|A >)| = (a1a2)2 + (a2c1)
2 + 2a1a2a2c1cosθ1

1− |K|

Q(|B >) =
(b1b2)2 + (b2c1)

2 + 2b1b2b2c1cosθ2
1− |K|

where inter f erence1 = 2a1a2a2c1cosθ1 and inter f erence2 = 2b1b2b2c1cosθ2.

The quantum combination rule can generate the classical Dempster’s com-

bination rule when inter f erence = 0, inter f erence1 = 0 and inter f erence2 =

0.
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Definition 3.6. (Quantum Pignistic Probability Transformation)

Let Q(|A >) is the QBPAs under the quantum frame of discernment Ω and

|A >⊆ Ω, the quantum pignistic probability transformation is defined as follows:

P(|B >) = ∑
|B>⊆|A>

Q(|A >)

||A > | (27)

where |A| represents the cardinality of |A >.

The quantum pignistic probability transformation assign the multi-elements

sets into the single element sets. In Eq. 19, P(|B >) is the quantum proba-

bility.

Remark 7 : If the phase angle of quantum mass function equals 0◦ or

the interference of different events equals 0, the quantum belief function

and plausibility function can degenerate the classical belief and plausibility

function.

4. Numerical Example

In this section, there are some examples to explain the effectiveness

quantum model of mass function.

Example 4.1. Suppose the quantum frame of discernment is Ω = {|A >, |B >, |C >},

the QBPAs is shown as follows:

Q(|A >) =
√

0.2ej0◦ , Q(|A >, |B >) =
√

0.3ej0◦

Q(|B >) =
√

0.2ej0◦ , Q(|A >, |C >) =
√

0.3ej0◦

when the phase angles of all QBPAs equal 0◦, the quantum mass func-

tion can degenerate the classical mass function.
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Example 4.2. Suppose the quantum frame of discernment is Ω = {|A >, |B >, |C >},

the QBPAs is shown as follows:

Q(|A >) =
√

0.2ejθ11, Q(|A >, |B >) =
√

0.3ejθ12

Q(|B >) =
√

0.2ejθ13, Q(|A >, |C >) =
√

0.3ejθ14

The QBel and QPl is calculated as follows:

QBel(|A >) =
√

0.2ejθ11, QPl(|A >) =
√

0.2ejθ11 +
√

0.3ejθ12 +
√

0.3ejθ14

QBel(|B >) =
√

0.2ejθ13, QPl(|A >) =
√

0.2ejθ13 +
√

0.3ejθ12

QBel(|C >) = 0, QPl(|C >) =
√

0.3ejθ14

QBel(|A >, |B >) =
√

0.2ejθ11 +
√

0.2ejθ13 +
√

0.3ejθ12

QPl(|A >, |B >) =
√

0.2ejθ11 +
√

0.2ejθ13 +
√

0.3ejθ12 +
√

0.3ejθ14

QBel(|A >, |C >) =
√

0.2ejθ11 +
√

0.3ejθ14

QPl(|A >, |C >) =
√

0.2ejθ11 +
√

0.2ejθ13 +
√

0.3ejθ12 +
√

0.3ejθ13

QBel(|B >, |C >) =
√

0.2ejθ13, QPl(|B >, |C >) =
√

0.2ejθ13 +
√

0.3ejθ12 +
√

0.3ejθ14

QBel(|A >, |B >, |C >) =
√

0.2ejθ11 +
√

0.2ejθ13 +
√

0.3ejθ12 +
√

0.3ejθ14

QPl(|A >, |B >, |C >) =
√

0.2ejθ11 +
√

0.2ejθ13 +
√

0.3ejθ12 +
√

0.3ejθ14

If the phase angle of all QBPAs equals 0◦, the QBel and QPl can degen-

erate the classical Bel and Pl. Besides, if there is no interference, the |QBel|

and |QPl| is similar with the classical Bel and Pl.
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Example 4.3. There are two QBPAs Q1 and Q2 under the quantum frame of

discernment Ω = {|A >, |B >, |C >}, and the two QBPAs Q1 and Q2 are given

as follows:

Q1(|A >) =
√

0.5ejθ11, Q1(|B >) =
√

0.2ejθ12, Q1(|A >, |B >, |C >) =
√

0.3ejθ13

Q2(|B >) =
√

0.1ejθ21, Q2(|A >, |C >) =
√

0.2ejθ22, Q2(|A >, |B >, |C >) =
√

0.7ejθ23

It is easy to verify that the |Q1(|A >)|+ |Q1(|B >)|+ |Q1(|A >, |B >

, |C >)| = 1 and |Q2(|B >)|+ |Q2(|A >, |C >)|+ |Q2(|A >, |B >, |C >

)| = 1.

According the Eq. 18, the conflict between two evidences can be calcu-

lated as follows:

K = Q1(|A >)×Q2(|B >) + Q1(|B >)×Q2(|A >, |C >)

K =
√

0.5ejθ11 ×
√

0.1ejθ21 +
√

0.2ejθ12 ×
√

0.2ejθ22

K =
√

0.05ejθ1 +
√

0.04ejθ2

|K| = 0.09 + 2×
√

0.002× cosθ (28)

In Eq. 20, 2×
√

0.002× cosθ represents the interference. The amplitude

of K changes with θ.

By using Eq. 17, the fusion results can be got as follows:

Q(|A >) =

√
0.1ejθ3 +

√
0.35ejθ4

1− |K| , Q(|B >) =

√
0.02ejθ5 +

√
0.14ejθ6 +

√
0.03ejθ7

1− |K|

Q(|A >, |C >) =

√
0.06ejθ8

1− |K| , Q(|A >, |B >, |C >) =

√
0.21ejθ9

1− |K|
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It can be seen that the fusion results is also the QBPA. Next, the ampli-

tude of QBPA is calculated as follows:

|Q(|A >)| = 0.45 + 0.3742cosθ1

1− |K| , |Q(|B >)| = 0.19 + 0.1058cosθ2 + 0.049cosθ3 + 0.1296cosθ4

1− |K|

|Q(|A >, |C >)| = 0.06
1− |K| , |Q(|A >, |B >, |C >)| = 0.21

1− |K|

when θ = 90◦, θ1 = 90◦, θ2 = 90◦, θ3 = 90◦ and θ4 = 90◦, the amplitude

of QBPA is as follows:

|Q(|A >)| = 0.49, |Q(|B >)| = 0.21, |Q(|A >, |C >)| = 0.07, |Q(|A >, |B >, |C >)| = 0.23

The result is the same with classical Dempster’s combination rule, show-

ing that the quantum combination rule can degenerate the classical Demp-

ster’s combination rule when there is no interference, namely, all element

is mutually orthogonal.

Moreover, if there are interferences, namely, θ = 45◦, θ1 = 60◦, θ2 = 30◦,

θ3 = 90◦ and θ4 = 120◦, the fusion results are given as follows:

|Q(|A >)| = 0.57, |Q(|B >)| = 0.19, |Q(|A >, |C >)| = 0.05, |Q(|A >, |B >, |C >)| = 0.19

So, it can be seen that interference can influence the final results.

Example 4.4. Supposing that there are two QBPAs in a quantum frame of dis-

cernment, and the two QBPAs are given as follows:

Q1(|A >) =
√

0.3ej30◦ , Q1(|B >) =
√

0.2ej180◦ , Q1(|A >, |C >) =
√

0.5ej270◦

Q2(|A >, |B >) =
√

0.4ej90◦ , Q2(|B >) =
√

0.3ej120◦ , Q2(|A >, |C >) =
√

0.3ej300◦
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Uing the Eq. 22− 24, the final fusion results are shown as follows:

K = 0.3ej150◦ + 0.2449ej120◦ + 0.3873ej30◦ , |K| = 0.3111

Q(|A >) =
0.3464ej120◦ + 0.3ej330◦ + 0.4472ej150◦

0.6889
, |Q(|A >)| = 0.4664

Q(|B >) =
0.2828ej270◦ + 0.2449ej300◦

0.6889
, |Q(|B >)| = 0.3774

Q(|A >, |C >) =
0.3873ej210◦

0.6889
, |Q(|A >, |C >)| = 0.2177

After normalization,

|Q(|A >)| = 0.4394, |Q(|B >)| = 0.3555, |Q(|A >, |C >)| = 0.2051

After quantum combination rule, the sum of amplitude does not equal

1. The reason is that any operation will change the original state of the

system and operation is irreversible.

Example 4.5. There are QBPAs under the quantum frame of discernment Ω =

{|A >, |B >, |C >}. The QBPAs are given as follows:

Q(|A >, |C >) =
√

0.3ejθ1, Q(|A >, |B >) =
√

0.3ejθ2, Q(|A >, |B >, |C >) =
√

0.4ejθ3,

According the Eq. 21, the results are shown as follows:

P(|A >) =

√
0.3ejθ1

2
+

√
0.3ejθ2

2
+

√
0.4ejθ3

3

P(|B >) =

√
0.3ejθ2

2
+

√
0.4ejθ3

3
, P(|C >) =

√
0.3ejθ1

2
+

√
0.4ejθ3

3

From the results, it can be seen that the classical PPT is the special case
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of quantum pignistic probability transition.

Analysing the above example, it can be known that the quantum evi-

dence theory can be generate the classical D-S evidence theory when there

is no interference between two or multiple elements. More importantly,

interference is the unique phenomenon in quantum mechanics, which rep-

resents effect of different events before the final decision and is similar with

interference of light in classical mechanics. Considering the interference of

operations is helpful to analyse the connection of different events.

5. Conclusion

Dempster-Shafer (D-S) evidence theory can have 2n sets so that it can

handle some imprecise and unknown information very well. Quantum

theory attracted more and more researchers attention due to its powerful

capabilities of solving the decision making problems. How to establish a

bridge between quantum theory and D-S evidence theory is an also open

issue. Hence, the paper propose quantum model of mass function. In

quantum model of mass function, the paper uses euler formula to repre-

sent the quantum mass function, the of quantum mass function represents

the probability of occurrence of |A >. Meanwhile, the paper also discusses

the quantum belief function, quantum plausibility function and quantum

combination rule. Quantum evidence theory can degenerate the classical

D-S evidence theory if there is no interference or the phase angle is 0◦. That

is to say, the classical D-S evidence theory is the special case of quantum

model of mss function when different elements are orthogonal to each oth-

er. Finally, the paper uses some numerical example to explain the difference

between classical D-S evidence theory and quantum evidence theory.
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