
Shuffling Public Keys
(A Peer-to-peer Voting Algorithm)

Santi J. Vives
jotasapiens.com/research

Abstract: A peer-to-peer, permisionless cryptographic voting system that relies only on
the existence of generic digital signatures and encryption.

Democratic elecions are a a vital decising-making method in modern societies. Despite its
importance, elections hold a vulnerability that can bring democracies to a halt. An election
cooses between a set of candidates, one which will became an authority of some form. In
turn elected authorities (either directly or) indirectly) are in charge of the next elections.
That depence on an authority makes it possible for people to elect a malicious authority
that will later refuse to organize future elections, impede elections, or comit fraud.

This paper is the result of work aimed to tackle this problem from a cryptographic point of
view. Through the sections in the paper, I introduce a voting algortihm that works on a
peer-to -peer basis, without relying on any authority to organize the election itself nor
count  the  votes.  The  algorithm still  requires  authorities  to  inscribe  voters,  creating  a
public record that pairs persons with their public keys. Once the process starts and keys
are known, peocple can cast their votes in a peer-to-peer and permisionless way at any
point in time, making the right to vote and voice an opinion harder to take away. In cases
where a malicious authority is elected, unwilling to organize a new election, people would
still be able to cast their votes as long as their hold their private keys, and are able to
comunicate over any public network.

Imagine a group of persons who want to vote, persons who own cryptographic coins and
want to spend them without disclosing who made each payment, or persons that want to
say something anonymously. These three situations, though they may appear superficially
different, can be described as a same underlying mathematical problem:

A set of persons want to produce a set of shuffled information, in such a way that anyone
can verify that each piece of information belongs to one of them, but nobody can tell to
which in particular.

We start we a set of keys k0, k1, k2..., each belonging to one person, and they want to

generate of shuffled messages m0, m1, m2...

Digital signatures would solve half the problem, allowing to authenticate those messages.
But we would like to achieve this in a way that is unfeasible to match the authentication of

1. Introduction

Stating the problem

1



each message with any of the original kn keys in particular.

We will see that this problem can be solved in a distributed maner, relying sole in very
simple  assumtions:  the  existence  of  a  generic  signature  scheme,  generic  public
encryption, any pseudorandom funcion and hash, and any public network to comunicate
with each other.

To solve the problem, we will use a divide-and-conquer approach. We will deal with the a
simplest  case first.  Later,  we'll  break the general  problem into many instances of  the
simplest case.

The work is organized as follows:

Section 2: The problem is solved for the simplest form of 2 participants.

Section 3: Extends the solution to any 2x number of participants. At this points, only the
case of honest participants is considered .
Section 4: Solves the problem of routing secret information through the network.
Section 5: Extends the algorithm to any number of participants.
Section 6: Solves the problem of dishonest participants.
Appendix A: Solves problems specific to voting (casting votes, counting them).
Appendix B: Describes some possible optimizations.

We will  solve the problem using a divide and conquer strategy,  breaking it  into many
smaller instances. For that, let's start with the simplest case of having only two public keys
to shuffle.

Image there is one public key ka that belongs to Albert, and one public key kb that belongs

to Barbara. They want to generate a shuffled pair of keys kc, kd. Except for them, no one

should be able to tell which owns each key in the new pair.

Imagine Albert and Barbara have a way of exchanging secret information. Each Albert and
Barbara generate a new key. They share their secret keys and put them in random order,
creating a shuffled pair of keys kc, kd. They can now make the new pair public.

Next, it is time to authenticate the new keys. Albert signs the pair using his old key ka.

Barbara does the same: she signs the pair using kb.

And that is all. Anyone can verify the new keys are authentic, since the new pair is signed
by both Albert and Barbara. But to an outsider there is no way of telling which of the two
owns each.

We will refer to this process of shuffling two key as a butterfly, borrowing terminology
from  the  FFT  [1],  despite  we  are  dealing  with  a  different  problem  here:  shuffling
information rather than moving to the frequency domain.

2. Butterfly
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Generally, a butterfly takes two input keys ka and kb, and outputs a shuffled pair kc, kd

Albert and Barbara have two public keys (ka and kb) and they want to produced a pair of

shuffled keys kc, kd.

Albert generates a pair of encryption/decryption keys e, d.  He signs his encryption
key e with his old signature ka and makes it public.

Barbara verifies the signature to ensure e belongs to Albert.
Next Barbara generates a new verification key kc,  she encrypts it with e,  signs the

encrypted message with her old signature kb, and publishes the encrypted message.

Albert  verifies Barbara's signature, and decrypts the message with his own key d.
Albert now knows Barbara's new verification key kc.

Albert generates a new verification key kd of his own, and keeps it secret.

Now, Albert takes Barbara's new verification key kc and his own new verification key

kd. He forms a message by appending both keys in random order to form the shuffled

pair kd || kc. He signs the shuffled pair with his old signature ka and makes it public.

Barbara verifies Albert's signature, and checks that her new key kc is in the pair. She

signs the pair with her old signature kb and publishes the signature.

We started with two keys ka, kb, and ended with a new pair of public keys kc kd. Everyone

can verify the new pair is valid, since its signed by the two older keys. But an outsider
there is no way of telling who (Barbara or Albert) owns each key.

It's time to solve the larger problem of many voters. That can be done by redefining the
larger case as multiple iterations of the simplest case.

In this section we will work with any number of voters of the form 2x, and consider only
what is observed by an outsider. We will study more general cases later on (sections 5, 6)

2.1 Implementation

3. Shuffle all
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To begin shuffling, let's take the keys k0...k7 in pairs, and apply a butterfly to each of those

pairs. In the diagram the keys we started with are at the leftmost column, and the new
keys are in the next.

For this first step, we get the butterflies input pairs:
(k0, k1), (k2, k3), (k4, k5), (k6, k7)

Keys are now shuffled in groups of two. For the second step, we will take those groups of
size 2 in pairs and shuffle them together: the zeroth key of one group with the zeroth of
the other, the first key of one group with the first of the other.

In our example, we take keys in groups of size 2:
(k1

0, k1
1), (k1

2, k1
3), (k1

4, k1
5), (k1

6, k1
7)

And from those groups we get the butterflies input pairs:
(k1

0, k1
2), (k1

1, k1
3), (k1

4, k1
6), (k1

5, k1
7)

As usual, each butterfly takes two input keys k1
a, k1

b and produces a new pair k2
a, k2

b signed

by the input keys.

Let's not worry for now about how nodes communicate to compute
the  butterflies.  We  will  study  a  general  method  in  detail  the  next
section.

After this second step, each resulting key can come from either of two groups, and each
key within that group can come from either of two positions. Meaning that each new key
is 1 out of 4 shuffled keys.

Now keys are shuffled in groups of four. For the third step we will take the groups of size
4 in pairs  and shuffle them together.  Since our example has only  8 keys,  this  means
shuffling one half of the keys with the other.

We will apply butterflies as usual: the zeroth key of a group with the zeroth of the other,
the first with the first, second with second, third with third.

In our example, we take keys in groups of size 4:
(k2

0, k2
1, k2

2, k2
3), (k2

4, k2
5, k2

6, k2
7)

And from those groups we get the butterflies input pairs:
(k2

0, k2
4), (k2

1, k2
5), (k2

2, k2
6), (k2

3, k2
7)

At this point all 8 keys are fully shuffled. Each key obtained from the third step is 1 out of 2
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distinct keys from the second. In turn, each of those keys is 1 out of 2 distinct keys from
the first, and each of those is 1 of 2 distinct keys from the start. In other words, after 3

steps each key is 1 out of 23=8 shuffled keys.

Clearly, we can extend the algorithm to larger power-of-two numbers of keys iterating this

same procedure:  at  each  step  s  make  groups  of  2s-1  consecutive  keys,  and  pick  the
corresponding keys of consecutive groups in pairs to apply butterflies.

Since each step doubles the number of keys shuffled together, we can shuffle n keys in
log2(n) steps.

We have a series of keys k0...k7, and persons a0...a7. For any given vote, we will compute

the probabilities that it belongs to each of the persons.

Before shuffling starts,  we know who owns each key.  We know for  example that  the
zeroth key belongs with certainty to the zeroth person, and does not belong to the others.

If we define a vector pkx as a list of probabilities that key kx belongs to each of the eight

persons, for the zeroth key before shuffling we have:

That same way, for all keys we have:

Let's compute now the probabilities after a butterfly. The butterfly takes two keys ka, kb as

input and gives as a result two new keys k'a, k'b. Since for an output key there is half the

chance that it corresponds to ka and half the chance that it corresponds to kb, we have:

In the first step, butterflies shuffle even and odd keys: (k0 with k1), (k2 with k3), (k4 with k5),

(k6 with k7). Using the equations above we get:

3.1 Probabilities
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Next, the second step shuffles keys that are two positions apart: (k1
0 with k1

2), (k1
1 with k1

3),

(k1
4 with k1

6), (k1
5 with k1

7). We get:

Finally, the last step shuffles the first half with the second: (k2
0 with k2

4), (k2
1 with k2

5), (k2
2 with

k2
6), (k2

3 with k2
7), making the probabilities the same for any key and any person:

Shuffling any number 2x of keys result in the same probability value distributed across all
positions. In other words, it is just as likely that any key belongs to any person.

When we have a key we want to shuffle, we need to pair it up with other keys to apply
butterflies. We need to compute the positions of those other keys.

We already know that a set of n keys require log2 (n) shuffle steps.

3.2 Finding butterfly pairs
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And we know that at step s keys are combined in groups of size 2s-1, meaning our key ks
a

lies within group ⎣a/2s-1⎦.

If our key is in an even group, our butterfly pair is in the next (odd) group. Instead, if it is in
an odd group, our pair is in the previous (even) group.

We also know the other key is placed at the same position within its group. That is, the key

is 2s-1 positions apart from ours.

Summing up, at step s we have a key ks
a, and we need to find its butterfly pair ks

b.  The

value of b is:

We can write this as (Python) code:

So far we have learned how to shuffle keys. Still, shuffling requires a method to secretly
exchange keys and signatures. We need to devise that method.

Imagine an attacker able to observe all internet connections and all information flowing
through the network. If  keys and signatures are broadcasted in the clear, the attacker
could observe those messages coming from an ip, and link persons with their shuffled
keys.

We need a confidential way to broadcast information that is robust even against a see-it-
all attacker.

A common method to send anonymous information over a network is onion routing  [2].
We will describe it briefly. Imagine a set of persons a, b, c, d. Each has a known encryption
key any other can use to send a confidential message. Then, imagine that a wants to send
an  anonymous  message  to  d.  Node  a  will  chose  a  path  at  random,  in  this  example
a→b→c→d. Node a will then encrypt the message using the keys from the path in reverse
order (d, c, b), and append instructions for each node, so that each one knows who to
send the message next.

Node a encrypts the message and sends it through the path:

Node a starts by sending the message to b.
Node b then removes a layer of encryption and finds instructions to send it to c.
Node  c  receives  the  message,  removes  another  encryption  layer,  and  finds
instructions to send it to d.
Node d removes the final encryption layer to discover the original message.

Supposedly, node b only knowns an encrypted message traveled from a to c, node c that

4. Routing

4.1 Background: onion routing
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an encrypted message traveled from b to d, while node d is the only (apart from a) that
knows the unencrypted message and only knows it came through c.

The problem

Consider the see-it-all attacker in this scenario. The attacker can observe an encrypted
message going from a to b, followed by a message from b to c, and then by message from
c to d. By relating the messages and their timing, the attacker can deanonymize the full
path to discover it was a who send a message to d [3].

This section introduces a variant of onion routing to solve this problem. The aim is to
introduce  ambiguity  against  a  see-it-all  attacker,  and  internal  randomness  to  prevent
malicious participants from deciding upon the paths taken by others.

Imagine two persons Albert and Barbara (a and b in the diagram) that want to send some
messages. In onion routing each would chose a random path. Let's make this the shortest
possible for this purpose. In the illustration Albert picks the path a→c→e and Barbara the
path b→d→f

In  the  shuffled  variant,  both  paths  share  and  intermediate  node  c  (Constantine),
predefined to the network. There are two options only: either Albert communicates to e
and Barbara to f, or destinations are swapped.

The order of the paths is known to Albert, Barbara and Constantine. The channel is in
charge  of  routing  messages,  and  demonstrating  the  order  is  truly  random.  Here  by
random we mean unpredictable to everyone, including the three of them.

First the three collaborate to discover the random path, as we will see next. Once the path
is settled, Albert and Barbara send their messages the same way they would in onion
routing. Imagine, for example the paths are:

a→c→f
b→c→e

Constantine waits for Albert's and Barbara's encrypted messages. Once both arrive, he
removes the outer layer of encryption, places the messages in order, and publishes them:
one message encrypted for e, the other for f.

The channel introduces ambiguity against the see-it-all attacker. An observer cannot tell
whether Albert communicates to e and Barbara to f, or destinations are swapped [4].

The randomness in the path adds protection against internal attackers. This is important
since the path of one sender is dependent on the path of the other. Making paths random

4.2 Shuffled routing
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(not chosen at will) ensures that no participant can decide upon the path of others.

By including many channels we can introduce ambiguity and randomness to the entire
network. But first, there are condition to consider in more detail: randomization, timing,
encryption, size, and message authentication.

Randomization

That random order in the path is generated from two numbers: one picked by Albert, the
other by Barbara. They commit to their picks, before revealing them. The channel feeds
the numbers to a pseudorandom function (PRF) to discover the order.

Albert picks a random number ra. Barbara picks rb.1. 
They commit to those number without revealing them. As a commitment, Albert
and Barbara send a proof of the numbers to the channel (for example, a hash). The
channel makes the commitments public.

2. 

As soon as each sees the other commitment, they can disclose ra and rb  to the
channel.

3. 

The channel hashes ra and rb and compares the result against the commitments.4. 

At this point we have two random numbers ra and rb, each generated independently of
the other.

The channel feeds ra and rb to the PRF to generate a new pair, ra' and rb':
ra' = PRF (ra || rb || 0)
rb' = PRF (ra || rb || 1)

5. 

If ra'  is smaller, Albert takes the top outputs. If rb'  is the smallest one, Barbara
takes it instead:

ra' < rb': top to top, bottom to bottom
ra' > rb': top to bottom, bottom to top

6. 

The channel proves the order by disclosing ra and rb:
ra encrypted for Barbara,
rb encrypted for Albert.

7. 

Timing

If one message would travel first (say from a to e) and the other second (b to f) their timing
would  reveal  their  paths.  To  avoid  revealing  any  information  from  their  timings,  the
channel

receives a message (from either a or b),
waits for the other,
shuffles them, and only then publishes the two together.

Encryption

Given a public key it is not possible to decrypt a message, yet one can take any message
and encrypt it. If encryption is done naively, one could take the decrypted messages the
channel outputs and re-encrypt them to reveal the shuffling order. For the channel to be
secure, it must be impossible to recreate the same encrypted messages.

To encrypt a message g for someone c we encrypt it with a random key r, then encrypt r
using c's public key. We send both encrypted g and encrypted r.

Then c decrypts r, uses r to decrypt the message g, and discards r. Since r is unknown, re-
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encrypting the same way is not possible.

Size

Additionally,  messages must  not  be distinguishable by their  sizes.  All  communications
must be routed in packets of a fixed size.

Message authentication

To avoid messages from being replaced they need to be authenticated.

After committing to the shuffling order, the first messages sent by nodes a and b will be a
pair  of  shuffled public  keys .  The keys must used to authenticate every message that
follows.

From that point, each Albert and Barbara send a series of messages:
g0, g1, g2, g3...

h0, h1, h2, h3...

For each message, they will include its index, sign the message (with kg or kh), and encrypt

it for the channel.

The channel  will  broadcast  pairs  of  messages with the correct  matching indexes,  one
signed by kg, the other by kh, and the pair signed by the channel.

As an additional step, nodes could avoid the chance of messages reaching one destination
and not the other:

The two receiving nodes (e and f) can communicate with each other, so that they can
share the messages as soon as any of them receives it.
Messages can be included in a decentralized public database, making them available
to any node to see.

Now we have the basics, it is time to combine the shuffle algorithm with routing.

We will  assign a channel to each butterfly and put voters in charge, so that paths are
hidden from the see-it-all attacker. The number of channels needed for each step is half
the number of voters. We assign even voters to odd steps (steps 1 and 3), and odd voters
to even steps (step 2).

4.3 Implementation
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Start

To start, voters must broadcast the encryption keys needed for routing.

Each person ax generates an encryption key ex, signs it with key kx, and makes it public.

Every time a message goes through a channel handled by ax it will be encrypted with ex.

Step 1

Let's image we are voter a3. In this first step we shuffle our key k3 with key k2, owned by

a2. Here, voter a2 is also in charge of the channel.

Remember routing a butterfly involves four tasks:

committing to random numbers,
disclosing the random numbers to find out the shuffling order,
broadcasting  the  new  keys  (public  key  k'  and  its  associated  encryption  key  e'  to
receive messages, with e' signed by k'),
and signing the pair of shuffled keys.

We will use the notation "m ⊗ e,k" to denote a message m encrypted with e and signed
with k. In the example, we broadcast messages m signed with our key k3 and encrypted

for a2 (using e2). We have:

m ⊗ e2,k3

We start  by  send  a  message  m with  the  commitment.  Voter  a2  generates  the  other

commitment. Since she is the channel, she removes the outer layer of encryption and
makes both public.

As soon as we see the commitments, we can send a message with the random number
and our new key. Channel a2 broadcasts the pair of shuffled keys in the clear. The random

numbers  that  determine  the  shuffling  order,  in  contrast,  must  be  encrypted.  She
broadcast her random number encrypted for us to see, using e2.

All left is to complete the tasks is sending a message with the signature of the shuffled
pair.

Step 2

Once every voter finishes the first step, we can begin with the next. Our last key k2
2 ended

at the top position in the previous butterfly, and is now headed for a1.
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At this step, we shuffle k1
2 with k1

0. Our messages must go through two channels: a2, and

a0.

We encrypt messages n reverse order,  so that channel a0 removes the outer  layer of

encryption first, and a2 later. Encrypting and signing a message m we get:

(m ⊗ e1,k1
2) ⊗ e2,k3

As before, we route the messages to complete the four tasks in the butterfly.

Notice that at this step we (a3) are in charge of a channel: that means

we are in charge of removing the outer layer of encryption, shuffling
information and sending it its way.

Step 3

At step 2, our last key k2
2 ended at the bottom of the butterfly in a path that leads to

channel a4.

For the third and last step we need to route our messages through three channels: a2, a1,

and a4. If we encrypt and sign our messages m in reverse order, we get:

((m ⊗ e4,k2
2) ⊗ e1,k1

2) ⊗ e2,k3

We are now ready to route the messages for our last butterfly.

And that is all. We started with key k3  and discovered a routing path that leads to the

shuffled key k3
6.
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We have only considered the number of voters to be a power of 2. Now we will learn what
happens for an arbitrary number.

In order to perform all butterflies in the first step, n must must be a multiple of 2 (see
section 3). The second steps requires n to be a multiple of 4. For the third, n must be a

multiple of 8. Generally, all butterflies pairs exist if n is a multiple of 2step. If not, at least
one of the keys would find that its pair is out of range.

For an arbitrary number of voters n, we will compute pairs as usual, and implement all
butterflies that are possible: that is, whenever a pair exists within the range 0...n-1.  For
example, for n=7 we get ⎡log2 n⎤= 3 steps, and the following butterfly pairs:

step 1: (0,1), (2,3), (4,5) - 6 remains, since its pair (7) is out of range
step 2: (0,2), (1,3), (4,6) - 5 remains
step 3: (0,4), (1,5), (2,6) - 3 remains

Since some keys might not participate in all of the steps, they would end up shuffled only
in part. These keys will have a probability a bit higher than ideal, but we will see in the
computed probabilities below that the error is tolerable.

There is still a scenario we need to consider carefully. For some n (eg, n=2x+1) it is possible
for a key to remain unshuffled on most step. The illustration shows an example with n=9.
Here, rows from top to bottom indicate steps, and lines connect butterfly pairs. SInce 9 is
neither a power of 2, 4, nor 8, the last key remains entirely unshuffled.

We want to prevent situations like this. To achieve that, we will shift the positions while

computing pairs, differently for each step. We will shift keys 2, 4, 8...2step positions, so that
those keys that remain unshuffled are located at different groups of butterflies across
steps.

Generally, while for a number of voters n at a given step, each position i will be shifted to

(i + 2step) mod n

The  following  plot  shows  the  worst-case  probabilities  after  shifting  and  shuffling  for
n=1...128 (see below a link to the code used to compute the probabilities). The dark curve

5. Arbitrary number of voters
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shows the ideal probability 1/n (the smallest possible) that a given key belongs to a given
voter. The lighter curve shows the worst-case (highest) computed probabilities. The lighter

curve only matches the ideal value when n is of the form 2x. For other cases the curve is
not an exact match, but it approximates the ideal curve with a decreasing error as n gets
larger.

We will learn next that we can improve the approximation as much as we want by running
multiple rounds of the shuffling algorithm.

So far we have consider the perspective of an outsider, and assumed all participants to be
honest. It is time now to consider what information voters know, and that some of them
might be malicious.

We'll see that those cases results in a shuffle that is imperfect that we can improve as
much as we like by running many rounds of the algorithm.

Imagine a voter that wants to compute the probability that keys belong to each other
voter. Probabilities after a butterfly are already known from section 3.1, but that equation
applies to an outsider only. We now need to compute probabilities considering the point
of view of those taking part in the shuffle.

Three persons participate in a butterfly: the owners of two the keys, and the channel. All
three know the order within the butterfly. That means, for them the probabilities remain
the same.

From that  principles,  the probabilities  can be computed for  what  a  voter  knows.  Like
everybody else,  a voter starts knowing the owner of  each key with certainty,  and can
compute the probability vectors after a butterfly as follows:

6. Rounds

6.1 Missing butterflies
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If the voter is neither the a owner of an input key nor the channel, the equation in
section 3.1 applies.
If the voter either owns one of the two keys or is the channel, probabilities are left
unchanged.

For example, voter a0 can obtain the following probabilities after a full shuffle:

A  voter  knows in  all  cases  her  own key  with  certainty,  and will  of  course  know with
certainty her key does not belong to any other (colored). And ideally, that voter should
know nothing about other keys. That means, for n  other voters she should relate any
other key to a any other voter with probability 1/n.

Instead, we can observe that the voter is certain that some keys do not belong to some
voters, which in turn means some (key, voter) pairs have higher probabilities. Ideally,the
voter should link a key to a voters with probability 1/7≈0.14, but we see that in the worst
cases the voter can relate some with a higher probability of 1/4=0.25.

This same situation applies to malicious participants as a more general case.

Let's suppose a scenario with a group of m attackers, and n honest participants. Attackers
act like a single front, sharing with each other information they should keep secret.

As a second scenario, imagine attackers don't comply with their tasks. Imagine that their is
a timeout for each butterfly. If an attacker is one of the three persons in a butterfly, that
butterfly never gets computed, and needs to be bypassed.

Since in both scenarios attackers are not truly participating in the shuffle, the probabilities
are updated according to the equation (3.1) if neither of the participants of a butterfly is
an attacker, and remain unchanged otherwise.

Then, for a butterfly taking two keys with probability vectors pa  and pb,  involving two
owners a and b, and a channel c, the output probabilities are:

,
,

,

This scenarios will result in probabilities deviating from what is ideal. We will see next how
probabilities improve by running multiple rounds.
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Suppose you are holding a deck of cards in your hands and you shuffle it. If the process
were perfectly random, every card would be just as likely to end up at any position. But
that is unlikely to be the case in practice. The shuffle is an imperfect process, only random
to a certain degree. Still, you can make the order more and more random by shuffling
multiple times [5][6].

Let's build a model to understand what goes on during multiple rounds of shuffling. In
this model, at each round, a card can either stay in place or move to a few other random
positions. Let's also say that those random positions vary between rounds.

In the example, the yellow card can stay at the first position or move to the third position
after a round.

Multiple rounds can be though as a random walk where a card moves to one out of a set
of  possible  places.  In  the  example,  it  takes  four  rounds  for  the  path  to  reach  every
possible outcome.

Since  at  each  round  a  card  can  either  stay  or  move  to  some  random  positions,  the
possible outcomes can only grow with more rounds. Therefore, making every outcome
possible is a matter of performing a sufficient number of rounds.

Implementation

Let's design the rounds of the algorithm to behave like the model. The two already agree
in the sense that a key (or card) can either stay in place or move to random positions in a
single shuffle. The next requirement is for those positions to differ across rounds, which is
not met yet.

The  final  positions  in  the  algorithm come from two sources:  the  butterflies,  that  are
already ensured to be random (4.2); and the positions of the keys at the start. To make
sure the final positions vary between rounds, we can randomize initial positions before a
round starts. This ensures butterflies are not performed between the same pairs of voters
every time.

At the beginning of each round, voters commit to secret random rn values as in 4.2. Once

all commitments are public, they reveal their values. To compute the ordering, we hash all
of the values to obtain a value h.

hn = hash (r0 || r1 || ...)

For each key kn we compute a new value

r'n = hash (h || r)

6.2 Probabilities after many shuffles
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We place all keys ordered according to r'n, and perform a new shuffle round. With each

new round, we reorder the keys and shuffle them again. The paths in each round must
extend the paths of the ones before. This is important. Otherwise, restarting from scratch
would reconnect keys with the persons who own them, undoing all previous shuffles.

Calculations

The probabilities after multiple rounds are easier to approximate empirically, using the
equations in 6.1.

Let's say there are n+m voters, n honest ones and m attackers. Between the voters, m
random ones are picked to become attackers, then probabilities are computed as usual.

Attackers will always know the m keys they own, and shouldn't know the owner of any
honest key. What we are interested in is the worst-case probability. That is, the best match
(highest probability) they can make between one of the n honest voters and on of their n
keys.

The plot shows the worst expected probabilities for n+m=100 total voters, and different
percentages of attackers: 0% (cyan), 10%, 20%, 30%, 40%, and 60% (magenta). A link to the
code used in this calculation is available below.

Lower is better: a probability of 1 means fully unshuffled, while a probability of 1/n means
fully shuffled.

As expected, all probabilities tend to the ideal value 1/n. It just takes more rounds as the
number of attackers gets large relative to the number of honest voters.

At  this  point  keys  are  shuffled  and  we  know  how  to  send  information  through  the
network. It is time to cast our vote. Let's see how.

Appendix A: voting
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As a thought experiment, imagine we write our vote, sign it with our shuffle key, and send
it.  The vote travels  though the channels.  The last  channel  is  the first  to  see the vote
decrypted. Imagine a malicious person in charge: he could reveal the vote if he agrees,
and withhold it if he dislikes it.

We need a way of casting and counting votes that does not allow anyone to censor them
by looking at their content.

In this section, we'll solve the problem with a game of boxes. We will describe the rules of
the game first, and its cryptographic implementation later.

In the game there are yellow and red boxes, and two candidates, named Yellow and Red.
Only Yellow knows how to open yellow boxes.  And only Red knows how to open red
boxes. A vote consists of an unknown number of boxes, one inside the other, alternating
colors.

Imaging the box outside is red. Red starts, and opens the box to find a yellow box inside. It
is  Yellow's  turn  now,  who  open  that  yellow  box  to  find  a  red  one  inside.  The  two
candidates keep taking turns, opening red and yellow boxes. At some point, one of them
finds a box of neither of the two colors, impossible to open. If a candidate fails to open
the box on its turn, the other wins.

By looking at a box from the outside there is no way of telling who would win the vote.
Both candidates must collaborate to discover. A box can lead to two possible outcomes. In
the first, the candidate opens it and continues playing with a 50% chance of winning and a
50% chance of losing. In the second, the box is not opened, either because the candidate
can't (loses) or won't (quits), resulting in the other winning. It is only after taking turns until
the end of the game that we discover the winner.

Now that we understand the rules, we know how to generate a vote. Let's say we prefer
Yellow over Red. We know that in order to win, Yellow must be the last to open a box. We
create an unopenable box, and wrap it with a yellow box. Then, we put the yellow box
inside  a  red  one,  into  a  yellow one  after  that.  We keep  alternating  colors  a  random
number of times, on the only condition that the last box is of a predetermined color (let's
say red) common to all votes.

Once the vote is ready, we sign it  with our shuffled key, and broadcast it  via shuffled
routing.

Election

Let's go through an election to visualize the game at work. Voters (5 in the example) pick
their favorite candidate (Red or Yellow) and broadcast their votes.

From the outside, all boxes are of a same predefined color (red in the example). Red starts
opening boxes, shows the content of the 5 boxes and signs it.  It  is Yellow's turn now.

A.1 Boxes
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Yellow is able to open 4 only, losing the other. Yellow shows the content of those 4 boxes,
signed. The two keep taking turns opening some, losing some, until there are no more left
to open.

Through the game, Red has lost 3 boxes while Yellow lost 2. Put in other words, Yellow
won 3 boxes and Red 2, making Yellow the winner of the election.

Moving  from  two  to  more  candidates  things  get  slightly  different.  In  case  of  three
candidates or more, one of them losing or quiting does not reveal which of the remaining
is the winner. Winning, losing and quitting demand some disambiguation.

Let's start by constructing a vote. Imagine there are three candidates to choose from:
Blue, Red, and Yellow. And we want Yellow to win.

In this case, we will state explicitly the winner of our vote. We will generate a message (t in

the illustration) stating that we pick Yellow, and put the message inside a yellow box. We
want the winner to be the last to open the box. Otherwise, if one candidate opens a box
and discovers the result picking other as the winner, he might refuse to show that result.

Next, we will  put that yellow box inside a box of a random color, then inside another
random color, on the condition that we don't pick the same color consecutively. We will
repeat this process a random number of times, making sure each color is picked at list
once. Will not enforce any particular color for the outer box.

When a candidate opens a box, it can result in two possibilities:

the candidate finds the result and wins that vote,
or the candidate finds another box and continues playing with the same chance of
winning as any other candidate.

As another possibility, a candidate might not open the box. That could happen for two
reasons:

the candidate can open it but refuses (quits),
or the candidate cannot open it because the box is unopenable (the vote is invalid
and counts as null).

We need to disambiguate these last two possibilities. To do so, let's describe what creating
and opening boxes means in more detail.

A.2 Boxes, and multiple candidates
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Let's imagine someone wants to create a red box, only openable by Red. He creates a red
lock, and a red key that opens that lock. Then he locks the box, encrypts the red key with
Red's public encryption key (so that only Red knows it), and signs the box (so that anyone
knows he created it).

Every time Red gets a valid red box, she can open it with the red key. In cases where the
box is invalid (unopenable),  Red must prove it.  Remember no one knows the red key,
since it is encrypted. But if Red reveals the red key, we can in fact check whether it's the
same she received, and see for ourselves if  the vote is invalid: we cannot decrypt the
message, but if we receive the unencrypted message we can re-encrypt it and check if it
matches.

To sum up, when faced with of box, a candidate must either open the box and show its
content, or prove it is unopenable by disclosing the key. Failing to comply implies quitting
the election.

Election

Let's see an election in action. There are too many voting systems to consider, but we will
study  one  example.  The  same  principles  can  be  applied  to  implement  other  voting
systems.

Let's define an example with five voters v0...v4 and three candidates Red, Blue, and Yellow.

In the election, each voter assigns a score to each of the candidates:

+1 for the preferred candidates,
-1 for the disliked candidates,
and 0* if indifferent about a candidate.

The candidate that is preferred by the most voters (the one with the higher score) wins
the election.

Let's imagine we are voter v2, we like Yellow and Blue, and we dislike Red. We will secretly

write our preferences in a tuple: Blue, Red, Yellow = (+1, -1, +1)

In the same way, every other voters will secretly score the candidates:

v0 (+1, +1, 0)

v1 (0, -1, +1)

v2 (+1, -1, +1)

v3 (0, +1, -1)

v4 (-1, 1, 0)

To create the vote, we will wrap the tuple with a box. We will pick a color corresponding to
a candidate with the highest score. Since we gave a +1 to both Blue and Yellow, we can
pick either. In the example, we wrap the result in a blue box. We place that box inside
boxes of random colors as usual.

Once all voters broadcast their votes, candidates can start taking turns opening them.

In case one candidate quits  (refuses to  either  open a box or  prove it  is  unopenable)
ththeat candidate is removed from the election, along with any other candidate that no
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longer holds a change to win. Once removed, all voters cast their votes again between the
remaining candidates. Until one wins.

To open boxes, candidates take turns in any predefined color sequence. Let that be Blue,
Red, Yellow, B, R, Y, B, R, Y...

Blue starts. There is only one blue box. Blue opens it, and finds a red box inside.
It's Red's turn now, and there are 3 red boxes. Red opens them and finds 2 yellow, 1
blue.
Yellow comes next. There are 4 yellow boxes now. Inside, 3 turn up blue, the other
red.
It's Blue's turn again, and there are 4 blue boxes. After opening them, Blue finds 1
vote (+1,-1,+1), 2 red boxes, and 1 yellow.
...

Blue, Red, and Yellow keep taking turns until all tuples are found. Eventually, the reveal
the five votes containing the scores for Blue, Red, Yellow: (+1,+1,0),  (0,-1,+1),  (+1,-1,+1),
(0,+1,-1), and (-1,-1,+1).

Now that we have all votes, we can sum the scores each candidate received:

Blue adds up to 1 point.
Red adds up to -1 points.
Yellow adds up to 2 points.

That makes Yellow the preferred candidate and the winner of the election.
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Now  we  have  established  the  rules  of  the  game,  let's  move  to  a  cryptographic
implementation.

Building boxes

A vote consists of a set of boxes one inside the other. As candidates open those boxes,
they need to show what it is inside and prove the content is authentic. We can implement
this using digital signatures.

Let the outer box be a public key b0.  And let be the content of the box be a message

signed by that key, so that anyone can verify its authenticity. Since the content of a box is
typically another box, that signed message needs to be another public key bx. We have,

starting from the outside, the set of boxes:

box 0: public key b0

box 1: public key b1 signed by b0

box 2: public key b2 signed by b1

...

An efficient way to authenticate messages known in advance is by using hash functions. A
hash is a type of one-way function: if we feed the function with an input value x we can
compute the output value y, but if we only know the output value y  it is impossible to
compute a valid input x (the cost and time of the computations exceed what is physically
possible).

Suppose we want to authenticate a message x.  We will  feed it to the hash function to
obtain a value y:
y = hash (x)

The value y will be the public key. Every time someone wants to authenticate message x,
he will feed it to the hash function and check that the result matches y,

Moving to the boxes: we generate the inner box by picking a big number bx at random (b2

in the illustration), and apply the hash function multiple times to obtain boxes bx-1, bx-2...

to the outer box b0. Each value bx  behaves both as a signed message proving it is the

content of the box outside, and as the public key of the box inside.

Colors

To serve as votes boxes must have colors. We will append a value cx indicating its color to

each bx value. In the inner box, that value will be the actual result of the vote. We will feed

all values of a box (c, b) to the hash function to obtain the next b value.

A.3 Implementation
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In turn, each box is authenticated by feeding all its values (c, b) to the hash function and
checking that the result matches the b  value of the box outside (the one above in the
diagram).

Secrecy

The colors and the result must remain secret, and be revealed one at a time as boxes are
opened. That means each box must only be read by a specific candidate, and even that
candidate shloud only know its content after the box outside is revealed.

First of all, we will append to each intermediate box a random big number er, and feed it

to the hash function together with the rest of the values.

We will later use each ex to encrypt values in the box inside (cx+1, bx+1, ex+1...). Value ex will

be used as a symmetric key (meaning the same key is used to encrypt and decrypt). That
way, the content of each box can only be decrypted once the box outside is revealed.

Notice we might drop e  values and use b  values as encryption keys
instead. We introduced e to keep the content of each box secret until
the outer box is revealed, and that condition is satisfied by encryption
alone. But in doing so the hashes and encryption would not longer be
independent,  and  their  properties  would  need  to  be  considered
carefully.

Finally, each box is targeted to a specific candidate. Candidates have public encryption
keys, and we need to encrypt each box using the corresponding key.

In our example, the outer box (c0=red, b0) is red, meaning that its content (box a1=yellow,

b1, e1) must be encrypted with Red's key.

Inside the red box is a yellow one, meaning that the next box (c2=blue, b2, e2)  must be

encrypted with Yellow's key.

And since that last box (c2=blue, b2, e2) is blue, the box inside holding the result (c3=[+1,-
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1,+1], b3) must be encrypted with Blue's key.

Generally, the color ax of a box determines the target candidate of the box inside (cx+1,

bx+1, ex+1).

To ensure all information in a box remains encrypted till the outer box
is revealed, it is better to encrypt the box with the candidate's key first,
and with the e value after.

Padding

By looking at the vote, it shouldn't be possible to tell the number of boxes are inside. We
need to append a random padding to the boxes values, so that all votes have a constant
size.

Authentication

Finally, the full vote must be signed by the shuffled public key of the voter.

In short, at every election two sets of keys should be shuffled: one to cast current votes,
and other to prepare the next election.

In this sections, we will focus in optimizing computations. Rather than one step at a time,
we can compute multiple steps together by precomputing the different possible routes a
message could take.

Let's draw a tree with the possible paths a key can take from the start, a tree of any depth
we like. In the illustration, values cn denote the channels in charge of each butterfly.

The  voter  routes  information  of  the  first  butterfly  to  channel  c0.  The  output  of  that

butterfly fork into two possible paths, which fork again.

Rather than waiting for each butterfly to reveal the next path, we can route one different
value for each possible path. And as each butterfly completes, the channels can discard
values from the paths not taken.

Implementation

Let's recall the tasks needed for each butterfly:

Commit to a random value that helps choose the shuffling order.1. 

A.4 Vote, and vote again

Appendix B: speedup
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Reveal that random value.2. 
Send a new public key.3. 
Send a signature for the pair of shuffled keys.4. 

Task 1, part a: sending the message

The first task is the commitment. We need to commit to an unique random value mn for

each channel cn. We also include encryption keys in this first messages, so that channels

can communicate things to us.

Let en  be the public  key to encrypt a message for cn:  We start  by  the last  messages,

encrypting each for its corresponding channel:

m3 ⊗ e3

m4 ⊗ e4

m5 ⊗ e5

m6 ⊗ e6

The first pair is routed through c1, and the other thorough c2, ao we append the messages

meant for c1 and c2 and encrypt:

(m1 || m3 ⊗ e3 || m4 ⊗ e4) ⊗ e1

(m2 || m5 ⊗ e5 || m6 ⊗ e6) ⊗ e2

Finally, the whole is routed through channel c0. So we append the message and encrypt it.

We complete the full packet by adding our signature. The message is now ready:

(m0 ||

(m1 || m3 ⊗ e3 || m4 ⊗ e4) ⊗ e1 ||

(m2 || m5 ⊗ e5 || m6 ⊗ e6) ⊗ e2) ⊗ e1kn

Task 1, part b.: routing the message

Once we send the message, routing starts at channel c0.  Channel c0  receives two two

packets with messages, ours and a one from other voter. After receiving them, c0

verifies and drops the signatures,
removes the outer layer of encryption on each packet,
publish the two commitments sign only by c0,

and sends the rest of the packets (signed also by c0) to the next channels.

Every other channel does the same until messages are fully delivered.

Tasks 2 and 3

We can now move to the next tasks: revealing the random shuffle value and sending keys
come next. The two can be done at once.

We generate a different key for each possible path, append the shuffle value, and prepare
the message as before.

The first channel c0 receives two messages, one is ours. The channels:

checks  the  random  values  against  the  commitments  and  computes  the  shuffling

25



order,
publish the shuffle values (each encrypted for the owner of the other),
shuffles the pair of keys and makes it public,
discards the unused branches,
and forwards the used branches (in the shuffled order) to the next channel.

Every next channel  does the same. At  the end, each channel  publishes the encrypted
random values, and makes public the pair of shuffled keys.

Task 4

All left is to sign the pairs of shuffled keys. First we verify our keys are there, and we verify
the shuffling order. Next, we route the signatures. We already know the full path, so this
last message is send for one path only.

If still are steps remaining, we repeat the tasks. We can merge the following task 1 with
this one.

If a voting system relies on a central authority, democracy can elect an attacker who stops
democracy.  A  malicious  authority  can  alter  results,  and  even  prevent  people  from
participating in future elections.

I have introduced a voting algorithm that is distributed, and does not rely on a central
authority to perform the election itself nor count the votes. An authority is still required at
the beginning, to inscribe voters and their public keys. But once that process has started,
people can emit  votes in  any election in a purely  peer-to-peer basis,  thus eliminating
many ways in which an authority could impede future elections.

The algorithm relies on minimal assumptions: its security depends only on the existence
of secure digital signatures, a secure encryption function, a pseudorandom function, and
any public network for communication. As long of persons hold their private keys, and can
communicate over any network, it  is possible for them to cast their votes at any time
without permission.

This small set of dependencies provides resilience on the long term. In the event that a
particular signature or encryption function gets broken, it is only a matter of replacing
that broken function with a new, secure one.

The algorithm is robust, in the sense that the presence of attackers only results in votes
being less than perfectly shuffled, while that imperfect shuffle can be improved simply by
running more round of the algorithm.

Python code shloud be available at:
https://jotasapiens.com/research
https://jota.tuxfamily.org

shuffle_v1.zip

Conclusion

Source code
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SHA256: 0f38ca952150fe0c44422eb6e4aaef8c8f3e0be291edf686019566b68b87a3c7
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