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This paper presents an approach to modelling passive forever churn (i.e., the probability that a
user never returns to a game that does not require them to cancel it). The approach is based
on parametric mixture models (Weibull, Gamma, and Log-normal) for return times. The model
and data are inverted using Bayesian methods (MCMC and DIC) to get parameter estimates,
uncertainties, as well as determine the return time distribution for retained users. The inversion
scheme is tested on three groups of simulated data sets and one observed data set. The simulated
data are generated with each of the parametric models. Each data set is censored to six time
horizons, creating 18 data sets. All data sets are inverted with all three parametric models and the
DIC is used to select the return time distribution. For all data sets the true return time distribution
(i.e., the one that is used to simulate the data) has the best DIC value; for 16 inversions the true
return time distribution is found to be significantly better than the other options. For the observed
data set inversion, the scheme is able to accurately estimate the % of users that did return (before
the game transitioned into open beta) to given 14 days of observations.

PACS numbers:

I. Free to play games and Passive Churn

Free to play gaming is a large industry world wide. In
free to play gaming it is common for games to be thought
of as a service instead of a product. As with many ser-
vices reducing churn is valuable. In free to play gaming
defining churn can be di�cult as there is is no defini-
tive action taken by users to indicate they are churning,
instead users simply stop returning to the game; i.e., it
is never clear if a user has actually churned or simply
reduced their login velocity. This passive churn (PC) is
therefor more di�cult to model than active churn (i.e., a
user notifies a service of their cancellation).

A popular strategy to define churn is to give users of
a product a specific amount of time to return and define
all users that have not returned in that time as having
churned.1 While this approach has obvious value, it can
be improved upon as it discards a lot of information. In
particular, it does not consider the rate of user return or
the returns after the time interval. In-addition, the fixed
interval method requires that the full time interval must
be observed before conclusions on churn can be made.

More recently2,3 churn has been modelled by predict-
ing the time between player actions using survival anal-
ysis. Note that the time until churn is not modelled
instead the survival analysis is used to model the time
between a users exiting a service as part of their normal
flow and returning to it again (e.g., log out of a game and
log in again). Thus this method is used to model user
activity velocity. Intuitively as user activity velocity in-
creases user churn decreases and visa versa.

Here a Bayesian survival analysis approach is proposed
and tested on both simulated and observed data. The
proposed approach consists of modelling the inter event
time using parametric mixture models; parameters are
estimated using Markov chain Monte Carlo4–6 and pa-
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TABLE I. Sample Survival Time Data (d)

Observation Number Time (t) Status (e)
1 1.7 1
2 21.2 0
... ... ...
n 3.2 1

rameterization selection is conducted using the deviance
information criterion.4,5

II. Background theory

This section briefly reviews the relevant parts of survival
analysis7 and Bayesian inversion4,5. In particular the
goal is to show how an observed set of player activity
data can be used to generate a likelihood function, how
that likelihood function can be augmented with prior in-
formation to create a posterior distribution, and finally
how inference can be conducted using that posterior dis-
tribution.
Survival analysis is the study of time to a specified

event.7 Here the time to event is the time between lo-
gins (The time between last log out and the next login)
for returning users sessions or the time between last log
out and now (the time the data is harvested) for churned
users sessions. The event time is denoted t. In addition
to the event time, the event status (e) is also recorded.
The status indicates wether a user session is the last ob-
served (i.e., the user has not returned). The status is
either a 1 or 0; i.e., ei = 1 indicates that the ith ob-
servation has returned at the recored time and ei = 0
indicates that the ith observation has not yet returned.
Collectively t and e are the data (d). For this method
d should be of the form of Tab. I; i.e., each observation
(1 to n ) should have a time and an event. Thus all data
is utilized no mater how recently a player’s most recent
session ended. More recent unreturned log outs simply
provide less information that older ones.
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To define the probability for a set survival data it is
helpful to consider returning and non returning observa-
tions separately. Staring with the observed return times
(i.e., d where e is 1). Let f(t) be the distribution of
user return times; i.e., f(t = t?) is the probability that
a user session has exactly t? time between log out and
the start of the next session. For the unreturned the
users sessions note that they are considered censored not
churned; this is because all that is know about unre-
turned users are that they have not yet returned not
that they will never return. The probability of observ-
ing a censored data point (i.e., one index d where e is
0) is S(t = t?) = 1 � F (t = t?) where S() is called
the survival function and F () is the cumulative density

function (i.e., F (t) =
R t
�1daf [a]). Thus the probability

of witnessing a censored observation at time t? is one
minus the probability witnessing it return by t? and is
S(t = t?) = 1�F (t = t?). There is still one more impor-
tant function to define before the probability of the data
set can be expressed; that is the hazard function (h[t]).
The hazard function is the instantaneous probability of
an event given that it has not yet occurred;7 i.e.,

h(t) =
f(t)

S(t)
= � d

dt
log[S(t)]. (1)

Thus for survival analysis with only right censored data
(as is the case here) the probability of a set of observa-
tions can be expressed as

P (d) = ⇧n
i=1S(ti)h(ti)

ei . (2)

If an observation is censored the probability of the obser-
vation is given by S(t) and if it is not censored it is given
by f(t).

Survival data, specifically the empirical survival func-
tion, is commonly visualized using Kaplan-Meier plots.7

Figure 1 shows a Kaplan-Meier of three simulated data
sets (their details are given in Sec. V). On Kaplan-Meier
plots the ”x” axis is normally time, and the ”y” axis is
the proportion of observations that have not yet had an
event. The steps indicate one or more events happening
at a time, the crosses show the times that observations
become censored.

In Bayesian inference, model parameters are consid-
ered random variables; let m represent an arbitrary
model. Using Bayes’ rule, posterior probability density
(PPD) can be written4–6

P (m|d) = ⇡(m)L(m)

Z , (3)

where ⇡(m) is the prior distribution of m, Z is the total
Bayesian evidence of the ensemble of models (i.e., the
probability of the data integrated and summed over all
possible parameter values and parameterizations), and
L(m) is the likelihood of the parameter vector (i.e., the
probability of the data given the model (L(m) = P [d]);
note that the likelihood is considered a function of m
as the observed data [d] are considered known when the
posterior distribution is evaluated).

The likelihood function contains all of the data infor-
mation in an inverse (model estimation) problem, how-
ever that is not all the information about a problem. The
prior distribution contains all the a priori information
about the inverse problem. For example previous obser-
vations of a product (or similar products) may show that
median return time is x days or it may be the case that
return times in excess of 365 days are e↵ectively equiva-
lent to return times of 3,650 days and therefore there is
no point in precise estimation of parameters above that
value. In either case it helpful to incorporate this prior in-
formation into a problem. Thus the posterior probability
distribution contains both data and prior information.
The posterior distributions used in this work are not

analytically tractable; so they must be numerically ap-
proximated. The approximation is conducted using
Markov chain Monte Carlo (MCMC).4–6 The MCMC
process is implemented with parallel tempering8 (PT)
and parameter rotation9. MCMC consists of taking a
random walk through the parameter space. At each step
of the random walk either the process will stand still (re-
peat the current location) or move to a new location.
The record of locations (including repeats) is used as an
approximation for the posterior distribution. The adop-
tion of PT means that a population of Markov chains are
sampled each at a di↵erent temperature (�). A tempered
Markov chain has the standard likelihood raised to the
power of 1/�; i.e., the tempered likelihood is L1/�(m).
Higher temperature chains are more likely to accept lower
likelihood models and lower temperature chains are less
likely. Consequently the higher temperature chains sam-
ple the posterior more broadly while the lower temper-
ature chains focus on higher probability spaces. The
chains periodically interact (swap temperatures); this is
done such that on average the lower temperature chains
are assigned higher likelihood models. Only samples from
the chain with a temperature of 1 are used to describe
the posterior distribution.
In more detail let m be the current Markov chain state

for a chain with sampling � temperature and Q(m0|m)
be the proposal distribution by which a new state m0 is
generated. The proposed model represents a perturba-
tion of the parameters of m. The proposed state m0 is
accepted with probability

a = min


1,

⇡(m0)

⇡(m)

L1/�(m0)

L1/�(m)

Q(m|m0)

Q(m0|m)

�
. (4)

The di↵erent chains of the population swap models pe-
riodically (here this event was triggered after the whole
population of chains makes a MCMC step with a proba-
bility of 0.25). Pairs of chains are selected at random; the
probability that two chains (i and j) swap temperature
is

a = min


1,

⇢
L(mi)

L(mj)

�1/�j�1/�i
�
. (5)

Only the steps from the chain with � = 1 are recorded.
Returning to the proposal distribution Q(m0|m), pa-

rameter rotation is incorporated into the sampling
scheme so that Q does not in general have to perturb
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FIG. 1. Kaplan-Meier plot of the dW365 (green line) and d�365 (red line), and dLog-N365 (blue line). The crosses indicate times
of censor events.

only one parameter at a time but instead proposes mod-
els that are o↵sets along the principle components of the
poster distribution. This is accomplished by sampling in
the rotated space m̃ = UTm and then rotating back to
the standard parameter space using m = Um̃. Where
the matrix U is is the column eigenvector matrix of the
posterior covariance matrix (Cm),

Cm = UWUT , (6)

and W = diag[wi] is the eigenvalue matrix with wi repre-
senting the parameter variance projected along the eigen-
vector ui. Cm is approximated by the covariance pos-
terior samples of the posterior distribution. Note that
this violates the assumptions of MCMC; however in prac-
tice the estimated model covariance matrix will converge
much faster than the sampling as a whole and thus there
will be little impact on the posterior samples.

Feature selection (i.e., choice of parameterization) can
be conducted on posterior samples using the deviance in-
formation criterion (DIC).10 The DIC is used here to dif-
ferentiate between models defined by choice of event time
distribution. The DIC is a measure of model support
based on a trade-o↵ of data fit versus model complex-
ity (parsimony) similar to other more common model-
selection criteria such as the Bayesian information crite-
rion (BIC).4–6 However, the DIC is calculated from the
posterior samples (rather than from a point-estimate of
the best-fit model in BIC), and consequently has the ad-
vantages that it accounts for the prior distribution, pa-
rameter correlations, and the general non-Gaussianity of

the posterior probability density.10 The DIC trades o↵
the data fit of a characteristic model against a complex-
ity term and is defined as

DIC = D(m̂) + 2PD, (7)

where D is the posterior deviance

D(m) = �2 log[L(m)] (8)

and m̂ is a central or characteristic model (here the max-
imum a posteriori model is user). The term PD in the
DIC is the e↵ective number of focused parameters (i.e.,
parameters that are not marginalized out of the poste-
rior prior to DIC calculation). The PD = D(m)�D(m̂)
where D(m) is the mean of the posterior deviance.

III. Estimating forever Churn

Forever Churn (FC) is the probability that a user never
returns to a product. A common assumption in survival
analysis is that ultimately there are no survivors; i.e.,
limt!1 S(t) = 0. Thus to incorporate the concept that
a user will never return the survival function must be
modified such that limt!1 S(t) = ↵ the probability that
a user is forever churned. This type of modification is
called a parametric mixture model and is more commonly
used in modelling cure rates.7 Let S(t) be a standard
survival function then

SFC(t) = ↵+ (1� ↵)S(t) (9)
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is the forever churn survival function. Substituting
SFC(t) into Eq. 1 the forever churn hazard function can
be found to be

hFC(t) =
f(t)

S(t) + ↵
(1�↵)

. (10)

Because of the predictive nature of estimating forever
churn, the event time distribution f(t) must be specified
parametrically. In this work three distributions (Weibull,
Gamma, and Log-Normal)7 are used. The probability
distribution function for the for the Weibull, Gamma,
and Log-Normals distributions are

fW(t) = �[�t]�1 exp(�[�t]), (11)

f�(t) =
1

�(�)✓�
t��1 exp(� t

✓
), (12)

and

fLog-N(t) =
1p
2⇡�t

exp

✓
�1

2

[log(t)� µ]2

�2

◆
, (13)

respectivly. Their survival functions are

SW(t) = exp(�[�t]), (14)

S�(t) = 1� 1

�(�)
�(�, t/✓), (15)

where �(y, x) is the lower incomplete gamma function7,
and

SLog-N(t) = 1� 1

2
erfc

✓
� [log(t)� µ]2

�2

◆
. (16)

Thus using Eqs. 9 and 10 the forever churn survival
and hazard function for Weibull distributed return times
become

SFCW(t) = ↵+ (1� ↵) exp(�[�t]) (17)

and

hFCW(t) =
�[�t]�1 exp(�[�t])

exp(�[�t]) + ↵
(1�↵)

, (18)

respectively. SFCW(t) and hFCW(t) can be substituted
into Eq. 2 to create forever churn likelihood for Weibull
distributed events. The equivalent substitutions can be
used for both the Gamma and Log-Normal distributions
to create their likelihood functions. In all three cases
the likelihood function have three parameters ↵ and two
distribution specific parameters.

IV. Parameterization and Priors

In order to facilitate the creation of parameter bounds
and prior distributions it is helpful to re parameterize
the likelihood parameters (e.g., ↵, �, and  ) as functions
of unknown model parameters m; i.e., ? = fLink?[g?(m)]

where ? is represents an arbitrary parameter, fLink? is a
link function, and g? is function of model parameters and
observation attributes. This representation of the un-
known parameters can easily incorporate the attributes
of the individual observations within the population; i.e.,
the survival and hazard functions of the ith observation
(Si[t] and hi[t]) do not necessarily equal the correspond-
ing functions for the jth observation. This plurality is
accomplished by including other attributes of the ob-
servations in the functions. Specifically the g? can be
considered a vector function with one entry for each ob-
servation (i.e., g?i) and can use the known attributes of
each observation. Commonly7and here the g? are taken
as linear functions (There is evidence that in-general non
linear functions are better,1 but such functions tend to be
more domain specific and describing them would be out-
side the scope of this work). For linear models the vector
g?(m) = Am? where A is the matrix of observation at-
tributes having one row per observation and one column
per attribute / feature (for a linear problem A would be
the sensitivity matrix4,5) and the full parameter vectorm
is the concatenation of all parameter sub sets m?. There
is no requirement that all likelihood parameters vary be-
tween observations; in particular in the case that a pro-
portional hazards assumption is reasonable for a Weibull
model only ↵ and � need to vary between observations.7

Even if multiple likelihood parameters are allowed to vary
between observations it is not necessary that they all
share the same features. Here for simplicity, A is as-
sumed to be a column vector of ones. In addition, this pa-
rameterization naturally restricts the parameters to their
meaningful ranges through the use of link the functions
(e.g., ↵i = Probit(g↵i[m])). The parameterized Weibull
model is ↵ = Probit(m1), ↵ = exp(�m2), and  = m3.
The parameterized Gamma model is ↵ = Probit(m1),
✓ = exp(m2), and � = m3. And the parameterized Log-
Normal model is ↵ = Probit(m1), µ = m2, and �2 = m3

The priors for the model parameters must be selected
with some care. It may be tempting to create uniform
bounds or other semi-arbitrary convent functions around
each parameter; however, this strategy will not work.
Consider a Weibull model where � = 0 and  = 1 are
known. Further suppose that all members of the popula-
tion are homogeneous thus only one � must be estimated.
In this case 1/� would then be the expected return time
thus a uniform prior bound on � would concentrate the
expected time to less that 1 days! To express the prior
information in prior distributions variable transforms11

are used.
For all three return time distributions the forever churn

probability ↵, a uniform prior is assumed (i.e., there is no
knowledge about the probability of forever churn). Thus
the prior on the ↵ feature parameter (m1) is

⇡↵(m1) = Norm(0, 1), (19)

where Norm represent the Gaussian distribution. For
the return time distribution specific parameters a similar
process can be applied. Starting with the Weibull model,
a priori it is unlikely that strong information exists. To
reflect this lack of knowledge let the median return time
(log[2])1/m3 exp(m2) be uniformly distributed between 0
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TABLE II. True values of parameters for simulated data (d)

Simulation Description data set Parameters

Weibull dW  = 0.5

� = 1/14 days

↵ = 10%

Gamma d� � = 0.2

✓ = 140 days

↵ = 10%

Log-Normal dLog-N �2 = 1.791759 log(days)2

µ = 1.540446 log(days)

↵ = 10%

and 180 days. Also to reflect that, in general, the risk of
return decreases over time let  be uniformly distributed
between 0 and 1.Thus using a bi-variate variable trans-
form the prior distribution of m2 given m3

⇡�(m2|m3) =
(log[2])1/m3

180
exp(�m2), (20)

where

m2 � � log(180) or
m3  log [log(2)] / [m2 + log(180)]

(21)

and zero otherwise. Also ⇡(m3) = unif(0, 1).
The prior distribution for the log-Normal model is also

found by assuming that the median return time is uni-
formly uncertain between 0 and 180 days. In addition,
because the median of a log-normal distribution is exp(µ)
and free of �2 it is necessary to assume that that �2 ⇠
exponentially. Thus,

⇡�(m2,m3) =
exp(m2 �m3)

180
, (22)

where m2  log(180).
The prior distribution Gamma model is derived simi-

larly. The main di↵erence is that since there is no simple
analytical function for median return time the expected
return time (✓�) is used instead. While there can be a
large di↵erence between the mean and median of skewed
distribution because the use here is only to express igno-
rance of the model parameters the exchange of the two
central statistics is not important. Thus ✓� is assumed
to be uniformly distributed between 0 and 180 days and
� ⇠ unif(0, 1) again to reflect that risk is expected to
decrease. Thus, m2 given m3

⇡�(m2|m3) = exp(m2)/180, (23)

where m3  180 exp(�m2) and zero otherwise.

V. Simulation Studies

The inversion scheme is tested on three simulated groups
of data sets; these groups are each generated with one
of the parametric models (Weibull, Gamma, and Log-
Normal). The true parameter values are chosen such that

the expected return times are 28 days and the standard
deviation of the return times are

p
3, 920 days. The true

values of the parameters for simulated data sets are given
in Tab. II. For each group of data sets the same 3,650
simulated uncensored observations are censored to di↵er-
ent maximum time horizons to create six data sets. Thus
in total there are 18 data sets (six per group). The time
horizons for the data sets in each group are 7, 14, 28,
90, 180, and 365 days. In order to mimic observed game
data each data set is divided into 365, 10 member parts,
indexed 1-365. Observations in ith part are censored if
they are larger than then minimum of i (the part index)
and the data set time horizon. For example in a data
set with time horizon 90 observations in the 1st part are
censored if they are greater than 1. Observations in the
second part are censored if they are greater than 2, and
so on until the 91st part. Observations in parts 91 to
365 are censored if they are greater than 90 (the data
set horizon time). In addition, to the standard censoring
in order to simulate the forever churn percentage each
observation has an independent 10% (↵ for each of the
three groups) chance of being censored minimum of i the
part index and the data set time horizon.
The Kaplan-Meier plots7 of the 3 simulated 365 day

data sets sets are shown in Fig. 1. Data sets dW is dis-
played as green, data set d� is red, and dLog-N is blue.
The crosses indicate the times that observations are cen-
sored. The regular cadence of the censoring events is a
result of the partitioning used to create the data.
All 18 data sets are inverted with all three paramedic

models. Thus a total of of 54 inversion are conducted us-
ing the MCMC scheme described in Sec. II. The DIC is
used to evaluate which parameterization has the most
support from the data. Table III gives the DIC val-
ues for the Weibull, Log-Normal, and Gamma simulated
data sets. In all cases the true parametrization is pre-
ferred by the DIC; i.e., the true parametrization has the
lowest DIC. Significance of di↵erences in the DIC values
are assessed using standard Bayes factor tables;12 i.e.,
�DIC < 2 is not significant and �DIC > 10 is very
strong support. For the Weibull simulated data sets the
Weibull parameterization is not found to be significantly
better than the Gamma parameterization in the 7 and 14
day data sets; it is found to be significantly better in the
28, 90, 180, and 364 day data sets. In all other cases the
true model is found to have significantly more support
from the data than the alternative models.
The inversions of the Gamma data have noticeably

lower DIC values for all parameterizations. This is sur-
prising as a prior it is expected that the best DIC values
would be found for the cases when inverted and true mod-
els match. The apparent reason for the low DIC (high
likelihood) inversions seems to be the large proportion of
quick (t < 1) events in the Gamma data set.
Figure 2 shows the marginal posterior density of the

↵ parameters of the simulated inversions for the winning
(lowest DIC) parameterizations. Each row shows the re-
sult form the inversion of one of the data sets (Weibull,
Gamma, and Log-Normal ) and each column shows re-
sults from a di↵erent time horizon. As the true model
had lowest DIC in all cases the densities are shown form
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FIG. 3. Kaplan-Meier plot of the dDaunt365. The crosses indicate times of censor events and the dashed lines are indicate a
95% confidence bound.

the true parameterization. The vertical line indicates the
true ↵ value (↵ = 10% for all simulated data sets). In
all cases the true value is near the central mass of the
posterior densities. The gamma inverted data is in gen-
eral the least accurate and the Weibull is in general the
most. The inversions with a 28 day time horizon are able
to limit the poster range of FC to less than 15%. The
inversions of data sets with time horizons of 90 days or

more have well resolved poster densities centred near or
on the true value.

Table IV gives the 2.5 and 97.5 posterior percentiles of
↵ parameters of the winning (lowest DIC inversions) for
each data set. In all cases the true value is within the
bounds. Also the bounds generally shrink (95 % bound
- 0.25% bound decreases) as the time horizons increase.
However in several cases the (e.g., dW14 and dW28) the
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TABLE III. The DIC values for the inversion of the simu-
lated data sets. The columns indicate the assumed parame-
terization Weibull, Log-Normal, and Gamma. The rows indi-
cate the inverted data set. The best (lowest) value for each
data set is highlighted in bold. Statistically significantly best
(�DIC > 10 ) values are underlined.

Data Set Weibull Log-Normal Gamma

dW7 9,696.122 9,766.667 9,699.647

dW14 13,134.255 13,235.922 13,139.796

dW28 17,039.807 17,187.939 17,055.519

dW90 22,037.123 22,232.929 22,059.538

dW180 23,584.058 23,770.462 23,637.616

dW365 23,922.285 24,101.153 24,008.594

d�7 4,441.965 4,752.079 4,416.549

d�14 6,816.207 7,229.900 6,775.124

d�28 9,173.707 9,654.742 9,137.870

d�90 14,102.022 14,834.667 14,026.442

d�180 15,788.325 16,643.616 15,706.391

d�365 16,418.484 17,153.233 16,339.646

dLog-N7 9,050.803 8,954.368 8,964.477

dLog-N14 14,263.582 14,169.804 14,195.724

dLog-N28 19,718.789 19,627.713 19,674.905

dLog-N90 25,522.984 25,371.625 25,533.565

dLog-N180 26,593.123 26,379.627 26,639.120

dLog-N365 27,030.317 26,741.268 27,114.766

TABLE IV. The 2.5 and 97.5 posterior percentiles of ↵ pa-
rameters of the simulated inversions for the true parameteri-
zations.

Horizon dW? dLog-N? d�?

(days) 2.5 (%) 97.5 (%) 2.5 (%) 97.5 (%) 2.5 (%) 97.5 (%)

7 1.92 26.57 1.36 29.51 0.28 19.62

14 4.75 21.46 0.45 14.06 0.89 24.23

28 2.80 13.78 1.78 11.07 0.14 10.77

90 8.15 12.26 7.33 10.27 3.24 10.30

180 8.54 10.99 9.04 11.20 7.71 10.77

365 8.79 10.98 9.30 11.26 8.43 10.73

poster bounds of shorter time horizons do not span the
bounds of longer time horizons. This is unexpected as
it means that the local information at the end of the
survival curve e↵ects its forecast.

VI. Dauntless Data Inversion

The inversion scheme is used on a group of observed data
sets from the free to play PC game Dauntless. The data
sets have 3,650 observations and similar to the simulated
data sets they di↵er in that they are truncated by time
horizon. For all observations the users last logout was
recored on 2017-12-10; the observations are a random
sample of users from that day. The data sets are denoted
dDaunt? where ? is particular time horizon (i.e., 7,14,28,
90, 180, and 365); e.g, dDaunt7 has observations from

TABLE V. The DIC values for the inversion of the observed
Dauntless data sets. The columns indicate the assumed pa-
rameterization Weibull, Log-Normal, and Gamma. The rows
indicate the inverted data set. The best (lowest) value for
each data set is highlighted in bold. Statistically significantly
best (�DIC > 10 ) values are underlined.

Data Set Weibull Log-Normal Gamma

dDaunt7 6,707.824 7,036.155 6,611.831

dDaunt14 8,019.588 8,285.977 7,835.913

dDaunt28 9,409.964 9,708.785 9,239.990

dDaunt90 11,315.602 11,632.988 11,438.400

dDaunt180 14,332.120 14,508.708 14,736.985

dDaunt365 15,090.318 15,245.551 15,683.405

2017-12-10 to 2018-12-17 and dDaunt365 has observations
from 2017-12-10 to 2018-12-10. The Kaplan-Meier cure
for the dDaunt365 data set is shown in Fig. 3. Two impor-
tant factors of the observed data sets are the oscillation
in hazard over the first few days and the step around 180
days. The oscillation is caused by time of day; users tend
to have sessions (if they return at all) at the same time
each day. Thus the low hazard times are 12 hours o↵-
set from a users typical login time. The step is linked to
the product changing from closed to open beta at that
time (2018-05-24) and large number of apparently users
returning. None of the parametric models used in the
inversion can mimic either of features; they represent a
systematic error.

As with the simulated inversions all three parameter-
izations are inverted for all data sets. The parameteri-
zation with the lowest DIC is preferred; the DIC values
for the inversion are listed in Tab. V. In all cases the
best parameterization is found to be significantly better
than the other two for each data set. Unlike the simu-
lated inversions the preferred parameterization changes
with the time horizon; for the 7,14, and 28 day data sets
the Gamma model is preferred and for the 90, 180, and
365 day data sets the Weibull parameterization is best.
Thus it is likely that the true return-time distribution
for the Dauntless data sets is not one of the assumed
distributions. In particular, for the 180 and 365 day in-
versions the game open beta step seems to be e↵ecting
the estimates.

Figure 4 shows the posterior marginal distributions of
↵ for the Dauntless data inversions. The marginal pos-
terior distributions are centred ⇠21% for the 7, 14,28,
and 90 day horizon data sets for the inversions; ⇠21% is
approximately the percentage of users that had returned
before the start of open beta. The 180, and 365 day in-
versions are centred near ⇠ 15% and ⇠ 18%, respectively.
The posterior uncertainty of ↵ for the 14 and 28 day in-
versions is quite small; ⇠3.16% and ⇠2.89%, respectively.
Thus for the Dauntless data 14 days is su�cient to have
a well resolved estimate of the passive forever churn. The
anomalous ↵ estimate for the 180 day inversion seems to
be a result of the sharp increase in the hazard function
near that time (the start of the open beta).
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FIG. 4. Marginal posterior densities of the forever churn percentage ↵ for the observed Dauntless data inversions. Each column
shows results from a di↵erent time horizon.

VII. Conclusion

An approach for estimating passive forever churn in free
to play games is proposed and tested on both simu-
lated and observed data. The approach consists of using
Bayesian inverse techniques (Markov chain Monte Carlo
and deviance information criterion) to estimate the pa-
rameters of three parametric mixture models as well as
choose which of the models is most likely to represent the
data.

For all simulated data sets the inversion scheme is able
to correctly choose the true parameterization (the DIC of
the true parameterization is the lowest); in 16 of the 18
inversions the true parameterization was found to have
significantly more support from the data that the other
two parameterizations (only the Weibull parameteriza-
tion for data sets with 7 or 14 day horizons were not
found to be significantly better). The posterior marginal
distributions of the passive forever churn percentages (↵)
are well resolved for the Weibull and Log-Normal simu-
lated data inversions with 28 days (the expected return
time) of uncensored event times. The Gamma simulated
data inversion only becomes well resolved with 90 days
(⇠ 3⇥ the expected return time) of uncensored event
times. The posterior marginal densities of ↵ not only
shrink with the introduction of data but also shift cen-
tral mass; thus, local trends in the survival curve can
e↵ect the forecasting of it and consequently the passive
forever churn estimates. This vulnerability is the largest
weakness of this methodology, but its importance should
not be overstated as for most of the simulated data in-
versions the phenomena was not present. In addition,
the true value of ↵ is within the 95% central credibility
interval of the posterior marginal distributions.

For the observed Dauntless data inversion the ap-
proach results in early data (7-28 days horizons) being
classified as Gamma distributed and later data (90-365
days horizons) being classified as Weibull distributed.
The marginal posterior distribution of ↵ for the 14 days
inversion is not meaningfully distinct from the 90 day
inversion; in both cases ↵ is ⇠ 21%. This value is ap-
proximately the percent of users that had not retuned by
the start of open beta.

In most practical applications it will be necessary to
utilize the full flexibility of g?i(m) from Sec. IV to allow
the attributes of each observation to be incorporated into
the likelihood function. Here that additional complexity

was mostly excluded for the sake of clarity in introduc-
ing parametric mixture models, not because excluding
observation attributes is somehow better.
Finally it should be noted that this approach can also

be used to model other important events, e.g., first pur-
chase. Thus it is possible to get estimates of the percent-
age of users that will never spend in a free to play game
given a finite amount of time.
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