CORRIGENDUM TO “POLYOMINO ENUMERATION RESULTS.
(PARKIN ET AL., SIAM FALL MEETING 1967)"

RICHARD J. MATHAR

Abstract. This work provides a Java program which constructs free polyomino
e of size n sorted by width and height of the convex hull (i.e., its rectangular
bounding box). The results correct counts for 15-ominoes published in the 1967
proceedings of the SIAM Fall Meeting, and extend them to 17-ominoes and
partially to even larger polyominoes. [vixra:1905.0474]

1. Free Polyominoes

1.1. Nomenclature. Polyominoes are sets of n edge-connected squares, which
means each of the squares can be reached from any other square of the set by a
path that connects nearest neighbours (adjacent squares to the North, East, South
and West) which all are members of the set.

Fixed polyominoes are polyominoes which can be mapped onto each other by
translating them rigidly along the horizontal and/or vertical axes of the underlying
square grid. They can be enumerated for example with the aid of a transfer matrix
method [3][2, A001168][1].

A set of fixed polyominoes that can be mapped onto each other by further
symmetry operations of rotations by multiples of 90 degrees and/or flips along
the horizontal or vertical axes is a free polyomino. The convex hull (or bounding
box) of a polyomino is the largest connected rectangular section of the underlying
square grid such that each row and column of the hull contains at least one square
of the polyomino. We are interested in classifying all n-ominoes by the height h
and width w of their convex hull.

Definition 1. (Free Polyominoes Classified by Bounding Box) $P_{h \times w}(n)$ denotes
the number of free polyominoes of size n that fit into a tight $h \times w$ bounding box.

The number of free polyominoes does not change if the bounding rectangle is
rotated by multiples of 90 degrees (such that the roles of width and height are
swapped):

\begin{equation}
P_{h \times w}(n) = P_{w \times h}(n).
\end{equation}

There is only one free block polyomino where all cells within the bounding box
of area hw are occupied:

\begin{equation}
P_{h \times w}(hw) = 1.
\end{equation}
There is no polyomino if the number of cells in the bounding box is smaller than the number of cells in the polyomino:

\[P_{h \times w}(n) = 0, \text{ if } n > hw. \]

There is no polyomino if the width and height of the bounding box are too large to connect all cells of the \(n \)-omino:

\[P_{h \times w}(n) = 0, \text{ if } h + w - 1 > n. \]

Definition 2. (Free Polyominoes) The total number of free \(n \)-ominoes is

\[P(n) = \sum_{h=1}^{n} \sum_{w=1}^{h} P_{h \times w}(n). \]

1.2. **Read’s Results.** For \(n \leq 10 \) and \(w \neq h \) these numbers have been tabulated by Read [9]. Note that his tables \(b(q, n) \) for width 2, \(c(q, n) \) for width 3 and \(d(q, n) \) for width 4 are not reducing the fixed polyominoes to free polyominoes if width and height are the same [2, A259088], because he only applied a symmetry group of order 4 in all cases. One needs to compare our results with his \(z_w(n) \) in cases where \(w = h \).

As observed by Klarner [5], the actual discrepancy with his data is for \(P_{5 \times 5}(10) = 529 \) where Read reports only \(z_5(10) = 340 \), such that our total is \(P(10) = 4655 \), not his 4466.

2. **Algorithm**

The construction of free \(n \)-ominoes by the program in the Appendix includes the following steps:

2.1. **Compositions Look-up Tables.** Each polyomino is represented by a \(h \times w \) matrix of zeros and ones, where zeros represent unoccupied and ones occupied squares, respectively. For a given \(n \) and a given height \(h \leq n \) of the bounding box, the matrix row sums are a rough classification of the \(n \)-ominoes. A list of the compositions of \(n \) into \(h \) parts of minimum size 1 and maximum size \(w \) is compiled, where the \(i \)-th part is the sum of the \(i \)th row of the binary matrix. The lower limit is 1 because the connectivity of the polyominoes requires at least one occupied square in each row, and the upper limit equals the width. Because free polyominoes are unchanged by flipping the rows along the middle axis, compositions are discarded which are lexicographically larger than their reversed associates. For each of these row sums (from 1 up to \(w \)) we also keep a list of the \(2^w - 1 \) possible bitsets (compositions into \(w \) parts that are either 0 or 1), representing a single row of at least 1 and at most \(w \) 1’s in the binary matrix.

2.2. **Row-by-row Stacking.** In an outer loop over the compositions, the first row of the binary matrix is any of the bitsets (inner loop) compatible with the first part of the composition. The other rows are recursively filled with bitsets with a sum equal to the associated part of the composition, and requiring that at least one of the squares of the row has a common edge with a square of the previous row to ensure that adjacent rows are edge-connected. [The bit-wise AND-operation between adjacent rows must not be zero.] This is similar to printing an object layer-by-layer in stereolithography [4, 11].
2.3. **Reduction by Symmetry.** As the last row of the matrix has been filled with a bitset, we have essentially constructed a candidate of a fixed n-omino. The program checks first that the set of squares is connected, because that is not guaranteed by the stacking method. [The growth may have lead to separated columns.] In a loop over the 4 (or 8) symmetry operations of flips and rotations, a lexicographically smallest representative of the polyomino is selected, a free polyomino. This is compared with the members in the set of free $h \times w$ n-polyominoes constructed so far, and added to the set if it is “new.”

3. **Results**

The numerical results are summarized in the following table. Each entry has one of two formats:

- Three positive integer numbers n, h and w, a colon and $P_{h \times w}(n)$. These are the size of the free n-omino, the height and width of the bounding box, and the number of free n-ominoes fitting in that bounding box.
- One positive integer number n, a colon and $P(n)$. This is the size of the n-omino and the number of free n-ominoes of that size. This entry is absent for $n \geq 17$ because some of the $P_{h \times w}(n)$ have not yet been computed. For all cases computed, $P(n)$ matches the results in the literature [2, A000105][7], which shows the integrity of the program.

For $n \leq 14$ agree with the published table [8]; for $n = 15$ they correct their numbers, and for $n > 15$ they seem to be new.

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
<th>w</th>
<th>$P_{h \times w}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 : 1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2 : 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3 : 2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4 : 5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5 : 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6 : 35</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7 : 108</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>8 : 369</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>9 : 1285</td>
</tr>
</tbody>
</table>

For $n \leq 14$ agree with the published table [8]; for $n = 15$ they correct their numbers, and for $n > 15$ they seem to be new.
<p>| 10 10 1 : 1 | 10 5 2 : 1 | 10 6 2 : 15 | 10 7 2 : 52 |
| 10 8 2 : 40 | 10 9 2 : 9 | 10 4 3 : 21 | 10 5 3 : 255 |
| 10 6 3 : 550 | 10 7 3 : 332 | 10 8 3 : 63 | 10 4 4 : 266 |
| 10 5 4 : 1304 | 10 6 4 : 822 | 10 7 4 : 155 | 10 5 5 : 529 |
| 10 6 5 : 240 | 10 7 5 : 11073 |
| 11 11 1 : 1 | 11 6 2 : 3 | 11 7 2 : 45 | 11 8 2 : 90 |
| 11 9 2 : 53 | 11 10 2 : 9 | 11 4 3 : 4 | 11 5 3 : 212 |
| 11 6 3 : 954 | 11 7 3 : 1231 | 11 8 3 : 529 | 11 9 3 : 81 |
| 11 4 4 : 251 | 11 5 4 : 2847 | 11 6 4 : 3548 | 11 7 4 : 1551 |
| 11 8 4 : 220 | 11 5 5 : 2413 | 11 6 5 : 2366 | 11 7 5 : 410 |
| 11 6 6 : 255 | 11 7 6 : 17073 |
| 12 12 1 : 1 | 12 6 2 : 1 | 12 7 2 : 21 | 12 8 2 : 119 |
| 12 9 2 : 158 | 12 10 2 : 69 | 12 11 2 : 11 | 12 4 3 : 1 |
| 12 5 3 : 103 | 12 6 3 : 1184 | 12 7 3 : 2800 | 12 8 3 : 2406 |
| 12 9 3 : 800 | 12 10 3 : 99 | 12 4 4 : 168 | 12 5 4 : 4441 |
| 12 6 4 : 10323 | 12 7 4 : 8239 | 12 8 4 : 2680 | 12 9 4 : 313 |
| 12 5 5 : 7375 | 12 6 5 : 13161 | 12 7 5 : 4738 | 12 8 5 : 646 |
| 12 6 6 : 2835 | 12 7 6 : 908 | 12 8 6 : 63600 |
| 13 13 1 : 1 | 13 7 2 : 4 | 13 8 2 : 73 | 13 9 2 : 257 |
| 13 10 2 : 238 | 13 11 2 : 86 | 13 12 2 : 11 | 13 5 3 : 33 |
| 13 6 3 : 964 | 13 7 3 : 4634 | 13 8 3 : 6818 | 13 9 3 : 4313 |
| 13 6 4 : 21995 | 13 7 4 : 29442 | 13 8 4 : 16821 | 13 9 4 : 4327 |
| 13 10 4 : 415 | 13 5 5 : 17041 | 13 6 5 : 51133 | 13 7 5 : 30998 |
| 13 8 5 : 8683 | 13 9 5 : 979 | 13 6 6 : 18533 | 13 7 6 : 11952 |
| 13 8 6 : 1553 | 13 7 7 : 950 | 13 : 238591 |
| 14 14 1 : 1 | 14 7 2 : 1 | 14 8 2 : 28 | 14 9 2 : 237 |
| 14 10 2 : 505 | 14 11 2 : 360 | 14 12 2 : 106 | 14 13 2 : 13 |
| 14 5 3 : 6 | 14 6 3 : 546 | 14 7 3 : 5497 | 14 8 3 : 14182 |
| 14 9 3 : 14722 | 14 10 3 : 7171 | 14 11 3 : 1580 | 14 12 3 : 143 |
| 14 4 4 : 20 | 14 5 4 : 4168 | 14 6 4 : 36035 | 14 7 4 : 79155 |
| 14 8 4 : 71742 | 14 9 4 : 31576 | 14 10 4 : 6634 | 14 11 4 : 551 |
| 14 5 5 : 30320 | 14 6 5 : 153122 | 14 7 5 : 143230 | 14 8 5 : 65236 |
| 14 9 5 : 14894 | 14 10 5 : 1415 | 14 6 6 : 86974 | 14 7 6 : 89212 |
| 14 8 6 : 23215 | 14 9 6 : 2555 | 14 7 7 : 13402 | 14 8 7 : 3417 |
| 14 : 901971 |
| 15 15 1 : 1 | 15 8 2 : 4 | 15 9 2 : 119 | 15 10 2 : 591 |
| 15 5 3 : 1 | 15 6 3 : 187 | 15 7 3 : 4745 | 15 8 3 : 22011 |
| 15 13 3 : 169 | 15 4 4 : 3 | 15 5 4 : 2439 | 15 6 4 : 45748 |
| 15 7 4 : 167354 | 15 8 4 : 230998 | 15 9 4 : 156007 | 15 10 4 : 55084 |</p>
<table>
<thead>
<tr>
<th>15 11 : 9751</th>
<th>15 12 4 : 698</th>
<th>15 5 5 : 42670</th>
<th>15 6 5 : 366832</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 7 5 : 517302</td>
<td>15 8 5 : 348090</td>
<td>15 9 5 : 126496</td>
<td>15 10 5 : 24214</td>
</tr>
<tr>
<td>15 11 5 : 42154</td>
<td>15 10 6 : 3965</td>
<td>15 7 7 : 111296</td>
<td>15 8 7 : 54983</td>
</tr>
<tr>
<td>15 9 7 : 6003</td>
<td>15 8 8 : 3473</td>
<td>15 : 3426576</td>
<td></td>
</tr>
<tr>
<td>16 16 : 1</td>
<td>16 8 2 : 1</td>
<td>16 9 2 : 36</td>
<td>16 10 2 : 429</td>
</tr>
<tr>
<td>16 11 : 1353</td>
<td>16 12 2 : 1493</td>
<td>16 13 2 : 690</td>
<td>16 14 2 : 151</td>
</tr>
<tr>
<td>16 15 : 15</td>
<td>16 6 3 : 47</td>
<td>16 7 3 : 2833</td>
<td>16 8 3 : 26097</td>
</tr>
<tr>
<td>16 9 : 70760</td>
<td>16 13 3 : 2752</td>
<td>16 14 3 : 195</td>
<td>16 4 4 : 1</td>
</tr>
<tr>
<td>16 6 4 : 45289</td>
<td>16 7 4 : 285375</td>
<td>16 8 4 : 594488</td>
<td>16 9 4 : 585305</td>
</tr>
<tr>
<td>16 10 4 : 310890</td>
<td>16 11 4 : 91127</td>
<td>16 12 4 : 13852</td>
<td>16 13 4 : 885</td>
</tr>
<tr>
<td>16 5 5 : 47344</td>
<td>16 6 5 : 720244</td>
<td>16 7 5 : 1524442</td>
<td>16 8 5 : 1459163</td>
</tr>
<tr>
<td>16 9 5 : 763678</td>
<td>16 10 5 : 229573</td>
<td>16 11 5 : 37708</td>
<td>16 12 5 : 2715</td>
</tr>
<tr>
<td>16 6 6 : 991660</td>
<td>16 8 6 : 2097534</td>
<td>16 9 6 : 1182179</td>
<td>16 10 6 : 390229</td>
</tr>
<tr>
<td>16 10 6 : 72565</td>
<td>16 11 6 : 5985</td>
<td>16 12 6 : 675981</td>
<td>16 13 6 : 500827</td>
</tr>
<tr>
<td>16 9 7 : 105600</td>
<td>16 10 7 : 10001</td>
<td>16 8 8 : 59728</td>
<td>16 9 8 : 12859</td>
</tr>
<tr>
<td>16 : 13079255</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17 17 : 1	17 9 2 : 5	17 10 2 : 172	17 11 2 : 1248
17 12 2 : 2709	17 13 2 : 2343	17 14 2 : 902	17 15 2 : 176
17 16 2 : 15	17 6 3 : 6	17 7 3 : 1173	17 8 3 : 22883
17 9 3 : 106490	17 10 3 : 193669	17 11 3 : 177886	17 12 3 : 89146
17 13 3 : 24660	17 14 3 : 3504	17 15 3 : 225	17 4 4 : 0
17 5 4 : 271	17 6 4 : 34112	17 7 4 : 395338	17 8 4 : 1256623
17 9 4 : 1764700	17 10 4 : 1331013	17 11 4 : 577936	17 12 4 : 143749
17 13 4 : 19119	17 14 4 : 1085	17 5 5 : 41330	17 6 5 : 1168734
17 7 5 : 3766042	17 8 5 : 5039358	17 9 5 : 3630653	17 10 5 : 1547398
17 11 5 : 395198	17 12 5 : 56623	17 13 5 : 3630	17 6 6 : 2567828
17 7 6 : 7630113	17 8 6 : 5799584	17 9 6 : 2633896	17 10 6 : 737198
17 11 6 : 119428	17 12 6 : 8689	17 7 7 : 3334120	17 8 7 : 3356103
17 9 7 : 1047667	17 10 7 : 191974	17 11 7 : 16025	17 8 8 : 587349
17 9 8 : 241977	17 10 8 : 22827	17 9 9 : 13006	17 : 50107909

18 18 : 1	18 9 2 : 1	18 10 2 : 45	18 11 2 : 720
18 12 2 : 3192	18 13 2 : 5097	18 14 2 : 3531	18 15 2 : 1180
18 16 2 : 204	18 17 2 : 17	18 6 3 : 1	18 7 3 : 324
18 16 3 : 255	18 4 4 : 0	18 5 4 : 55	18 6 4 : 19282
18 7 4 : 444276	18 8 4 : 2217704	18 9 4 : 4421955	18 10 4 : 4597056
18 11 4 : 2784608	18 12 4 : 1015049	18 13 4 : 218608	18 14 4 : 25758
18 15 4 : 1331	18 5 5 : 27764	18 6 5 : 1574307	

19 19 : 1	19 9 2 : 0	19 10 2 : 5	19 11 2 : 249
19 12 2 : 2356	19 13 2 : 7235	19 14 2 : 8859	19 15 2 : 5113
19 16 2 : 1482	19 17 2 : 233	19 18 2 : 17	19 6 3 : 0
For fixed n and w, the sums $\sum_{h=1}^{\lfloor n/w \rfloor} P_{h \times w}(n)$ are summarized in Table 1. A closed-form formula for the values 1, 1, 6, 18, 73, 255, ... on the diagonal is known [2, A057051][6]. An equivalent triangle for fixed n-ominoes is also in the OEIS [2, A308359].

The sums $\sum_{w \geq 1} P_{w \times w}(n)$ for the free polynomials with a square bounding box have their own OEIS entry [2, A259088].

For fixed w and h, the sums $\sum_{n=w+h-1} P_{n \times w}(n)$ are collected in [2, A268371].

Appendix A. The Java Program

A.1. Compilation and Use. The Java classes that follow are compiled as usual with

```
javac de/mgp/mpia/rjm/{Composit.java,FreePoly.java,FreePolySet.java,FreePolySetThrd.java}
jar cfe FreePolySet.jar de.mgp.mpia.rjm.FreePolySet de/mgp/mpia/rjm/*
```

The compiled source code is also available in https://www.mpia.de/~mathar/progs/FreePolySet.jar. The main program is then called with

```
java -cp . de.mgp.mpia.rjm.FreePolySet [-v] [-j #] [-f] [-w #] [-h #] [-s {N,R,H,V,HVR}] n
```

respectively

```
java -jar FreePolySet.jar [-v] [-j #] [-f] [-w #] [-h #] [-s {N,R,H,V,HVR}] n
```

where the last argument is the size (number of cells) of the polyomino, a positive integer.

The option -v lets the program print the (0,1)-matrix for each polyomino that is constructed. This is done in two formats: (i) a list of row and column indices of the occupied cells in parenthesis (r,c) where rows and columns count from 0 upwards. (ii) a sequence of zeros and ones in the shape of the bounding box, where the ones are the occupied and the zeros the empty cells in the square lattice. Note that the lines with the counts of Section 3 (recognized by containing colons) are printed anyway.

The option -f lets the program handle fixed polyominoes without reduction for the symmetry groups [2, A001168,A292357,A308359].
Table 1. The number of free n-ominoes with a bounding box of short edge w.

<table>
<thead>
<tr>
<th>n</th>
<th>w</th>
<th>$P(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>379</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>669</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1250</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2247</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4168</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>7570</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>13987</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>25549</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>47108</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>86319</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>158978</td>
</tr>
</tbody>
</table>

The option \(-j\) followed by a positive integer number uses parallel threads (as many as given by the followup integer) to construct the n-ominoes of a given width and height. If the option is not used, only a single thread is run.

The option \(-w\) followed by a positive integer number lets the program consider only a bounding box of a specific width; this will only generate any output if the width is in the range from 1 to n. If the option is not used, the program will execute a sequential loop over all widths which are commensurate with n.

The option \(-h\) followed by a positive integer number lets the program consider only a bounding box of a specific height. If the option is not used, the program will execute a sequential loop over all heights in the range w to $n - w + 1$.

The options \(-w\) and \(-h\) support parallelization of the computations on the operating system level by calling it more than once at the same time for different widths and/or heights.

The option \(-s\) followed by a string with a subset of Redelmeier’s capital letters \([10]\) filters the polyominoes with respect to symmetry. The letter N constructs only polyominoes without symmetry, the letter R constructs only those with a symmetry of a 180° rotation about the center of the bounding box, the letter H constructs only those with a symmetry of flipping along the short axis, the letter V constructs only those with a symmetry of flipping along the long axis. [The short axis of the bounding box has length w, the long axis length h.] The string HVR selects polyominoes that have all of the symmetries H, V and R.
The call
```
java -jar FreePolySet.jar -v 5
```
for example would show the 12 free pentominoes.

A.2. Classes

The class `Composit` constructs compositions of some number \(n \) into \(k \) parts given lower and upper bounds for the size of each part. This is done by standard recursion and filling the vector of parts left-to-right.

The class `FreePoly` represents a binary matrix of zeros and ones with given height (number of rows) and width (number of columns). It has member functions that rotate and/or flip the cells and a member function to select from these variants one normalized view of the free \(n \)-omino.

The class `FreePolySet` is the main program which first selects the size \(n \) of the polyominoes and the height and width of the bounding box, runs the double loop over compositions of \(n \) into \(h \) parts and bitsets with \(w \) parts (which amounts essentially to explicit construction of roughly a quarter of all fixed \(n \)-ominoes), and copies the free polyomino representatives into a set of eventually \(P(n) \) binary matrices.

APPENDIX B. SOURCE CODE OF de/mpg/mpia/rjm/Composit.java

```java
/**
 * A class which generates the compositions of an integer into a fixed number of parts.
 * @author R. J. Mathar
 * @since 2019-05-11
 */
public class Composit
{
    /** the sum of the parts */
    int n ;

    /** the number of parts */
    int k ;

    /** the lowest size a part may have */
    int minPart ;

    /** the largest size a part may have */
    int maxPart ;

    /** The compositions to be generated. */
    * Each composition is represented as a 1-dimensional array
    * of \( k \) numbers in the range \( \text{minPart} \ldots \text{maxPart} \) and sum \( n \).
    * Vector<int[]> comps;
```
/**
 * Constructor defining the integer to be partitioned.
 * This is not just defining the task at hand but actually generating
 * all compositions within the ctor.
 * @param n The sum of the parts
 * @param k The number of the parts
 * @param minP The smallest size any part may have.
 * @param maxP The largest size any part may have.
 * @since 2019-05-11
 */
public Composit(int n, int k, int minP, int maxP)
{
 this.n = n ;
 this.k = k ;
 minPart = minP ;
 maxPart = maxP ;
 /* the initially empty set of compositions.
 */
 comps = new Vector<int[]>() ;
 /* Generate the vector comps[] if basic requirements are met.
 * Each part is >= minPart, so the total is >=k*minPart.
 * Each part is <= maxPart, so the total is <=k*maxPart.
 */
 if (k*minPart <= n && k*maxPart >= n)
 comps = generate(new int[0],n) ;
} /* ctor */
/**
 * @return The number of compositions.
 * Because the compositions are all generated with the ctor,
 * this number is available right away.
 */
public int size()
{
 return comps.size() ;
} /* size */
/** generated recursively the compositions of n
 * @param given The initial sublist of parts already fixed.
 * @param nResid The sum over the elements not yet in given[].
 * @return The partitions represented as vectors of length k.
 */
private Vector<int[]> generate(int[] given, int nResid)
{
 /* the compositions that can be generated;
 * The result of this subroutine
 */
 Vector<int[]> subcomp = new Vector<int[]>() ;
 if (nResid < 0 || given.length > k)
 {
 /* prefixed parts not compatible with requirements;
 * return with the empty set.
 */
 return subcomp;
 }
 if (given.length == k)
 {
 if (nResid ==0)
 subcomp.add(given.clone()) ;
 /* Return a vector of 0 or 1 elements composing n.
 */
 return subcomp;
 }
 /* here given.length < k and nResid >=0 */
 if (given.length == k-1)
 {
 /* one final part to be appended to the given[].
 */
* need a part of the size nResid to fill up to n
*/
if (nResid >= minPart && nResid <= maxPart) {
 int[] c = new int[k];
 for(int pi = 0; pi < c.length; pi++)
 c[pi] = (pi < given.length) ? given[pi] : nResid;
 subcomp.add(c);
}
else {
 int[] c = new int[given.length+1];
 for(int pi=0; pi < given.length; pi++)
 c[pi] = given[pi];
 /* 2 or more parts to be appended; number of missing part to be appended next. The minimum total of the unassigned parts is p=\minPart+\maxPart*(k-given.length-1). This value must stay <= nResid. * p <= nResid-\minPart*(k-given.length-1). * The maximum total of the unassigned parts is p=\maxPart+\maxPart*(k-given.length-1); this value must stay >=nResid * p >= nResid-\maxPart*(k-given.length-1).
 */
 final int nextmin = Math.max(minPart, nResid-maxPart*(k-given.length-1));
 final int nextmax = Math.min(maxPart, nResid-minPart*(k-given.length-1));
 for(int p = nextmin; p <= nextmax; p++)
 { /* fill in the last integer into the parts list */
 c[given.length] = p;
 final Vector<int[]> iters = generate(c,nResid-p);
 subcomp.addAll(iters);
 }
}
return subcomp;
} /* generate */
/** Compare two integer vectors element-wise left to right. * If the two vectors have different length, the longer one is considered larger. * If the two vectors have the same length, the lexicographic comparison * (comparing elements at index 0, 1, 2...) is executed. The vector which first has a larger element than the other is the larger vector. * @return -1, 0 or +1 if left is considered smaller than, equal to or larger than right. */
public static int compareTo(final int[] left, final int[] right) {
 if (left.length > right.length)
 return 1;
 else if (left.length < right.length)
 return -1;
 else {
 for(int i=0; i < left.length; i++)
 { /* if (left[i] > right[i]) */
 if (left[i] > right[i])
 return 1;
 else if (left[i] < right[i])
 return -1;
 }
 return 0;
 }
} /* compareTo */
/** Reverse the integers in a vector * param arg The initial vector. * @param return The initial vector where arg[0] has been swapped with arg[length-1]. */
public static int[] reverse(final int[] arg)
{
 int[] rev = new int[arg.length] ;
 for(int i=0 ; i < arg.length ; i++)
 rev[i] = arg[arg.length-1-i] ;
 return rev ;
} /* reverse */
/** List all compositions
 * @return The compositions \([c00,c01...],[c10,c11...]\)
 */
public String toString()
{
 String str = new String();
 for (int[] p : comps)
 {
 str += "[" ;
 for (int pi = 0 ; pi < p.length ; pi++)
 str += p[pi] +"," ;
 str += "]" ;
 }
 return str ;
} /* toString */
/** Test program
 */
public static void main(String[] args)
{
 for(int n = 0 ; n < 6 ; n++)
 for(int k = 0 ; k < 6 ; k++)
 {
 Composit c = new Composit(n,k,1,n) ;
 System.out.println("n "+n + " k "+k + " : " + c.comps.size() + " " + c.toString()) ;
 }
} /* main */
} /* class Composit */

APPENDIX C. SOURCE CODE OF DE/MPG/MPIA/RJM/FREEPOLY.JAVA

/*
 * $Header: de/mpg/mpia/rjm/FreePoly.java$
 */
/** @file
 * A \(n\)-omino with a \(r\) times \(c\) bounding box.
 * @author R. J. Mathar
 * @see vixra:1905.0474
 */
package de.mpg.mpia.rjm ;
import java.util.* ;
import java.lang.* ;
/**
 * @brief A free \(n\)-omino with a tight bound box (convex rectangular hull) of \(r\) rows and \(c\) columns.
 * @since 2019-05-11
 * @author Richard J. Mathar
 */
public class FreePoly
{
 /** the sum of the parts
 */
 int n ;
 /** the number of rows
 */
 int rows ;
 /** the number of columns
 */
 int cols ;
```java
/** The array of zeros and ones for each cell indexed by row and column */
byte[][] bits;

/**
 * Constructor with a predefined n-omino.
 * @param zeroone The array of the zeros and ones.
 * @param freep If true, construct free polyominoes.
 * @param Read is a flag:
 * if zero or positive, exclude 90 degree rotation symmetries.
 * That means if negative, the equivalence operations of reducing
 * the set of occupied cells to a single representative are all tested,
 * of which there are 4 operations (group of identity, two flips and 180 deg rotation)
 * for rectangular shapes, and 8 operations (those by adding 90 degree rotations)
 * for the square shapes. If the Read parameter is zero or positive, that additional
 * set of 4 operations (90 degree rotations) is not added to the square shapes,
 * and all results will be blind to those symmetries, i.e., this is not what
 * the usual meaning for free polyominoes would do.
 * @since 2019-05-11
 */
public FreePoly(final byte[][] zeroone, boolean freep, int Read) {
    rows = zeroone.length;
    if ( rows > 0 )
        cols = zeroone[0].length;
    else
        cols = 0;
    bits = new byte[rows][cols];
    n = 0;
    /* clone the elements of zeroone (which may be modified later
     * by the calling program)
     */
    for (int r=0 ; r < rows ; r++)
        for (int c=0 ; c < cols ; c++)
            bits[r][c] = zeroone[r][c];
    n += bits;
    if (freep)
        reduce(Read);
} /* ctor */

/**
 * Constructor with a predefined n-omino.
 * @param zeroone The array of the zeros and ones.
 * @param freep If true, construct free polyominoes.
 * @param Read is a flag:
 * if zero or positive, exclude 90 degree rotation symmetries.
 * That means if negative, the equivalence operations of reducing
 * the set of occupied cells to a single representative are all tested,
 * of which there are 4 operations (group of identity, two flips and 180 deg rotation)
 * for rectangular shapes, and 8 operations (those by adding 90 degree rotations)
 * for the square shapes. If the Read parameter is zero or positive, that additional
 * set of 4 operations (90 degree rotations) is not added to the square shapes,
 * and all results will be blind to those symmetries, i.e., this is not what
 * the usual meaning for free polyominoes would do.
 * @since 2019-05-11
 */
public FreePoly(final int[][] zeroone, boolean freep, int Read) {
    this(zeroone, zeroone.length, freep, Read);
} /* ctor */

/**
 * Constructor with a predefined n-omino.
 * @param zeroone The array of the zeros and ones.
 * @param rowsToKeep The number of valid rows in zeroone.
 * By default this should be the same as zeroone.length, but the
 * number can be chosen to be less such that the exceeding rows in zeroone will
```
* be ignored.
* @param freep If true, construct free polyominoes.
* That means store a representation counted as one if rotated/flipped.
* @param Read is a flag: if zero or positive, exclude 90 degree rotation symmetries.
* That means, if negative, the equivalence operations of reducing
* the set of occupied cells to a single representative are all tested,
* of which there are 4 operations (group of identity, two flips and 180 deg rotation)
* for rectangular shapes, and 8 operations (those by adding 90 degree rotations)
* for the square shapes. If the Read parameter is zero or positive, that additional
* set of 4 operations (90 degree rotations) is *not* added to the square shapes,
* and all results will be blind to those symmetries, i.e., this is not what
* the usual meaning for free polyominoes would do.
* @since 2020-06-16
*/
public FreePoly(final int[][] zeroone, int rowsToKeep, boolean freep, int Read)
{
 if (rowsToKeep < 0 || rowsToKeep > zeroone.length)
 throw new IndexOutOfBoundsException("row index " + rows) ;
 rows = rowsToKeep ;
 if (zeroone.length > 0)
 cols = zeroone[0].length ;
 else
 cols = 0 ;
 bits = new byte[rows][cols] ;
 n=0 ;
 /* clone the elements of zeroone (which may be modified later
 * by the calling program)
 */
 for (int r=0 ; r < rows ; r++)
 for (int c=0 ; c < cols ; c++)
 {
 bits[r][c] = (byte) zeroone[r][c] ;
 n += bits[r][c] ;
 }
 if (freep)
 reduce(Read) ;
} /* ctor */

/** Check whether the bit set has all 1 connected
* This is a static variant because creating a object of FreePoly-type
* would (usually) consider reduce() which is an expensive operation and not needed here.
* @param zeroone The binary array.
* @param validRows the array of zeroone has zeroone.length rows, but
* only the rows 0..validRows are valid/known.
* @return True if the zeroone[0..validRows] first elements are connected.
* @since 2020-06-16
*/
public static boolean isConnected(final int[][] bits, int validRows)
{
 /* Rearrange the information of the occupied cells by putting
 * their 2d coordinates into a vector.
 */
 Vector<byte[]> freeSet = new Vector<byte[]>() ;
 for(int r=0 ; r < validRows ; r++)
 for(int c=0 ; c < bits[0].length ; c++)
 if (bits[r][c] > 0)
 {
 byte[] coo= new byte[2] ;
 coo[0] = (byte) r ;
 coo[1] = (byte) c ;
 freeSet.add(coo) ;
 }
 /* the number of 1's in the zeroone[0..validRows] rows
 */
 final int n = freeSet.size() ;
 /* this set contains [r][c] lists of 2d coordinates
of set bits (squares of the n-ominoe) connected
with the first square. If all connections are checked,
the size of this vector must be n if the n-ominoe is connected.

We tackle the problem that some meandering forms of disconnected
clusters do not define a n-ominoe. The algorithm is to
put initially one of the freeSet[] cells into the cluster,
and moving recursively the remaining freeSet[] cells into the
cluster once it is verified that they share an edge with any of
the cells in the cluster.

Vector<byte[]> coneCluster = new Vector<byte[]>();
/* assume n>=1, so at least one element in freeSet()
*/
coneCluster.add(freeSet.firstElement());
freeSet.removeElementAt(0);
for(; ! freeSet.isEmpty();)
{
 /* search through all freeSet squares and
 * try to add some to the connected cluster. Keep track
 * with the enlarged variable whether that succeeded for at
 * least one in the freeSet.
 */
 boolean enlarged = false;
 for(byte[] cand: freeSet)
 {
 /* is this candidate neighbour of any in the cluster? */
 boolean isne = false;
 for(byte[] inclus : coneCluster)
 {
 /* neighbour to the N, S, E or W: coordinate differences in the square lattice */
 if (Math.abs(cand[0]-inclus[0]) == 1 && cand[1]==inclus[1]
 || Math.abs(cand[1]-inclus[1]) == 1 && cand[0]==inclus[0])
 {
 isne =true;
 break;
 }
 }
 if (! isne)
 break; /* needed to avoid scanning the moved elements */
 }
 if (! enlarged)
 break;
 /* connected, if all coordinate pairs have been moved from the freeSet
 * to the coneCluster in the loop..
 */
 return (coneCluster.size() == n);
} /* isConnectedOld */

/**
 * @brief construct the r-rooted free polyominoes
 * @param rMult The number of marked cells. currently always r=1, the standard definition of rooted polyominoes.
 * @return The free polyominoes where rooted cells are marked with a 2 in the matrix cell.
public Vector<FreePoly> rooted(int rMult)
{
 /* loop over all 1bits in the matrix, flip this to 2, reduce again, and
 * collect the distinct results.
 */
 Vector<FreePoly> rtd = new Vector<FreePoly>();
 for (int r=0 ; r < rows ; r++)
 for (int c=0 ; c < cols ; c++)
 {
 if (bits[r][c] > 0)
 {
 byte[][] bitsR = new byte[rows][cols];
 for (int rr=0 ; rr < rows ; rr++)
 for (int cc=0 ; cc < cols ; cc++)
 if (rr == r && cc == c)
 bitsR[rr][cc] = (byte)2 ;
 else
 bitsR[rr][cc] = bits[rr][cc];

 /* construct a normalized rooted free polyomino */
 FreePoly mrkd = new FreePoly(bitsR,true,-1);
 boolean kown = false;
 for (FreePoly k : rtd)
 {
 if (compareTo(mrkd,k) == 0)
 {kown = true; break;}
 }
 if (! kown)
 rtd.add(mrkd);
 }
 }
 return rtd;
}

/** Construct the rotated and flipped versions. Retain only one.
 * @param Read is a flag: if zero or positive, exclude 90degree rotation symmetries.
 * That means if negative, the equivalence operations of reducing
 * the set of occupied cells to a single representative are all tested,
 * of which there are 4 operations (group of identity, two flips and 180 deg rotation)
 * for rectangular shapes, and 8 operations (those by adding 90 degree rotations)
 * for the square shapes. If the Read parameter is zero or positive, that additional
 * set of 4 operations (90 degree rotations) is *not* added to the square shapes,
 * and all results will be blind to those symmetries, i.e., this is not what
 * the usual meaning for free polyominoes would do.
 */
private void reduce(int Read)
{
 /* if rows <> cols, compare this byte arry with the
 * three variants of flipped x, flipped y and rotated by 180 (group of order4).
 * If rows = cols, compare with the full D_8 group of order 8 by
 * including rotations by 90 or 270 degrees. piv is the pivotal variant
 * which is "smallest" in all the rotated/flipped variants.
 */
 byte[][] piv = bits;
 byte[][] r180 = rot180<bits();
 byte[][] fpiv = flipx<bits());
 byte[][] fpiv180 = flipx(r180);
 if (compareTo(r180,piv) < 0)
 { piv = r180;
 if (compareTo(fpiv,piv) < 0)
 piv = fpiv;
 if (compareTo(fpiv180,piv) < 0)
 pivot = fpiv180;
 }
 if (rows == cols & Read < 0)
 {
 /* consider 4 more versions if the matrix is square and
 */
}
```java
* Read's table is not to be reproduced */
byte[][] r90 = rot90(bits) ;
if ( compareTo(r90,piv) < 0 )
    piv = r90 ;
byte[][] r270 = rot90(r180) ;
if ( compareTo(r270,piv) < 0 )
    piv = r270 ;
byte[][] fpiv90 = flipx(r90) ;
if ( compareTo(fpiv90,piv) < 0 )
    piv = fpiv90 ;
byte[][] fpiv270 = flipx(r270) ;
if ( compareTo(fpiv270,piv) < 0 )
    piv = fpiv270 ;
}
/* replace the representation by the "smallest" one.
* Sum of parts, row and col are not changed by this representation.
*/
bits = piv ;
} /* reduce */

/** Check whether the polynomino has a symmetry of order 2 etc.
* @param symm String N, R, H, V or empty.
* The empty string means that we don't care about symmetry and the result is always 'true.'
* @return true if it has a N, R, H, V symmetry.
*/
public boolean isSymm(String symm)
{
    if ( symm.isEmpty() )
        return true ;
    if ( symm.indexOf("R") >=0 )
    {
        byte[][] r180 = rot180(bits) ;
        if ( compareTo(bits, r180) != 0 )
            return false ;
    }
    if ( symm.indexOf("H") >=0 )
    {
        byte[][] fl = flipy(bits) ;
        if ( compareTo(bits, fl) != 0 )
            return false ;
    }
    if ( symm.indexOf("V") >=0 )
    {
        byte[][] fl = flipx(bits) ;
        if ( compareTo(bits, fl) != 0 )
            return false ;
    }
    if ( symm.indexOf("N") >=0 )
    {
        /* request that this must not have the R, H or V symmetry... */
        byte[][] img = rot180(bits) ;
        if ( compareTo(bits, img) == 0 )
            return false ;
        img = flipy(bits) ;
        if ( compareTo(bits, img) == 0 )
            return false ;
        img = flipx(bits) ;
        if ( compareTo(bits, img) == 0 )
            return false ;
    }
    return true ;
```
** Test whether another object is a polyomino of the same arrangement of cells.
* @param oth The object to be compared to this.
* @return True if the object is a polyomino with the same shape and arrangement of cells.
*/
@Override
public boolean equals(Object oth)
{
 if (oth instanceof FreePoly)
 {
 byte[][] othbits = ((FreePoly)(oth)).bits ;
 return (compareTo(bits,othbits) ==0) ;
 }
 else
 return false;
}

/** Define a lexicographic order of 2D byte arrays by comparing them row by row
* @param left The first array to be considered.
* @param right The second array to be considered.
* @return a value of -1, 0 or +1 if left is considered to be smaller than, equal to or larger than right.
*/
private static int compareTo(final byte[][] left, final byte[][] right)
{
 if (left.length > right.length)
 return 1 ;
 else if (left.length < right.length)
 return -1 ;
 else if (left.length == 0)
 return 0 ;
 else
 {
 if (left[0].length > right[0].length)
 return 1;
 else if (left[0].length < right[0].length)
 return -1;
 else if (left[0].length == 0)
 return 0;
 else
 {
 final int rows =left.length ;
 final int cols =left[0].length ;
 for(int r=0 ; r < rows ; r++)
 for(int c=0 ; c < cols ; c++)
 {
 if (left[r][c] > right[r][c])
 return 1 ;
 else if (left[r][c] < right[r][c])
 return -1 ;
 }
 return 0 ;
 }
 }
}

/** Define a lexicographic order of fixed n-ominoes by comparing their binary matrix representations
* @param left The first polyomino.
* @param right The second polyomino.
* @return a value of -1, 0 or +1 if left is regarded to be smaller, equal to or larger than right.
*/
static int compareTo(final FreePoly left, final FreePoly right)
{
 return compareTo(left.bits, right.bits) ;
}

/** Flip elements of array by swapping columns
* @return The clone of the byte array where within each row the order of elements is reversed
*/
static byte[][] flipx(final byte[][] in)
\begin{verbatim}

final int rows = in.length;
final int cols = (rows > 0) ? in[0].length : 0;
byte[][] out = new byte[rows][cols];
for(int r = 0; r < rows; r++)
 for(int c=0; c < cols; c++)
 out[r][c] = in[r][cols-1-c];
return out;

/** Flip elements of array by swapping rows */
static byte[][] flipy(final byte[][] in)
{
 final int rows = in.length;
 final int cols = (rows > 0) ? in[0].length : 0;
 byte[][] out = new byte[rows][cols];
 for(int r = 0; r < rows; r++)
 for(int c=0; c < cols; c++)
 out[r][c] = in[rows-1-r][c];
 return out;
}

/** Rotate array by 180 degrees */
static byte[][] rot180(final byte[][] in)
{
 final int rows = in.length;
 final int cols = (rows > 0) ? in[0].length : 0;
 byte[][] out = new byte[rows][cols];
 for(int r = 0; r < rows; r++)
 for(int c=0; c < cols; c++)
 out[r][c] = in[rows-1-r][cols-1-c];
 return out;
}

/** Rotate array by 90 degrees ccw. */
static byte[][] rot90(final byte[][] in)
{
 final int cols = in.length;
 final int rows = (cols > 0) ? in[0].length : 0;
 byte[][] out = new byte[rows][cols];
 for(int r = 0; r < rows; r++)
 for(int c=0; c < cols; c++)
 out[r][c] = in[c][rows-1-r];
 return out;
}

/** @brief List occupied cells. */
/** This prints the array in a parenthetical list of the form (c1r,c1c)(c2r,c2c)(c3r,c3c),...
 * where (cir,cic) are the row and column indices of the non-zero entries in the array.
 * Both cir and cic and 0-based, i.e., start at 0 at the first row and first column.
 * The order of the occupied cells is row by row.
 * @param in[][] A rectangular array of numbers
 * @return A string representation of the coordinates of occupied cells.
 * @since 2020-06-25 */
public static String toStringCells(final byte in[][])
{
 final int rows = in.length;
 final int cols = (rows > 0) ? in[0].length : 0;
 String str = new String();
 // first a single line of cell coordinates
 for(int r=0; r < rows; r++)
 for(int c=0; c < cols; c++)
 if (in[r][c] != 0)
 str += (r < rows-1) ? (r * 'c' + c + 1) : (r * 'c' + cols + 1);
 return str;
}
\end{verbatim}
str += "(" + c + " + r + "," + c + ")";
}
return str;
} /* toStringCells */
/** Derive an ASCII representation of the polyomino.
* @param in[][] A rectangular array of 1-digit numbers
* @return A string representation of the occupied cells and a string representation of the binary matrix.
* @since 2020-06-25 Add another line with a parenthetical list of the occupied cells
*/
public static String toString(final byte in[][]) {
 final int rows = in.length;
 final int cols = (rows > 0) ? in[0].length : 0;
 /* start with a line of coordinate pairs of occupied cells */
 String str = toStringCells(in);
 str += System.getProperty("line.separator");
 /* Then the version of a binary matrix where a human can recognize the connectivity.
 * First row 0, then row 1 (to relate this to the info in the previous line)
 */
 for(int r=0 ; r < rows ; r++) {
 for(int c=0 ; c < cols ; c++)
 str += in[r][c] ;
 str += System.getProperty("line.separator");
 }
 return str;
} /* toString */
/** Print a human-readable pattern of 0's and 1's that represent the polyomino.
* @return The zeros and ones with one list per output line.
*/
public String toString() {
 return toString(bits);
} /* toString */
} /* FreePoly */

APPENDIX D. SOURCE CODE OF DE/MPG/MPIA/RJM/FREEPOLYSET.JAVA

/**
 * $Header: de/mpg/mpia/rjm/FreePolySet.java$
 */
/** @file
 * The set of n-ominoes with a fixed rows X cols bounding box.
 * @author Richard J. Mathar
 * @see vixra:1905.0474
 */
package de.mpg.mpia.rjm;
import java.util.*;
import java.lang.*;
/**
 * @brief compute the set of all free n-ominoes with given bounding rectangle.
 * @since 2019-05-11
 * @author Richard J. Mathar
 */
public class FreePolySet {
 /** the sum of the parts */
 int n;
/** the number of rows */
int rows ;

/** the number of columns */
int cols ;

Vector<FreePoly> polys ;

/** Flag to introduce intermedia percolation checks */
boolean TEAROFF = false ;

/** Flag to impose only a set of 4 (not 8) symmetry operations on free polyominoes of square shape. */
static int CREAD = -1 ;

/** Constructor with a predefined n-omino. */
public FreePolySet(int n, int r, int c)
{
this.n = n ;
rows = r ;
cols = c ;
polys = new Vector<FreePoly>() ;
} /* ctor */

/** Main part of the solution: create all n-ominoes. */
public void create(boolean freep, final String symm, int jThrd) throws InterruptedException
{/n /* no solution if there are more cells n than r*c cells in the rectangle. */
if (n > rows*cols)
 return ;

/* Each row must contain at least one square to */
/* keep the n-omino connected, and at most cols squares because */
/* the columns are essentially bitsets. Create all compositions of n */
/* into 'rows' parts, each part in the range 1..cols. */
Composit rowComp = new Composit(n,rows,1,cols) ;
if (rowComp.size() <= 0)
 return ;

/* Compute only once all possible bit sets of the rows. */
/* bitsets[i] contains the bitsets with i bits set, and each bitset with 'cols' bits. */
/* To simplify the indexing, the sum is also performed for bweit=0, although */
/* this gives actually only the trivial all-0 list which cannot occur if n>=1. */
Vector<Composit> bitsets = new Vector<Composit>() ;
for (int bweit =0 ; bweit <= cols ; bweit++)
{/n Composit bamm = new Composit(bweit,cols,0,1) ;
 bitsets.add(bamm) ;
}
prepare threads to run. We will execute one or more row compositions
* in a single thread, so it would be useless to generate more threads than
* the current number of compositions...
*/
jThrd = Math.min(jThrd, rowComp.size());

FreePolySetThrds[] thrds = new FreePolySetThrds[jThrd];
Thread[] thrdsT = new Thread[jThrd];
for (int m = 0; m < jThrd; m++)
{
 thrds[m] = new FreePolySetThrds(n, rows, cols, freep, CREAD, symm, rowComp, bitsets, m, jThrd);
 thrdsT[m] = new Thread(thrds[m]);
 thrdsT[m].start();
}

/* wait for all threads to finish */
for (int m = 0; m < jThrd; m++)
{
 thrdsT[m].join(0);
}

/* collect all the polyominioes of the threads into a single vector.
*/
for (int m = 0; m < jThrd; m++)
{
 if (rows != cols)
 polys.addAll(thrds[m].polys);
 else
 {
 /* Those of square shape may have
 * been generated by a row sum and also by another row sums (treated as a column sum).
 * These are to be reduced to generate them only once.
 */
 for (FreePoly p : thrds[m].polys)
 {
 if (!polys.contains(p))
 polys.add(p);
 }
 }
}

public String toString()
{
 return toString(polys);
} /* toString */

public static String toString(Vector<FreePoly> polys)
{
 String str = new String();
 for (int i = 0; i < polys.size(); i++)
 {
 str += polys.elementAt(i).toString() + "n";
 }
 return str;
} /* toString */

/** Main program
 */
public static void main(String[] args) throws InterruptedException
{
 if (verb) print also the {0,1} matrices
 boolean verb = false;
/* if freep=true, generate only free polynomials, else fixed */
boolean freep = true;

/* The number of rooted cells. Initially 0 (=not rooted) for A000105.
* Using rMult=1 (with the option -r 1) gives OEIS A126202, the "pointed" polyominoes with n cells. */
int rMult = 0;

/* If this is a nonnegative integer: consider only polyominoes with that specific
* number of columns (=width) */
int fixedCol = -1;

/* If this is a nonnegative integer: consider only polyominoes with that specific
* number of rows (=height) */
int fixedRow = -1;

/* number of threads run in parallel */
int jThrd = 1;

/* If not empty: count only polyominoes with a symmetry.
* N=none, R=rotation by 180 degrees, H=rotation along the short axis, V=rotation along long axis.
* See Redelmeister.
* Note that these are minimum requirements. There is for example the full-block polyomino
* which has H+V+R.
* There is no implementation here to check for symmetry along the 2 diagonals for
* the polyominoes with a square hull. */
String symm = new String();

/* empty list of arguments: usage hint */
if (args.length == 0)
{
 final FreePolySet tmp = new FreePolySet(0,0,0);
 System.out.println("Usage: java -cp . " + tmp.getClass().getName()
 + " [-j Nthrd] [-w width] [-v] [-s Symm] ncell");
 return;
}

for (int optind = 0; optind < args.length; optind++)
{
 if (args[optind].equals("-v"))
 verb =true ;
 if (args[optind].equals("-f"))
 freep =false ;
 if (args[optind].equals("-r"))
 rMult = Integer.parseInt(args[++optind]) ;
 if (args[optind].equals("-w"))
 {
 fixedCol = Integer.parseInt(args[++optind]) ;
 /* correct if erroneous non-positive input */
 fixedCol = Math.max(fixedCol,1) ;
 }
 if (args[optind].equals("-h"))
 {
 fixedRow = Integer.parseInt(args[++optind]) ;
 /* correct if erroneous non-positive input */
 fixedRow = Math.max(fixedRow,1) ;
 }
 if (args[optind].equals("-j"))
 {
 jThrd = Integer.parseInt(args[++optind]) ;
 /* correct if erroneous non-positive input */
 jThrd = Math.max(jThrd,1) ;
}
if (args[optind].equals("-s"))
 symm = args[++optind] ;

/* last command line argument is the polyomino size */
int n = Integer.parseInt(args[args.length-1]) ;

/* counter for the number of polyominoes in that class */
tot = 0 ;

/* loop over all numbers of columns (=widths) */
for(int c= 1; c<=n; c++)
{
 /* if a request for only a single width (column) is made, * skip all others. */
 if (fixedCol >= 0 && c != fixedCol)
 continue ;

 /* Loop over all row lengths (=heights). * Need r*c >= n, so don't start at 1. */
 int rmin = (CREAD>0 || !freep) ? 1 : Math.max(n/c,c) ;
 for(int r= rmin ; r+c-1 <=n ; r++)
 {
 /* generate the rmult-rooted free polyominoes */
 Vector<FreePoly> rtd = new Vector<FreePoly>() ;
 for (FreePoly nonrtd : po.polys)
 {
 rtd.addAll(nonrtd.rooted(rMult)) ;
 }
 if (rtd.size() > 0)
 {
 if (verb)
 System.out.println(FreePolySet.toString(rtd)) ;
 System.out.println(""+ n + " + r + " + c + " : " + rtd.size()) ;
 tot += rtd.size() ;
 }
 else
 {
 if (verb)
 System.out.println(po.toString()) ;
 if (po.polys.size() > 0)
 {
 System.out.println(""+ n + " + r + " + c + " : " + po.polys.size()) ;
 tot += po.polys.size() ;
 }
 }
 }

 if (fixedCol < 0)
 System.out.println(""+ n + " : " + tot) ;
} /* main */
} /* FreePolySet */
APPENDIX E. SOURCE CODE OF de/mpg/mpia/rjm/FreePolySetThrd.java

```java
package de.mpg.mpia.rjm;

import java.util.*;
import java.lang.*;

public class FreePolySetThrd implements Runnable {
    /** The number of cells in the n-omino and also the partition of the row sums. */
    int n;
    /** The number of rows in each n-omino. */
    int rows;
    /** The number of columns in each n-omino. */
    int cols;
    /** Number of parallel threads generating the free n-ominoes */
    int jThrd;
    /** This thread index, from 0 to Thrd-1. */
    int mThrd;
    /** The polyominoes created by this thread */
    Vector<FreePoly> polys;
    /** Flag to indicate if free (true) or fixed (false) n-ominoes are created */
    boolean freep;
    /** Use C. Read incomplete symmetries for polyominoes with square bounding rectangle. */
    int Read;
    /** A string with letters N, H, V, R symmetry requirements. */
    String symm;
    /** The compositions of the row sums of this thread. Each polyomino */
    /** is a rows x cols matrix of 0's and 1's. rc[i] is the predefined row sum of row i. */
    /** Thread number m works on the row sums n, n+jThrd, n+2*jThrd etc. Because */
    /** these are distinct if the free polyominoes are distinct, the sets of free */
    /** polyominoes of the different threads are non-overlapping. */
    Composit rowComp;
    /** the row sum number i is flushed out into a bitset to generate
```
values of 0's and 1's for row number i. All these bitsets are initially computed only once in advance to save some time, supposing that row sums are not unique in the matrices of 0's and 1's.

```cpp
// Vector<Composit> bitsets ;
/** Flag to introduce intermediate percolation checks. Heuristically it does not seem to speed up the computation, at least for n up to 13, so it is disabled here by default. */
boolean TEAROFF = false ;
```
because we'll create them anyway by the 180 deg rotations...
* Note that using the complementary set where compareTo(rc,rcrev) >= 0
* gives the same results, but is slower, because the bit sets of
* larger weight in the initial rows then, and there is better efficiency
* of using the restriction of connectivity.
 */
final int[] rcrev = Composit.reverse(rc) ;
if (Composit.compareTo(rcrev,rc) >= 0 || !freep)
{
 /* now row sums are fixed ; inner loop: distribute them over
 * rows: need binary vectors with rc[] bits set.
 */
 int[][] bits = new int[rows][cols] ;
 create(bits,0,rc) ;
}
} /* run */

/** Main part of the calculation: create all of them
 * @param bits The polyomino with a bit[r][c] equal to one of the square is covered.
 * @param prow The pivotal row from 0 up to the number of rows (-1 in Java).
 * @param rc The vector of row sums. rc[r] is the number of bits to be set in row r.
 */
public void create(int[] bits, int prow, int[] rc)
{
 /* impossible to create solutions if that row sum is larger than
 * the number of columns.
 */
 if (rc[prow] > cols)
 return ;

 /* strategy is to find the bitsets that have as many
 * bits set as rc[prow] indicates. Connectivity: Check each of them
 * in turn if that has at least one common edge with the previous
 * row of bits (ie. bit-wise and is not zero), and preliminarily
 * add this as a new row.
 */
 final Composit thisrow = (bitsets == null) ?
 new Composit(rc[prow],cols,0,1) : bitsets.elementAt(rc[prow]) ;

 for(int[] brow : thisrow.comps)
 {
 /* is the connectivity (percolation requirement) satisfied ?
 * percol=true if it is as defined for polyominoes.
 */
 boolean percol ;
 /* no constraint on bitset if this is the first row.
 */
 if (prow == 0)
 {
 percol = true;
 /* if this is for free polyominoes, we only need to start
 * with approximately the smaller "half" of the bitsets because
 * the other polyominoes can be created by flipping along the horiz. axis.
 * Skip dealing with this set brow[] of bits if the reversed
 * would be lexicographically smaller.
 */
 if (freep)
 {
 final int[] bitsRev = Composit.reverse(brow) ;
 if (Composit.compareTo(bitsRev, brow) < 0)
 continue ;
 }
 }
 else
 {
 percol = false;
 /* run with a bit (column) wise and along the columns and
 * check that at least one of the squares is edge-connected with
 * a square of the previous row
 */
for(int c = 0; c < cols && !percol; c++)
{
 if (brow[c] == 1 && bits[prow-1][c] == 1)
 percol = true;
}

/* continue only if connectivity with adjacent row is verified */
if (percol)
{
 /* copy selected bitset into the current pivotal row */
 bits[prow] = brow;
 if (prow == rows-1)
 /* reached a leave of the search scan: all bits[][] now defined. */
 add(bits);
 else
 {
 if (TEAROFF && (prow > 0) && (prow % 5 == 0))
 {
 /* cover the array of bits with a top layer of all-1
 * as if optimistic that there will be some arching cluster of
 * 1's added latter to connect the pieces. Note that prow+1 cannot
 * exceed rows here because that's caught in the if-clause above.
 */
 int roweff;
 if (Arrays.equals(bits[prow], bitsets.elementAt(cols).comps.elementAt(0)))
 {
 roweff = prow+1;
 }
 else
 {
 bits[prow+1] = bitsets.elementAt(cols).comps.elementAt(0);
 roweff = prow+2;
 }
 if (! FreePoly.isConnected(bits, roweff))
 {
 continue;
 }
 }
 /* recursively add next adjacent row */
 create(bits, prow+1,rc) ;
 }
}

} /* create */

/** Check whether bits[][] is a valid n-omino.
 * Add to the list if not yet present.
 * @param bits The 2D bit set with 1's for occupied and 0's for unoccupied celles.
 */
void add(int[][] bits)
{
 /* Check that all parts of the composition of the column sums are >0
 * (no shotgun solutions admitted..)
 */
 for(int c=0 ; c < cols ; c++)
 {
 int su = 0;
 for(int r=0 ; r < rows ; r++)
 su += bits[r][c];
 if (su == 0)
 {
 return;
 }
 }

 if (FreePoly.isConnected(bits,rows))
{ /* create a candidate polyomino for insertion, normalized representation
 */ FreePoly cand = new FreePoly(bits, freep, Read) ;
 /* check whether this fails to be in any symmetry class that might be requested
 */
 if (! cand.isSymm(symm))
 return ;
 /* check whether this is a new n-omino.
 * Append the new polyomino if it differs from all the known ones.
 */
 if (! polys.contains(cand))
 polys.add(cand) ;
}
} /* add */
} /* FreePolySetThrd */

REFERENCES

Email address: mathar@mpia-hd.mpg.de
URL: https://www.mpia-hd.mpg.de/~mathar

MAX-PLANCK INSTITUTE OF ASTRONOMY, KÖNIGSTUHL 17, 69117 HEIDELBERG, GERMANY