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Abstract- The superconductor theory based on the electron pair is reviewed and several 

viewpoints are proposed. A demonstrated case reveals the speed of each electron in the 

electron pair at Fermi level about 1.82x106 m/s in Pb. However, the fastest longitudinal 

and transverse speeds of crystal waves in Pb at 0 K are 2.18x103 m/s and 1.29x103 m/s 

in [100] direction, respectively. It seems to be very hard even impossible that the 

mediated phonon can real-time transfer momentum and energy between two so high-

speed and antiparallel-momentum electrons in the superconducting state. In this 

research, we focus on single electron based on the experiments of Transmission 

Electron Microscopy. The new fitting temperature-dependent model for the London 

penetration depth is proposed. This model is much better than the one- and two-gap 

models and matches three experimental data much well. Then it further gives the 

temperature-dependent effective electron mass for the Nb superconductor film. Finally, 

the expression for the resistivity is deduced which can explain why the resistance is 

almost zero in the superconductor. All these new results are obtained by using the 

concept of single electron. 

Keywords: superconductor, electron pair, mediated phonon, London penetration depth, resistivity, 

effective electron mass, temperature-dependent 

I. Introduction 

Since the first superconductor, Hg, was found the critical temperature Tc at 4.153 K in 

1911 [1], a lot of research has been done about the physical properties and their 

performances [1-7]. The progress of superconductor has revealed some high-

temperature superconductors, such as YBa2Cu3O7 with Tc=92 K [4,5], 

Tl2Ba2Ca2Cu3O10 with Tc=125 K [3,4,6], and the very high temperature record H2S with 

Tc=203 K at 150 GPa [8]. How to explain its physical phenomenon is still a developed 

region even it has passed one century.  

In the past sixty years, the electron pair theory is thought success in the explanation 

of the low-temperature superconductor. The best condition for the electron pair is 

consisting of two electrons with antiparallel momentum and spins. According to this 

theory, Fe is thought as an inappropriate element for the superconductor compounds. 

Since the superconductor LaOFeP with Tc~4 K was found in 2006 [9], this early 

deduction was broken. The compound La(O1-xFx)FeAs with x between 0.05 and 0.12 

has found Tc=26 K [10]. Furthermore, this compound has found another 

superconductivity at Tc=43 K [11] significantly higher than the critical temperature 
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Tc=39 K of MgB2 [12]. The superconductor SmFeAsO0.85 even shows the critical 

temperature as high as 55 K [13]. It naturally implies that this theory is not suitable for 

explaining this kind of superconductor consisting of Fe. It makes us deeply think about 

the role of the electron pair and find another better way to explain the superconducting 

phenomenon.  

II. The Problems About The Electron-Pair Theory In The Superconductor 

The traditional electron-pair theory considers two electrons existing weak attractive 

interaction between them in the superconducting state and these two electrons are in 

the bounded state [5,6,14]. The electron pair appears in the range about kBTc above the 

Fermi energy εF where kB is the Boltzman constant. These two electrons combine with 

each other due to the exchange of phonon, and their total energy is slightly lower than 

the total energy of two free electrons. This phenomenon is thought physically that one 

electron causes the deformation of the positive ions in its vicinity and creates a mediated 

phonon. Through absorbing this mediated phonon, the other electron is affected by this 

deformation. In this picture, its binding energy of an electron pair at zero temperature 

is Δ. The energy 𝐸�⃑�  of single electron with wavevector �⃑�  in the excited state is  

                                                           𝐸�⃑� = √휀
�⃑� 
2 + ∆2,                                                              (1) 

and the energy 휀�⃑�  of quasi-electrons counted from the Fermi energy εF is 

                                                             휀�⃑� =
ℏ2𝑘2

2𝑚𝑒
∗

− 휀𝐹 ,                                                           (2) 

where 𝑚𝑒
∗  is the effective electron mass, ℏ equals to h/2π, and h is the Planck’s constant. 

The Hamiltonian for this superconducting electron system with the vibrating positive 

ions is [5,14,15] 

        𝐻 = 𝐻 𝑓𝑟𝑒𝑒
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

+ 𝐻 𝐶𝑜𝑢𝑙𝑜𝑚𝑏
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

+ 𝐻 𝑓𝑟𝑒𝑒
𝑝ℎ𝑜𝑛𝑜𝑛

+ 𝐻𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−𝑝ℎ𝑜𝑛𝑜𝑛
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

.            (3) 

Through complicated canonical transformation [15], the original one can transfer to 

another form  

𝐻𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐻 𝑞𝑢𝑎𝑠𝑖
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

+ 𝐻 𝑠ℎ𝑖𝑒𝑙𝑑𝑒𝑑
𝐶𝑜𝑢𝑙𝑜𝑚𝑏

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

+ 𝐻𝑑𝑟𝑒𝑠𝑠𝑒𝑑
𝑝ℎ𝑜𝑛𝑜𝑛

+ 𝐻𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛−𝑝ℎ𝑜𝑛𝑜𝑛−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

.  (4) 

It describes a process that an electron is scattered from the initial state �⃑�  to the final 

state �⃑� ′ through the emission or absorption of a phonon with the wavevector 𝑞 . In the 

electron-pair theory, the best condition for the electron pair is that their momentum �⃑�  

and spin s are equal and antiparallel, and the two electrons move in the opposite 
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directions. From these descriptions, we might ask whether the phonon-exchanged 

process is a physical picture or just a quasi-physical one.  

For example, the metal lead (Pb) has the superconducting critical temperature of 

7.193 K [5] and its Fermi energy is 9.37 eV [1]. The speed vF at εF for the bare electron 

is about  

            𝑣 𝑐⁄ = √2휀𝐹/𝑚𝑒𝑐2 = √18.74/511000~1/164,                                 (5) 

where c is the speed of light in the free space and the bare electron mass me is 

0.511MeV/c2 or 9.1*10-31 kg. It means that the speed of electron is very high and about 

1.82x106 m/s or (1/164) c [1]. However, the propagation of the lattice wave relies on 

the vibration of ions and the speed of the phonon at Debye frequency is not as so high 

as the Fermi electron speed. The mediated phonon between two electrons is the acoustic 

phonon and the crystal wave can be approximated to the continuously elastic wave. For 

Pb, the elastic stiffness constant C11 is 0.555x1012 dyne/cm2 and C44 is 0.194x1012 

dyne/cm2, and the density ρ is 11.599 g/cm3 at 0 K [1]. The highest speed of the crystal 

wave is the longitudinal wave vLA in [100] directions that is 

                    𝑣𝐿𝐴 = √
𝐶11

𝜌
= 2.18 × 103  𝑚 𝑠⁄ .                    (6) 

The speed of phonon is more 800 times slower than Fermi electron. Similarly, the speed 

of the transverse wave vTA is  

                   𝑣𝑇𝐴 = √
𝐶44

𝜌
= 1.29 × 103  𝑚 𝑠⁄ ,                     (7) 

which is about 1400 times slower than Fermi electron.  

Next, the average distance between two electrons is necessary to estimate when 

considering the electron-pair picture. The electrons of each electron pair are within the 

range about kBT above the Fermi energy and the density of these electrons approximates 

                    nkBTc/εF ~ 1029 •10-5 m-3=1024 m-3                 (8) 

or 106/μm3 in Pb [1]. This kind of electron roughly occupies a cubic with size about 100 

Å  and it gives the average distance between two electrons about 100 Å  or roughly 

30~40 atoms. This is a long distance for such two electrons, and the mediated phonon 

has to cross several ten atoms from one electron to the other.  

If one electron can absorb a mediated phonon bringing the changes of momentum 

and energy from the other electron, the propagation of this phonon has to be very fast. 

Actually, both electrons have so high speed so it is almost impossible to real-time 

exchange a phonon between two electrons across 100Å . Even it is possible, the electron 

much more probably absorbs other phonons prior to the mediated phonon due to other 

scattering events, caused from other electron-ion interactions or thermal vibrations. The 
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phonon is the quantization of the crystal wave and is the collective excitation. In other 

words, the wave can propagate through the whole crystal and each electron can absorb 

or scatter these phonons through the electron-phonon interaction. However, the electron 

pair means that the mediated phonon cannot propagate globally and only exists between 

two electrons for the purpose of exchanging momentum and energy.  

Let’s further look at the real picture for these two electrons. The original concept for 

the electron pair is shown in Fig. 1.The mediated phonon is created due to the distortion 

of ions in the vicinity of an electron. However, the electron-pair theory ignores that both 

electrons have ability to make ions distorted and induce respective crystal waves. It 

means that two phonons can be created simultaneously or successively so it is possible 

to exist more than one mediated phonons between two electrons, not always only one. 

In this theory, when one electron emits a phonon with momentum 𝑞  and changes its 

momentum from −�⃑�  to −�⃑� − 𝑞 , then the other one absorbs this phonon and its 

momentum is changed from �⃑�  to �⃑� + 𝑞 . However, this process is non-conservation of 

energy and the mediated phonon should be virtual, not real one. Actually, the really 

possible process is that one electron emits a real phonon and changes its momentum 

from −�⃑�  to −�⃑� − 𝑞  but the other electron doesn’t be affected by this phonon, or 

absorb another real phonon 𝑞 ′ and its momentum is changed from �⃑�  to �⃑� + 𝑞 ′.  

Fig. 1 An ideal case for a real electron pair ‘bounded’ by a phonon. According to the electron-pair theory, 

the ionic deformation in the vicinity of each electron causes a crystal wave propagating in the 

superconductor. Two electrons exchange a mediated phonon in an electron pair. The vertical dash lines 

in the central region means a distance between two electrons and a lot of atoms in between them. Their 

average distance is about 100 Ả. However, this process is non-conservation of energy. The speed of Fermi 

electron can be 800-1400 times faster than the two fastest crystal waves in Pb. Actually, the speed of two 

electrons is so high that it is very hard even impossible to real time transfer a mediated phonon between 

them. 

Next, we further consider another two electrons are added in Fig. 1 where each one of 

them is positioned close to each previous electron. Due to the distortion of the lattices, 

each electron in the electron pair creates the respective crystal wave and the two 

additional electrons can feel each crystal wave as shown in Fig. 2. However, the 

electron-pair theory only permits the crystal wave propagating between two electrons 

in an electron pair, so these two additional electrons cannot interact with these crystal 
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waves in principle. It makes such crystal waves unique and unphysical. As mention 

before, this theory restricts the crystal waves propagating locally, not globally. 

Fig. 2 Two more electrons are added on the top and bottom in Fig. 1. In the electron-pair theory, these 

crystal waves don’t affect these additional electrons because the crystal wave only take responsibility to 

exchange momentum and energy between two electrons in Fig. 1. According to this picture, it seems to 

be very unreasonable when the crystal wave only propagates between two electrons. 

 Actually, the decrease in the electron energy for the electron pair shouldn’t mean 

the existence of the effectively attractive interaction which take responsibility to form 

the electron pair. In the high-density electron gas, it also shows a negative perturbation 

energy in the random phase approximation (RPA) 

                                  𝜖𝑘
′ =

ℏ2𝑘2

2𝑚𝑒
− 𝛺 ∫

ℏ𝑑𝑙 

(2𝜋)3

4𝜋𝑒2

[(ℏ�⃑� − ℏ𝑙 )
2
+ 𝜆2]

|𝑙 |<𝑘𝐹

.                            (9) 

The energy 𝜖𝑘
′  of a quasiparticle at k near Fermi wavevector kF is  

                           𝜖𝑘
′ =

ℏ2𝑘2

2𝑚𝑒
− 0.166𝑟𝑠(ln 𝑟𝑠 + 0.203)

ℏ2𝑘𝑘𝐹

2𝑚𝑒
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,               (10) 

where 

                                                         𝑟𝑠 =
1

𝑎0
(

3

4𝜋𝑛
)
1 3⁄

                                                          (11) 

and a0= ħ2/mee
2 is Bohr radius [15]. However, it has not yet been thought that the 

effectively attractive force also exist between electrons to arise the stable electron pair 

in the RPA calculations, similar to the electron-pair theory in the superconductor.   

This electron-pair theory proposes the superconducting contributions from all 

electron pairs. In fact, the phonon can also be created from the thermal vibration. There 

are a lot of phonons with different frequencies coexisting in the superconductor. One 

electron can obtain the energy and momentum from absorbing phonons no matter where 
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they originally come from in the superconductor. Actually, this collective excitation or 

crystal wave created from the deformation of lattice can propagate to the wide place 

and is possibly absorbed by many electrons. It is alike a lot of speedboats moving on 

the sea and each of them creates propagating wave. Then each of those speedboats can 

receive waves from others, not only from certain one. It is very hard to restrict one boat 

receiving the wave from certain speedboat and excluding others in the open region.  

The propagating wave caused by the speedboat is similar to the electrons and 

phonons in the superconductor. To restrict each electron in the electron pair only 

interacting with their mediated phonon is unphysical even this phonon is true. 

Especially when the superconductor has some imperfections like defects or disorders, 

we have to consider these effects because the calculations of the quasi-electron energy 

and 𝑚𝑒
∗  in Eq. (2) also necessarily consider the lattice structure including the 

imperfections. The imperfection is an important factor for resistance. The 

superconductor with a near periodic structure should have the critical temperature 

higher than the one with much random structure in it even both have the same 

constitution.  

When we study the electron-pair theory, another question also arises. As we know, the 

normal electron current naturally exists in the superconductor. The normally electron 

current 𝐽 𝑠𝑛 in the superconductor is  

                                            𝐽 𝑠𝑛 = −∫ 𝑒𝑁𝑆(𝐸�⃑� )
∞

∆

𝑓(𝐸�⃑� )𝑣 �⃑� 𝑑𝐸�⃑� ,                                       (12) 

where f(𝐸�⃑� ) is the Fermi-Dirac distribution, -e is the electron charge, and 𝑣 �⃑�  is the 

electron velocity at wavevector �⃑� . 𝑁𝑠(𝐸�⃑� ) is the density state of the normal electron 

in the superconductor  

                                    𝑁𝑠(𝐸�⃑� ) = 𝑁(𝐸�⃑� )
𝑑휀�⃑� 

𝑑𝐸�⃑� 
= 𝑁(𝐸�⃑� )

𝐸�⃑� 

√𝐸
�⃑� 
2 − Δ2

                                 (13) 

when |𝐸�⃑� | > Δ , and  

                                                               𝑁𝑆(𝐸�⃑� ) = 0                                                               (14) 

when |𝐸�⃑� | < Δ. It is similar to the electric current 𝑗  under the applied electric field 

�⃑�  in the traditional metal which has the form  

                                                               𝐽 = 𝑛
𝑒∗2

𝑚𝑒
∗
𝜏�⃑� ,                                                             (15) 

where n is the average charge density, e* is the effective charge, and 𝜏 is the average 
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scattering or relaxation time. However, these excited normally electrons should cause 

some resistivity as the electrons in the normal metals because of inelastic scatterings 

and energy dissipation. Since the normal electrons also exist in the superconducting 

state, it makes us think about why the resistance is still almost zero in the 

superconductor experiments. The resistivity ρ for the normal conductor has relationship 

with 𝜏 of the electron, that is  

                                                                    𝜌 ∝
1

𝜏
.                                                                   (16) 

It means that if the experiments show almost zero resistivity, the normally excited 

electron would have very large 𝜏 like a quasi-superconducting electron.  

III. The Perfect Conductor 

As we know, the single electron in the perfectly periodical or crystal structure is 

represented by the Bloch wave. It can have a stable solution that the electron propagates 

in the periodic structure near freely. The resistance is mainly created by the imperfect 

lattice and inelastic scattering with impurities. The dream conductor is the electron 

system with no dissipation in this perfect structure. It has been pointed out that the 

perfect conductor can shield electric and magnetic fields from its surface [16] so the 

Meissner effect and London penetration depth [2-4] may be explained by the traditional 

conductor theory. This is a reasonable explanation by using Pb as a demonstrated 

example. When the temperature is across Tc from low to high, the magnetic penetration 

depth in Pb should be continuous as the material state changes from the 

superconducting state to the normally metallic one.  

In electrodynamics [16], the surface current �⃑⃑� 𝑠 on the conductor is produced by the 

surface moving charges and the induced tangential magnetic field �⃑⃑�  is 

                         �̂� × �⃑⃑� = �⃑⃑� 𝑠,                            (17) 

and Ohm’s law gives �⃑⃑� 𝑠 = 𝜎�⃑� 𝑐 with a finite conductivity σ for the electric field �⃑� 𝑐 

in the conductor. Then we have the magnetic fields �⃑⃑� 𝑐 inside the conductor is  

                                                          �⃑⃑� 𝑐 = −
𝑖𝑐

𝜇𝑐𝜔
∇ × �⃑� 𝑐,                                                     (18) 

where μc is the permeability of the conductor. We also have the equation for �⃑� 𝑐 

                                                              �⃑� 𝑐 ≈
𝑐

4𝜋𝜎
∇ × �⃑⃑� 𝑐.                                                     (19) 

The skin depth δ is  
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                                                                𝛿 = (
2

𝜇𝑐𝜔𝜎
)
1 2⁄

,                                                     (20) 

the electric field in the conductor                                                                       

                                        �⃑� 𝑐 ≈ √
𝜇𝑐𝜔

8𝜋𝜎
(1 − 𝑖)(�̂� × �⃑⃑� )𝑒−𝑥 𝛿⁄ 𝑒𝑖𝑥 𝛿⁄ ,                                   (21) 

and the magnetic field in the conductor  

                                                          �⃑⃑� 𝑐 = �⃑⃑� 𝑒−𝑥 𝛿⁄ 𝑒𝑖𝑥 𝛿⁄ ,                                                      (22) 

where x is the distance from the surface in the conductor. This equation is much similar 

to the magnetic field in the superconductor characterized by the London penetration 

depth. The time-average power loss Ploss per unit area a is  

                                                           
𝑑𝑃𝑙𝑜𝑠𝑠

𝑑𝑎
=

𝜇𝑐𝜔𝛿

4
|�⃑⃑� |

2
.                                                   (23) 

Above equation shows that the energy loss is proportional to δ at a fixed frequency ω 

and a constant magnetic field. From Eq. (20), the larger σ is, the smaller is δ. The larger 

conductivity benefits the electric current and lowers power loss. Once the factors of 

dissipation are removed, the material can perform like a dream conductor as a 

superconductor. In the following, according to the above discussions, we think about 

an advanced way how to explain the superconductor with near zero resistance or 

resistivity. All the research focuses on one electron propagation in the superconductor. 

IV. The Viewpoint From The Stopping Power In Transmission Electron 

Microscopy 

Since the Transmission Electron Microscopy (TEM) was developed [17], the detailed 

structure for a lot of materials can be obtained in the nanoscale imaging. It also a good 

technology for investigating superconductors and their TEM images have been revealed 

for many years [18-27]. As we know, it is the relativistic electron used in TEM and the 

acceleration voltage can be as high as several hundred KeV [17]. When we discuss the 

imaging processes in TEM, it needs to consider the stopping power for different 

materials [17, 28-38]. It means that the electrons lose their energy when passing through 

the sample and it is unavoidable due to the inelastic scatterings between electrons and 

atoms. Especially, the secondary electrons would stop in the sample and transfer all 

their energy to the material. No matter what kind of the material is, the energy loss 

always exists. It is the same as the superconductor that we also have to calculate the 

stopping power when using TEM. The TEM experiments of superconductors reveal the 

existence of the electron energy loss definitely. Furthermore, TEM can provides the 

electron-energy-loss spectra of samples [17,39]. 
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The TPP2-TM model [40-46] very successfully predicts the inelastic mean free path 

λInelastic in the material having close relationship with the incident energy E of an 

electron that is  

                                𝜆𝐼𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐸

𝐸𝑝
2{𝛽 ln(𝛾𝐸) − (𝐶 𝐸⁄ ) + (𝐷 𝐸2⁄ )}

 (in Å),                (24) 

where 𝐸𝑝 = 28.8(𝑁𝑣𝜌 𝑀⁄ )1 2⁄  (in eV) is the free-electron plasma energy, Nv is the 

number of valence electrons per atom for solids or per molecule for compounds, ρ is 

the density (in g/cm3), and M is the atomic or molecular weight. β, γ, C, and D are 

defined in Ref. 46 [46]. It is the modified Bethe equation and matches with the 

experimental data very well for many element solids, compounds, and molecules in 

some ranges of the incident electron energy [40-46]. As mentioned previously, the TEM 

imaging can show the inner structure of the superconductor due to the scattering from 

the incoming particles with inner atoms. It always accompanies with energy lost which 

implies the resistance in the superconductor until to very high voltage about several 

KeV. The stopping power has been studied many years. The well-known formula for 

the electron energy stopping power is the relativistically Bethe-Bloch equation [31], 

that is 

                      −
𝑑𝐸

𝑑𝑥
=

𝑁𝐴𝜌𝑚𝑒4𝑍

8𝜋𝜖0
2𝐴𝑚𝑒𝑣2

[ln (
𝐸2

𝐼2
γ + 1

2
) + 𝐹(γ) − δ𝐹(γ)],                         (25) 

                                 𝐹(γ) = [
1

γ2
−

2γ − 1

γ2
ln(2) +

1

8
(
γ − 1

γ
)
2

],                                    (26) 

where E is the kinetic energy, x is the traveling distance, I is the mean excitation energy, 

 𝛾 = 1 √1 − 𝑣2 𝑐2⁄⁄  , v is the speed of the incident electron, δF(γ) is the density 

correction, NA is the Avogadro’s constant, A is the atomic weight, Z is the atomic 

number, and ρm is the mass density. We can ignore the radiation stopping power because 

it is only significant when the atomic number Z>80 and the electron energy E>10 MeV. 

For the low-energy case, 𝛾~1. Then above equation for the compound becomes  

                                   −
𝑑𝐸

𝑑𝑥
=

𝑁𝐴𝜌𝑚𝑒4

8π휀0
2𝑚𝑒𝑣2

∑𝑐𝑖

𝑍𝑖

𝐴𝑖
ln (

𝐸

𝐼𝑖
)

𝑖

 (
eV

Å
),                                   (27) 

where Ai is the ith-element atomic weight, Ii is the ith—element mean excitation energy, 

Zi is the ith-element atomic number, and ci is the ratio of the ith-element in the 

compound. From Eq. (27), it reveals that small Zi/Ai benefits the electron holding its 

kinetic energy and the stopping power becomes small. The larger Ii also results in the 

smaller stopping power.  

Now, considering an experiment to measure the current of the superconductor as 

shown in Fig. 3. An electron gun is positioned above the superconductor thin film in 
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vacuum. It is similar to the traditional way which the normal metallic wire contacts the 

superconductor to form a closed loop but here the superconductor is under zero bias. 

The collecting plate behind the superconductor film can receive most passing electrons 

including the secondary electrons. The benefit of this experimental setup is to replace 

the concept of the electron pair with the single electron inside the superconductor. Due 

to the focus on the movement of the single electron, it makes us use a different 

viewpoint to initially discuss why the resistance is so small in the superconductor.  

 

Fig. 3 The simple experimental setup for measuring the electric current A of the superconductor thin film. 

The electric voltage is applied on the electric gun to emit electrons. 

From the Joule’s heat law, the electric power dissipation is equal to I2R where I is the 

electric current and R is the resistance. If we consider the electron energy loss is 

proportional to I2R, then the resistance is also proportional to the electron energy loss. 

When the critical temperature Tc is defined as the resistance less than a certain value, 

then Tc can be the function of 1/R or 1/|𝑑𝐸 𝑑𝑥⁄ |. According to Eq. (27), it seems to be 

able to quantitatively explain that Bi2Sr2Ca2Cu3O10 (110 K) has Tc higher than 

YBa2Cu3O7 (92 K), Tl2Ba2Ca3Cu4O11 (122 K) is higher than Bi2Sr2Ca2Cu3O10 (110 K), 

and HgBa2Ca2Cu3O8 (133 K) is higher than Tl2Ba2Ca3Cu4O11 (122 K) [5,7].  

Although the standard measurement of the superconductor current is not like the 

experimental setup in Fig. 3, however, TEM experiments clearly exhibit the single-

electron transmission through the superconductor. It is almost impossible to find a 

conduction electron with energy of several keV in the superconductor to form an 

electron pair with the incident electron. Especially the velocity of the electron is close 

to c. This gives a reasonable way to discuss the resistance of the superconductor by the 

single-electron viewpoint. 

V. The Correction Model For The Resistivity Varying With Temperature 

Next, another simple schematic picture for measurements of the electrical current 

and resistance of the superconductor is shown in Fig. 4. In the traditional theory for 

conductor, the electrical conductivity σ is defined as [1] 
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                                                            𝜎 =
𝑛𝑒2𝜏

𝑚𝑒
∗

.                                                              (28) 

It obeys the relation 𝑗 = 𝜎�⃑�  as Eq. (15) where 𝑗  is the electrical current density and 

�⃑�  is the electrical field. The electrical resistivity ρ is the reciprocal of the electrical 

conductivity σ [1]. As we know, the electrical resistivity of metal is the function of the 

temperature T [1], that is,  

                                𝜌 ∝ 𝑇5.                                                             (29) 

The resistance R has relationship with the resistivity ρ. For a conductor wire, R=ρL/A 

where L is the length and A is the cross-section area. The discussion of ρ is a good way 

to know the behavior of R.  

The Kondo effect explains the magnetic ion-conduction electron interaction resulting 

in additional spin-dependent resistivity in solute magnetic alloys [1]. The electrical 

resistivity has the form 

                                                    𝜌 = 𝑎𝑇5 + 𝜂𝜌0 +  𝜂𝜌1 ln 𝑇,                                            (30) 

where a is a constant, η is the concentration, ρ0 is the measure of the strength of the 

exchange scattering, 𝜌1 = 3𝜌0𝑧𝐼𝑒 휀𝐹⁄ , z is the number of the nearest neighbors, and Ie 

is the exchange energy. The other possible resistivity source is from the Umklapp 

process. The Umklapp scattering of electrons by phonons has significant contribution 

to the electrical resistivity when the Fermi surface is close to the zone boundary. The 

number of phonons for this kind of scattering process decreases as exp(-ℏωm/kBT) 

where ℏωm is the phonon energy. The expression of resistivity has to be improved when 

it applies on the superconductor.  

The concept of the quasi-electron tells us that the electron mass needs to be corrected 

because of the high-density electron gas and ion background. The dependence of the 

effective electron mass on temperature T should also appear in the electrical resistivity 

especially at low temperature. According to the temperature dependence of the electron 

mobility in the semiconductor, the temperature-dependent electron mobility μe is  

                                                 𝜇𝑒 =
𝑒

𝑚𝑒
∗ (𝐴𝑇3 2⁄ +

𝐵𝑁𝑖

𝑇3 2⁄ )
                                                   (31) 

where A and B are constants, and Ni is the impurity density [47]. The first term of the 

bracket in the denominator is due to the acoustic phonon scattering and the second one 

is due to the impurity scattering. Comparing this equation with μe experiments [47], it 

further reveals that 𝑚𝑒
∗  is also dependent on temperature with the form 

𝑚𝑒
∗(𝑇) = 𝑚𝑒

∗(𝑇𝑟𝑒𝑓)𝑓(𝑇),                                             (32) 



 12 

where f(T) is an undetermined function of temperature T and the reference of effective 

electron mass is chosen at some reference temperature Tref, for example, Tref=300 K. In 

addition, the energy gaps of Si and GaAs [47] also exhibit temperature dependence 

which means the calculations of the effective electron mass from the energy band 

dependent on temperature. 

Fig. 4 Another simple electric circuit setup for measuring the electric current A and the resistance or 

resistivity of the superconductor. The electric voltage V is directly applied on the superconductor. 

If we further use the temperature-dependent effective electron mass to the electrical 

conductivity for superconductor in Eq. (29), the electrical resistivity is expressed as  

𝜌(𝑇) = 𝑎𝑇5[𝑓(𝑇)]𝜈 .                                                      (33) 

As we know, the electrical resistance and resistivity near the critical temperature has 

dramatical decrease, so f(T) can be chosen as an increasing function of T and ν is a real 

value. Because the electrical resistance of superconductor is defined less than 10-19 ohm, 

the electrons in superconductor are much low energy loss and almost freely, and they 

have very long mean free path. It also means only the phonons with very small energy 

ℏω participating the electron-phonon interaction so the electron energy loss from the 

electron-phonon interaction is very small.  

Except for these long-wavelength excited phonons, the Umklapp scattering is the 

other consideration in the calculation of the electrical resistivity, and then we have 

another form similar to Eq. (33), that is,  

                              𝜌(𝑇) =𝑎𝑇2[𝑓(𝑇)]𝜈 ∫
𝑑𝜔

2𝜋

1

𝑒𝑥𝑝 (−
ℏω
𝑘𝐵𝑇

) − 1
,                                  (34) 

where ℏω<<kBT. The electrons at or above Fermi energy take responsibility for the 

electrical conduction and the Fermi surface is very close to the zone boundary. Because 

the Umklapp scattering is considered, the total number of phonons is changed from T3 

to the exponential term in Eq. (34). Both equations make sure that the electrical 

resistivity is small enough at low temperature in the superconductor.  
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VI. The London Penetration Depth At Low Temperature 

  Since the effective electron mass is temperature-dependent as shown in Eq. (32), first 

of all, the function f(T) has to be found out. According to London’s theory [3], the 

penetrating depth λL in the superconducting state is  

                       𝜆𝐿(𝑇) = √𝑚𝑒
∗/𝜇0𝑛𝑠𝑒∗2,                       (35) 

where ns is the density of the superelectron above Fermi energy, μ0 is the magnetic 

permeability in free space, and e* is the effective charge of the superelectron. It is 

proportional to (𝑚𝑒
∗/𝑛𝑠)1/2 and has another expression the so-called two-fluid empirical 

model [2-4]  

                                                       𝜆𝐿(𝑇) = 𝜆0 [1 − (
𝑇

𝑇𝑐
)
4

]

−1 2⁄

,                                       (36) 

where λ0=λL(0) is the London penetration depth at absolute zero temperature.  

The London temperature-dependent penetration depth has been widely studied and 

different fitting models proposed. Some methods for measurements have been used for 

a long period, such as self-oscillating tunnel diode resonator [48] and two-coil mutual-

inductance technique [49]. The very early report showed that the results of the 

experiments on pure Sn [50] have some departure from the temperature-dependent 

penetration depth in Eq. (36). Recently, a lot of experiments about the change of the 

London penetration depth ∆𝜆𝐿(𝑇) = 𝜆𝐿(𝑇)  − 𝜆𝐿(0) have been measured. According 

to the report, the experimental values ∆𝜆𝐿(𝑇) of single crystal Y-Ba-Cu-O are between 

the two-fluid model and weak-coupling electron-pair theory [51]. The fitting function 

ΔλL(T) at low temperature is often well described by the power law of ∆𝜆𝐿(𝑇) = 𝑏𝑇𝑛 

where b is a constant and the range of n is often between 1 and 3 or even higher values 

[52-70]. According to ΔλL(T), the London penetration depth is 𝜆𝐿(𝑇) = λ0 + 𝑏𝑇𝑛 [58]. 

However, it should be finite at T=Tc. The magnetic penetration depth is not infinite 

actually. Some experiments have shown the finite value λL(T) at Tc which are much 

more reasonable than Eq. (36) [58,62,63,65-70].  

Then we discuss the range of n from the experimental fittings at low temperature. 

The fit for Y-Ba-Cu-O single crystal is changed from n=2 to n=1 when the temperature 

is cross the characteristic temperature T* [55,56]. Some Y-Ba-Cu-O thin films show the 

power law fits with n from 1.4 to 2.2 [57]. It even mentioned that there was no way to 

obtain satisfactory exponential fit to these experimental data. The best fits for the non-

magnetic PCCO single crystals are n=2.25±0.01 for one sample and n=2 for the other 

two samples [58]. For the magnetic NCCO single crystal, the best fits are n=1.35±0.03 

and n=1.40±0.03 for different Curie constant [58]. The Sr2RuO4 single crystals show 

n~2 and n~3 [59]. The fits of LaFePO single crystals give n=1.2±0.1 for T<1 K [60]. 
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The fitted n of Ba(Fe1-xCox)2As2 single crystals with different x value varies from 

2.0±0.1 for the underdoped samples to 2.5±0.1 for the overdoped samples [61]. 

Especially, single crystals of Ba(Fe0.93Co0.07)2As2 were observed n=2.4±0.1 [65]. Two 

hole-doped iron-based superconductors of Ba0.55K0.45Fe2As2 and Ba0.7K0.3Fe2As2 single 

crystals have n=2 at low temperature [62]. Single crystals of RFeAsO0.9F0.1 (R=La,Nd) 

have been studied for possessing non-exponential London penetration depth [63]. The 

mean Tc is 45 K for La-1111 and 14 K for Nd-1111 where the power law of in-plane 

∆𝜆𝐿(𝑇) gives n=2 at low temperature. The low-temperature ΔλL(T) of iron-pnictide and 

iron-chalcogenide superconductors were studied and there were six superconductor 

samples giving n between 1.7 and 2.5 [67]. Other iron-chalcogenide superconductors 

Fe1.03(Te0.63Se0.37) and Fe1.06(Te0.88S0.14) were also reported ΔλL(T) with n~2.1 for Fe(Te, 

Se) and n~1.8 for Fe(Te,S) [68]. For single crystals of electron-doped Ba(Fe1-xNix)2As2, 

the results show the temperature dependence for different doping level [66]. It gives in-

plane ΔλL(T) with n≧2 for the optimal doping level and n<2 in the overdoped regime 

at low temperature. The interplane ΔλL(T) is T linear behavior below Tc/3 in the 

overdoped regime. The in-plane ΔλL(T) in single crystals of Ba(Fe1-xTx)2As2 (T=Co, Ni) 

irradiated with 208Pb56+ ions exhibits 2.2<n<2.8 [69]. The London Penetration Depth in 

iron-based superconductors have ever reported n as high as 2.83 [70].  

The other often used fitting function is the weak-coupling electron-pair or gap model 

including the exponential term shown as  

                                                 ∆𝜆𝐿(𝑇) = 𝜆0√
𝜋∆

2𝑇
𝑒𝑥𝑝 (−

∆

𝑇
),                                            (37) 

where Δis the value of the energy gap for the electron pair used in Eq. (1) and it 

doesn’t satisfy the low T/Tc region in the most reports. Some reports show the 

inconsistent exponential behavior compared with the experimental data and the power 

law is better than this exponential model, such as UBe13 [53], Y-Ba-Cu-O single crystal 

[55,56], Y-Ba-Cu-O thin film [57], non-magnetic PCCO single crystal [58], magnetic 

NCCO single crystal [58], Ba(Fe1-xCox)2As2 single crystal near optimal dipping of 

x=0.074 [61,70], Ba(Fe0.93Co0.07)2As2 single crystal [65], and (Ba1-xKx)Fe2As2 single 

crystal with x=0.45 [58].     

Except for the low-temperature region, the exponential behavior also not always fits 

the high-temperature region near Tc [62,63]. It clearly shows that the superfluid density 

of R-1111 crystals decreases slowly close to Tc where the exponential behavior 

approximates a straight line. The deviation means that the exponential behavior is not 

suitable for the high-temperature region near Tc in this studying case. Even the two-gap 

exponential model cannot also fit some experiments very well at the temperature close 

to Tc [62,63]. This model exhibits large errors comparing with experimental data even 
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in the high T/Tc region when λ0=1400 Å [54]. As discussed previously, the electron 

pair is not real physical phenomenon so the reasonableness of the gap model is a 

doubted problem. 

However, from the fitting functions in these references [52-70], the power law is not 

so accurate for all temperature range below Tc. Sometime, in the low-temperature 

region n is one value but it changes to other value above T* [55]. The fast increase in 

∆𝜆𝐿 as T close to Tc means that this one-term power law doesn’t satisfy in the high T/Tc 

region. We have to add more high power terms to fit the experimental data. For example, 

the magnetic penetration depth of c-axis oriented YBa2Cu3O7 has also been reported 

[51] where the function matches well the experimental data  

                             𝜆𝐿(𝑇, 𝐻) =
(𝛷0𝐻)1 2⁄

𝜋1 2⁄ 𝐻𝑐(0)
[1 − 2 (

𝑇

𝑇𝑐
)
2

+ (
𝑇

𝑇𝑐
)
4

]

−1 2⁄

,                         (38) 

where H is the applied magnetic field, Φ0 is the quantum flux, and Hc(0) is the critical 

magnetic field at 0 K. It is clear that the sign associated with T4 is different from Eq. 

(36). Furthermore, comparing Eq. (38) with Eq. (36), there is an additional T2 term. It 

means that Eq. (36) for the London penetration depth would be better by adding some 

different T-order terms. Furthermore, considering the continuum at Tc and λL(Tc) is 

finite so Eqs. (36) and (38) need to be improved for the superconductors.  

VII. The New Fitting Model For The London Penetration Depth   

Those superconductors for experiments [52-70] including single crystal, 

polycrystalline, pure, and dirty samples. The two fluid mode described by Eq. (36) also 

has something to do with the surface energy and the free energy of the superconductor. 

It is very reasonable that we physically add more T-order terms in the two-fluid model 

to fit the experimental data in the wide temperature range. This correction in London 

penetration depth includes T, T2, T3, and T5 terms for considering the range of n values 

in the power law [52-70], that is,  

   𝜆𝐿(𝑇) = 𝜆0 [1 − 𝑐4 (
𝑇

𝑇𝑐
)
4

− 𝑐1 (
𝑇

𝑇𝑐
)
1

− 𝑐2 (
𝑇

𝑇𝑐
)
2

− 𝑐3 (
𝑇

𝑇𝑐
)
3

− 𝑐5 (
𝑇

𝑇𝑐
)
5

]

−1 2⁄

,    (39) 

where c1, c2, c3, c4, and c5 are constants determining from the curve fitting and all of 

them between -1.0 and 1.0 in our calculations. This choice makes sure the low-

temperature behavior predicting by the power law and the high-temperature behavior 

which the electron-pair model cannot describe very well. Although those fitting values 

of n in the power law show it less than 4.0 [52-70], however, it is better to include T5 

term in the curve fittings. Then we choose three experimental data to investigate how 
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much the improvement of Eq. (39) is. 

  First, we consider the 70-nm thickness Nb superconducting film [71]. Here without 

considering the electron-pair coherent length and Pippard Kernal, we find that their 

experimental data can be fitted much well by Eq. (39) above 0.5Tc. According to 

experiments, this Nb film gives the London penetration depth λ0 about 112 nm and it 

would be at least several times larger than λ0 at T=Tc. Then we use the final seven data 

closest to Tc to get the better fitting curve. The experimental data and the fitting cure of 

𝜆𝐿
2(0) 𝜆𝐿

2(𝑇)⁄  varying with T/Tc are shown in Fig. 5(a) where c1=0.28, c2=-0.63, 

c3=0.97, c4=0.99, and c5=-0.63 are used. This fitting result is even better than the very 

complicated Pippard kernel integral. Especially in the high-temperature region, the 

Pippard Kernel integral shows large deviations with the experimental data. 

The second case is the experimental data of 𝜆𝐿
2(0) 𝜆𝐿

2(𝑇)⁄  in the superconductor 

YBa2Cu3O6.95 with Tc>93 K [56]. We use all the experimental data with λ0=1500 Å  in 

the range of T/Tc between 0.0 and 1.0 to fit the curve. These data show strong linear 

behavior at low temperature. Then choosing c1=0.54, c2=-0.28, c3=0.62, c4=-0.88, and 

c5=0.99 in Eq. (39), the fitting curve matches the experimental data much better than 

the s-wave electron-pair model as shown in Fig. 5(b). From low to high temperature, 

the fitting curve almost match the experiment at each data. Only the final data closest 

to Tc has some deviation but it is still within the experimental error. This fitting curve 

perfectly describes this experimental trend and it gives the London penetration depth 

about 10 λ0 at Tc. 

The third case is the single-crystalline Fe1.03(Te0.63Se0.37) superconductor with Tc~12 

K and λ0~560 nm [68]. The whole experimental data are used to get the fitting curve. 

The experimental data and the fitting curve by using Eq. (39) are both shown in Fig. 

5(c). It gives c1=0.27, c2=0.99, c3=0.99, c4=-0.90, and c5=-0.38 from the fitting. The 

results also show the fitting curve almost matching each experimental data except for 

final three data closest to Tc. Furthermore, this fitting curve is much better than the two-

gap γ model which has explicit deviation at low-temperature region until to 0.4Tc [68]. 

In summary, these three cases reveal the gap model less accurate and Eq. (39) can fit 

the experiments fairly well. 

      
(a)                                   (b)                         
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(c) 

Fig. 5 (a) 𝜆𝐿
2(𝑇) 𝜆𝐿

2⁄ (0) of the 70-nm thickness Nb superconductor film is drawn varying with T/Tc. 

Circles are the experimental data [71] and solid line is the fitting curve with c1=-0.63, c2=0.99, c3=0.97, 

c4=-0.63, and c5=0.28 in Eq. (42). (b) The fitting curve (solid line) and experimental data (circle) for 

𝜆𝐿
2(𝑇) 𝜆𝐿

2(0)⁄  with λ0=1500 Å  [56]. In this case, c1=0.54, c2=-0.28, c3=0.62, c4=-0.88, and c5=0.99. The 

fitting curve is fairly good in this case. (c) The fitting curve (solid line) and experimental data (circle) for 

𝜆𝐿
2(𝑇) 𝜆𝐿

2(0)⁄  in the third case [68]. Here c1=0.27, c2=0.99, c3=0.99, c4=-0.90, and c5=-0.38 are used in 

this fitting curve and the fitting result is much well. 

VIII. The Expression For The Effective Electron Mass 

After verifying Eq. (39) by three cases of different superconductors very well, then 

the next step is to substitute Eq. (39) into Eq. (35) to get the relation 

                                               
𝑚𝑒

∗(𝑇)

𝜇0(𝑇)𝑛𝑠(𝑇)𝑒∗2(𝑇)
= 𝜆0

2𝐺(𝑇),                                             (40) 

where the function at the right-hand side is  

    𝐺(𝑇) = [1 − 𝑐1 (
𝑇

𝑇𝑐
)
1

− 𝑐2 (
𝑇

𝑇𝐶
)
2

− 𝑐3 (
𝑇

𝑇𝑐
)
3

− 𝑐4 (
𝑇

𝑇𝑐
)
4

− 𝑐5 (
𝑇

𝑇𝑐
)
5

]

−1

.            (41) 

When we consider e* as a constant value and the superconductor is non-magnetic for 

the most cases, then Eq. (46) can be reduced to  

                                                     
𝑚𝑒

∗(𝑇)

𝑛𝑠(𝑇)
= 𝜇0𝑒

∗2𝜆0
2𝐺(𝑇),                                                   (42) 

where μ0(T)=μ0 in the considering temperature range. This treatment reasonably 

supposes two temperature-dependent terms ns and 𝑚𝑒
∗ , and other quantities 

temperature-independent. The superconductivity has been found dependent on 

temperature and the environment pressure [72]. The effective electron mass 𝑚𝑒
∗  

definitely also depends on temperature and pressure. When the material cools down, 

the lattice constant changes. The pressure also causes the same result. For example, the 

hydrogen phase diagram reveals different hydrogen phase varying with temperature and 

pressure [73]. The metallic hydrogen has been found at solid state under very high 

pressure [74]. Furthermore, H2S can perform superconductivity at Tc=203 K under 150 

GPa [8]. It is clear that the crystal structure is affected by temperature and the ultra-
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high pressure so do the electronic band structure as well as the effective electron mass. 

Then we try to get the function f(T) in Eqs. (32) – (34). Considering the free-electron 

gas model for some metals in the superconducting state, it gives the density of state g(E) 

is  

                                                    g(𝐸) = 2𝜋𝑉𝑐 (
2𝑚𝑒

∗

ℎ2
)
3 2⁄

√2𝐸,                                          (43) 

where VC is the volume of the solid. Then the density of the superelectrons is 

                                  𝑛𝑠 = 2 × 2𝜋 (
2𝑚𝑒

∗

ℎ2
)
3 2⁄

∫
√2𝐸

𝑒𝑥𝑝 (
𝐸 − 𝜇
𝑘𝐵𝑇

) + 1
𝑑𝐸

∞

𝜇

.                       (44) 

Here we still consider the superelectron obeying the Fermi-Dirac distribution because 

it is single-electron model, not consisting of double electrons. When the concept of the 

quasi-electron is used, the electron mass me is also replaced with 𝑚𝑒
∗  in Eqs. (43) and 

(44). The chemical potential μ is a temperature-dependence quantity [75] expressed as 

                                                𝜇(𝑇) ≈ 휀𝐹 [1 −
𝜋2

12
(
𝑘𝐵𝑇

휀𝐹
)
2

].                                               (45) 

Substituting Eq. (45) into Eq. (44), it gives 

                                          𝑛𝑠(𝑇) ≈
2𝜋3

3
(
2𝑚𝑒

∗

ℎ2
)
3 2⁄ 1

√2휀𝐹

(𝑘𝐵𝑇)2.                                    (46) 

Then substituting Eq. (46) into Eq. (42) and adopting e*=e, it gives 

 
2𝜋3𝑒2𝜇0

3ℎ3
(2𝑚𝑒

∗)1 2⁄
1

√2휀𝐹

(𝑘𝐵𝜆0)
2 

             =
1

𝑇2
[1 − 𝑐1 (

𝑇

𝑇𝑐
)
1

− 𝑐2 (
𝑇

𝑇𝑐
)
2

− 𝑐3 (
𝑇

𝑇𝑐
)
3

− 𝑐4 (
𝑇

𝑇𝑐
)
4

− 𝑐5 (
𝑇

𝑇𝑐
)
5

].             (47) 

After rearranging it, then we have  

     𝑚𝑒
∗(𝑇) = 𝑚0 [(

𝑇𝑐

𝑇
)
2

− 𝑐1 (
𝑇𝑐

𝑇
)
1

− 𝑐2 − 𝑐3 (
𝑇

𝑇𝑐
)
1

− 𝑐4 (
𝑇

𝑇𝑐
)
2

− 𝑐5 (
𝑇

𝑇𝑐
)
3

]

2

,        (48) 

where  

                                                        𝑚0 =
9ℎ6휀𝐹

4𝜋6𝑒4𝜇0
2𝑘𝐵

4𝜆0
4𝑇𝑐

4
.                                               (49) 

Eq. (48) combined with Eq. (49) can give 𝑚𝑒
∗(𝑇) > 0 for T<Tc.  

In order to get 𝑚𝑒
∗(𝑇) for T>Tc and the continuity at T=Tc, 𝑚𝑒

∗(𝑇) for T>Tc near 
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the critical temperature can be expressed as  

      𝑚𝑒
∗(𝑇) = 𝑚0 [(

𝑇

𝑇𝑐
)
2

− 𝑐1 (
𝑇

𝑇𝑐
)
1

− 𝑐2 − 𝑐3 (
𝑇𝑐

𝑇
)
1

− 𝑐4 (
𝑇𝑐

𝑇
)
2

− 𝑐5 (
𝑇

𝑇𝑐
)
3

]

2

.       (50) 

According to Eqs. (48) and (50), the value 𝑙𝑜𝑔10(𝑚𝑒
∗(𝑇) 𝑚0⁄ ) varying with T/Tc is 

calculated for Nb superconductor film as shown in Fig. 6(a). The effective electron 

mass of Nb is 𝑚𝑒
∗ = 12𝑚𝑒 [2] and Fig. 6(a) gives the value about 0.99 at 273 K. We 

can choose m0=12me in this case and the calculations give 𝑚𝑒
∗  almost equal to 12me at 

T > 3Tc.  

Actually, the value 𝑚𝑒
∗(𝑇) 𝑚0⁄  below Tc seems to close the heavy electron 

superconductors. Several superconductors with very heavy effective electron mass have 

been reported [5]. UBe13 has critical temperature Tc=0.85 K, CeCu2Si2 has Tc=0.65 K, 

and UPt3 has Tc=0.54 K. URu2Si2 is also reported Tc=1.2 K [4]. Their effective electron 

mass is two or three orders of magnitude larger than the normal electron mass. However, 

Eq. (48) has a singularity at T=0 which is unreasonable and needs to be removed. When 

we multiply a temperature–dependent correct term at the right-hand side, the value 

seems to reasonably fit 𝑚𝑒
∗(𝑇) < 𝑚𝑒 for a lot of superconductors. This correction term 

is (𝑇 𝑇𝑐⁄ )4+𝜉 so Eq. (48) becomes 

  
𝑚𝑒

∗(𝑇)

𝑚0
= (

𝑇

𝑇𝑐
)
4+𝜉

[(
𝑇𝑐

𝑇
)
2

− 𝑐1 (
𝑇𝑐

𝑇
)
1

− 𝑐2 − 𝑐3 (
𝑇

𝑇𝑐
)
1

− 𝑐4 (
𝑇

𝑇𝑐
)
2

− 𝑐5 (
𝑇

𝑇𝑐
)
3

]

2

. (51) 

where ξ is zero or a small quantity. This correction might be due to the superelectron 

density ns(T) in Eq. (46) which is temperature independent or weak temperature 

dependent and their number is different from the nearly free electron in the normal 

metal. The different choice of ξ results in different curve below Tc. When considering 

the behavior at T very close to zero, ξ=0 is a good choice. If Eq. (46) represents the 

standard electron density above Fermi surface in the normal metal, it means that the 

electron gas in the superconductor would be the high-density system for Tc > 1 K and 

the low-density one for Tc < 1 K. For some superconductors with Tc > 1 K, the 

superelectron gas would be the high-density system. The probability of the electron-

phonon interaction is dramatically decrease with temperature in both Eqs. (33) and (34), 

so the material performs superconductivity. This reason also may explain why some 

good conductors, such as Ag, Cu, Au, I-A and II-A metals in the periodic element table, 

have not been found superconductivity because of their low-density superelectron gas. 
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(a)                              (b) 

 
                                    (c) 

Fig. 6 (a) Calculations of 𝑙𝑜𝑔10(𝑚𝑒
∗ 𝑚0⁄ )  varying with T/Tc according to Eqs. (48) and (50). (b) 

Calculations of (𝑚𝑒
∗ 𝑚0⁄ ) varying with T/Tc after multiplying a temperature correction term in Eq. (51) 

with ξ=0. (c) The much longer temperature range of (𝑚𝑒
∗ 𝑚0⁄ ) calculated by Eq. (51) with ξ=0.  

IX. The Single-Electron Resistivity Of The Superconductor 

 Finally, we can use Eqs. (51) and (50) to deduce the resistivity in the Nb 

superconductor film. The function f(T) of the resistivity in Eqs. (33) and (34) can be 

obtained according to Eq. (51) and Eq. (50), that is,   

𝑓(𝑇) = 𝑚0 (
𝑇

𝑇𝑐
)
4+𝜉
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1

− 𝑐2 − 𝑐3 (
𝑇

𝑇𝑐
)
1

− 𝑐4 (
𝑇

𝑇𝑐
)
2

− 𝑐5 (
𝑇

𝑇𝑐
)
3

]

2

 

                                                                 𝑓𝑜𝑟 𝑇 < 𝑇𝑐,                                                             (52) 

and 

𝑓(𝑇) = 𝑚0 [(
𝑇
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𝑇𝑐

𝑇
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3
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2

 

                                                                𝑓𝑜𝑟 𝑇𝑐 < 𝑇.                                                              (53) 

In Eq. (34), the electron-phonon interaction should be weak enough. It is reasonable 

because the strong electron-phonon interaction can take more energy away from the 

electron. Low temperature lowers the phonon excitation and therefore the energy 

dissipation decreases. Substituting Eqs. (52) and (53) into Eqs. (33) and (34), and 

supposing ħω=bkBTc where b is a constant, then we have the temperature-dependent 

resistivity for normal process 
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                                                           𝜌(𝑇) = 𝑎𝑇5[𝑓(𝑇)]𝜈,                                                   (54) 

and for the Umklapp process 

                             𝜌(𝑇) = 𝑎𝑇2[𝑓(𝑇)]𝜈
1

𝑒𝑥𝑝 (𝑏
𝑇
𝑇𝑐

) − 1
.                                      (55) 

Here the integration in Eq. (34) is replaced with an average number distribution. 

According to Eqs. (54) and (55), two cases for the compact temperature-dependent 

resistivity 𝜌(𝑇) 𝑎⁄ 𝑚0
𝜈 of the Nb superconductor film varying with T/Tc are drawn in 

Fig. 7(a). Here ξ in Eq. (52) is chosen as zero. The curve described by T5 for the normal 

metal is also shown in Fig. 7(a). v=1 are used for both equations and b=0.50 is used in 

Eq. (55). In Fig. 7(a), two cases described by Eqs. (54) and (55) exhibit the compact 

resistivity much lower than the T5 curve in the vicinity of Tc. Then the log10 of the 

compact resistivity is also calculated for these three equations as shown in Fig. (b) 

where T/Tc varies from 1.0 to 3.0. It explicitly shows very sharp decreases near Tc for 

both Eqs. (54) and (55). The T5 curve changes smoothly and is three orders higher than 

the other two equations. Eqs. (54) and (55) can extend to many superconductor cases 

and reasonably explain the sharp decreases of the resistivity near Tc. Although the 

calculations of Eqs. (54) and (55) are a little larger than the T5-calculations at around 

T/Tc=0.70, all of them are still much smaller than it is at T>Tc.  

     

(a)                                     (b) 

Fig. 7 (a) Compact resistivity varying with T/Tc for two cases described in Eqs. (54) and (55) for the Nb-

superconductor film [71] where ν=1.0 in Eqs. (54) and (55), and b=0.50 in Eq. (55). (b). 

log10(Compact Resistivity) varying with T/Tc for these three equations from T/Tc=1.0 to T/Tc=3.0. The 

parameters v and b are the same as (a). 

  The resistivity model can be improved by considering the parameters (ν, b) are 

different in the different temperature region and b is a temperature-dependent function. 

For example, about the Umklapp process, it is  

                    𝜌(𝑇) = 𝑎𝑇2[𝑓(𝑇)]𝜈
1

𝑒𝑥𝑝 (𝑏(𝑇)
𝑇
𝑇𝑐

) − 1
.                                      (56) 
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The temperature-dependent parameter b comes from the effect of phonons because the 

exponential term is original from Eq. (34) where the entire phonon contributions are 

considered. Therefore, the exponential term in Eq. (57) can be thought as the average 

effect of the whole photons and it is temperature-dependent naturally. We find an simple 

and appropriate expression of b(T) to be 

                                                𝑏(𝑇) = 𝑏0

𝑇

𝑇𝑐
.                                                          (57) 

Of course, it is possibly a complicated series which includes some high-order T-terms, 

but Eq. (56) with Eq. (57) can be good enough to satisfy some experiments. The 

transition metal and alloy normal-state resistivity is related to the phonons. The T3 low-

temperature dependence of resistivity has been reported for an Nb magnetron-sputtered 

film at least to 29.5 K [76], in which the equation of the dashed line representing the 

normal-state resistivity in Fig. 1 is approximated to  

                                𝜌(𝑇) − 𝜌0 ≅
3.0

2.9
× 10−5(𝑇3 − 103)    (𝜇Ω ∙ 𝑐𝑚 𝐾3⁄ ),                 (58) 

where the normal-state resistivity at 10 K is ρ(10 K)≌ρ0. If we use the normal-state 

resistivity at 10 K to be a reference, then Eq. (58) tells us that the cubic root of the 

increasing resistivity starting from ρ(10 K) is very close to 0.0218T (μΩ⋅cm)1/3⋅K. 

Therefore, the cubic root of the increasing normal-state resistivity performs linearity in 

T. In order to satisfy this report, our model is also respected for the similar behavior 

performing the T3 low-temperature dependence of resistivity in the normal state. Next, 

we choose appropriate parameters in Eqs. (56) and (57). The parameters (ν, b) is 

obviously in the normal state different from those in the superconducting state because 

the performances of phonons and electrons are very different in these two states. Thus, 

we show a case by choosing two different parameters (ν, b) in the normal and 

superconducting states, respectively. In the superconducting state, ν1=1.0 and 

b0=b1=30.0, and in the normal state, ν2=0.22 and b0=b2=2.50. The cubic root of the 

normalized resistivity calculated by Eqs. (56) and (57) is shown in Fig. 8(a) from 0 K 

up to 3Tc, in which the normalized resistivity is defined as �̅�(𝑇) = 𝜌(𝑇) 𝜌(1.01𝑇𝑐)⁄ . 

This temperature range coves both the superconducting and normal states and the 

transition temperature range from the superconducting state to the normal state is about 

0.01Tc. For the Nb superconductor, the critical temperature Tc=9.5 K [1], then the 

maximum temperature shown in Fig. 8(a) is about 28.5 K, close to the 1995 report about 

the Nb normal-state resistivity in the low temperature [76]. In the meanwhile, a dashed 

line behaving the T3 low-temperature dependence is also shown to n Fig. 8(a). It 

explicitly shows the curve calculated by Eqs. (56) and (57) matching better and better 
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the dashed line above 1.01Tc so our model not only shows extremely low resistivity in 

the superconducting state, but also the T3 low-temperature dependence of resistivity in 

the normal state. Especially, the dashed line is almost coincident with the curve above 

2.0Tc. The slop of the dashed line is 1.0 in our calculation. Because we use the 

normalized resistivity in the y-axis, the curve is scalable when we compare the model 

with the experimental data. In Fig. 8(b), the normalized resistivity from 0 K to 3T/Tc is 

shown in the log scale where the normalized resistivity of the superconducting state is 

about 10-16 to 10-12. In Eq. (57), we can choose different b0=b2 in the normal state, then 

we can discuss the effect of b2 on the normalized resistivity. When b2=0.45, the 

calculation shows the normalized resistivity about one order of magnitude higher than 

that of the b2=0.25 case. However, both different b2 cases almost not affect the 

normalized resistivity in the normal state. Therefore, the different b2 mainly affects the 

normalized resistivity in the superconducting state. In summary, above discussions 

means that our model can explain the extremely low resistivity in the superconductor 

as well as the metallic resistivity in the normal state.  

 

Fig. 8 (a) The model for the Umklapp process to describe the Nb resistivity in the low-temperature region 

from 0 K to 3Tc. In this case, we use ν1=1.0 and b1=30.0 at T<Tc, and ν2=0.22 and b2=2.50 at T≥Tc. The 

cubic root of the normalized resistivity shows extremely low resistivity in the superconducting state and 

T3 low-temperature dependence of resistivity in the normal state which revealed in an Nb sputtered film 

in 1995 [76]. (b) The semi-log plot of the model for the Umklapp process describing the Nb resistivity 

in the low-temperature region. Two different b2 cases show the effect on the normalized resistivity. The 

normalized resistivity is between 10-16 and 10-12 for the b2=0.25 case and that between 10-15 and 10-11 for 

the b2=0.45 case in the superconducting state, and it is almost not affected by these two b2 in the normal 

state.  

X. Conclusions 

In conclusion, the electron pair in the superconducting state is a not real physical 

phenomenon because the velocity of the Fermi electron is several hundred to thousand 

faster than the crystal wave and the mediated phonon in this process is virtual. How to 

combine two high-speed electrons through a much slow mediated phonon is very hard 

even impossible to carry out. Especially, the phonon is the collective excitation and 
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many electrons have possibility to scatter or absorb the mediated phonon through the 

electron-phonon interaction. The mediated phonon should not only interact with two 

electrons and the weakly negative perturbation energy should not mean the possibility 

to form a stable electron pair in the superconductor. In RPA calculations, it has already 

revealed the negative energy correction for the quasi-electron in the high-density 

electron gas but it hasn’t yet been considered a stable electron-pair picture there. 

According to these discussions, we propose the single-electron viewpoint to explain 

the almost zero resistance or resistivity in the superconductor. The TEM experiments 

provide a good support that the energy loss exists when the several keV electron passes 

through the superconductor. It is almost impossible for a conduction electron in the 

superconductor to form an electron pair with the incident electron. Then we build the 

resistivity of the superconductor including the correction of the temperature-dependent 

effective electron mass. In the following, the correction function is tried to find out. 

Next, a new fitting model for the London penetration depth in the superconductor is 

first proposed. This new model can match three different superconductor experiments 

much better than the exponential electron-pair model. The later often has large 

deviations at low and high temperature. It further exhibits the finite London penetration 

depth at Tc which have been verified by some experiments. 

Finally, the successful fitting model gives the collection function of the temperature-

dependent effective electron mass for the resistivity of the superconductor. Using the 

fitting parameters from the experiment of the Nb superconductor film, the calculation 

results show the sharp decreases for the compact resistivity described by Eqs. (54) and 

(55) which is the characteristic of the resistivity near the critical temperature Tc for the 

superconductor. In the following, we use different parameters (ν,b) in the 

superconducting and normal states for Eqs. (6) and (57) and finally, the normalized 

resistivity curve shows extremely low resistivity in the superconducting state and the 

T3 low-temperature dependence of resistivity in the normal state which is coincident 

with the experiments of an Nb sputtered film in 1995 [76]. The results tell us that the 

high-density superelectron gas would be better for the existence of superconductivity 

and the electron-phonon interaction is very weak in the superconductor. When electron 

inelastically scatters the ion to produce a phonon, the small phonon energy results in 

the tiny energy lost taking away from an electron. It benefits the electron to hold most 

of its energy and therefore, the dissipation and resistivity are almost zero in the 

superconducting state.  
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T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, J. Mannhart, 

“Superconducting Interfaces Between Insulating Oxides,” Sci. 317, 1196 (2007). 

[24]. A. Gozar, G. Logvenov, L. Fitting Kourkouits, A. T. Bollinger, L. A. Gianuzzi, D. A. Muller, I. 

Bozovic, “High-Temperature Interface And Superconductivity Between Metallic And Insulating 

Cuprates,” Nat. 455, 782 (2008). 

[25]. Athena S. Sefat, Michael A. McGuire, Brian C. Sales, Rongying Jin, Jane Y. Howe, and David 

Mandrus, “Electron Correlations In Superconductor LaFeAsO0.89F0.11 with Low Carrier Density,” 

Phys. Rev. B 77, 174503 (2008). 

[26]. T. M. McQueen, A. J. Williams, P. R. Stephens, J. Tao, Y. Zhu, J. Ksenofontov, F. Casper, C. Felser, 

and R. J. Cava, “Tetragonal-to-Orthornombic Structural Phase Transition at 90 K In The 

Superconductor Fe1.01Se,” Phys. Rev. Lett. 103, 57002 (2009). 

[27]. Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, 

and J. Q. Li, “Microstructure And Ordering of Iron-Vacancies In The Superconductor System 

KyFexSe2 As Seen via Transmission Electron Microscopy,” Phys. Rev. B 83, 140505(R) (2011). 

[28]. Athena S. Sefat, Michael A. McGuire, Brian C. Sales, Rongying Jin, Jane Y. Howe, and David 

Mandrus, “Electronic correlations in the superconductor LaFeAsO0.89F0.11 with low carrier density,” 

Phys. Rev. B 77, 174503 (2008). 

[29]. K Kanaya and S Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. 



 27 

Phys. D: Appl. Phys. 5, (1972). 

[30]. J. C. Ashley, “Energy-loss probabilities for electrons, positrons, and protons in condensed matter,” 

J. Appl. Phys. 69, 674-678 (1991). 

[31]. A. P. Sorini, J. J. Kas, J. J. Rehr, M. P. Prange, and Z. H. Levine, “Ab initio calculations of electron 

inelastic mean free paths and stopping powers,” Phys. Rev. B 74, 165111 (2006). 

[32]. M. J. Berger and S. M. Seltzer, Stopping Powers and Ranges of Electrons and Positrons (2nd ed., 

1982).  

[33]. National Research Council (U.S.), Nuclear Science Series Report Number 39: Studies in 

Penetration of Charged Particles in Matter, (U. S. National Academy of Sciences, N. W., 1964). 

[34]. J. F. Ziegler, Handbook of Stopping Cross-Sections for Energetic Ions in All Elements (Pergamon 

Press, 1980). 

[35]. Donald E. Groom, Nikolai V. Mokhov, Sergei I. Striganov, and IHEP, Protvino, Russia, “Muon 

Stopping Powers And Ranges Of Electron And Positron,” Atomic Data and Nuclear Data Tables 

76, LBNL-44742 (2001).  

[36]. D. Emfietzoglou, I. Kyriakou, I. Abril, R. Garcia-Molina, and H. Nikjoo, “Inelastic scattering of 

low-energy electrons in liquid water computed from optical-data models of the Bethe surface,” Int. 

J. Radiat. Biol. 88, 22 (2012).  

[37]. Dominique Drouin, Alexandre Re ́al Couture, Dany Joly1, Xavier Tastet, Vincent Aimez, Raynald 

Gauvin, “CASINO V2.42-A Fast And Easy-to-Use Modeling Tool for Transmission Electron 

Microscopy And Microanalysis Users,” Scanning 29, 92 (2007). 

[38]. Z. Francis, S. Incerti, M. Karamitros, H.N. Tran, C. Villagrasa, “Stopping power and ranges of 

electrons, protons and alpha particles in liquid water using the Geant4-DNA package,” Nucl. 

Instrum. Meth. Phys. Res. B 20, 2307 (2011). 

[39]. R F Egerton, “Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 016502 (2009). 

[40]. S. Tanuma, C. J. Powell, D. R. Penn, “Calculations of electron inelastic mean free paths for 31 

materials,” Surf. Interface Anal. 11, 577-589 (1988). 

[41]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths for 

31 Materials,” Surf. Interface Anal. 11, 577 (1988). 

[42]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths II. 

Data for 27 Elements over the 50-2000 eV Range,” Surf. Interface Anal. 17, 911 (1991). 

[43]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths III. 

Data for 15 Inorganic Compounds over the 50-2000 eV Range,” Surf. Interface Anal. 17, 927 (1991).  

[44]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths 

(IMFPs) IV. Evaluation of Calculated IMFPs and of the Predictive IMFP Formula TPP-2 for 

Electron Energies between 50 and 2000 eV,” Surf. Interface Anal. 20, 77 (1993).  

[45]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Paths. V. 

Data for 14 Organic Compounds over the 50-2000 eV Range,” Surf. Interface Anal. 21, 165 (1994).  

[46]. S. Tanuma, C. J. Powell, and D. R. Penn, “Calculations of Electron Inelastic Mean Free Path 



 28 

(IMFPs). VII. Reliability of The TPP-2M IMFP Predictive Equation,” Surf. Interface Anal. 35, 268 

(2003).  

[47]. Donald A. Neamen, Semiconductor Physics And Devices (Richard D. Irwin, Inc., Burr Ridge, 1992).  

[48]. Craig T. Van Degrift, “Tunnel diode oscillator for 0.001 ppm measurements at low 

temperatures,“ Rev. Sci. Instrum. 46, 599 (1975).  

[49]. A. T. Fiory and A. F. Hebard, “Penetration depths of High Tc films measured by two-coil mutual 

inductances,” Appl. Phys. Lett. 52, 2165 (1988). 

[50]. A. L. Schavlow and G. E. Devlin, “Effect of The Energy Gap on The Penetration Depth of 

Superconductors,” Phys. Rev. 113, 120 (1959). 

[51]. P. L. Gammel, A. F. Hebard, C. E. Rice, and A. F. J. Levi, “Temperature and Field Dependence Of 

The Magnetic Penetration Length Of C-Axis Oriented YBa2Cu3O7 Films,” Phys. C 162-164, 1565 

(1989).  

[52]. F. Gross, B.S. Chandrasekhar, D. Einzel, K. Andres, P.J. Hirschfeld, H.R. Ott, J. Beuersl, Z. Fisk, 

and J.L. Smith, "Anomalous Temperature Dependence of the Magnetic Field Penetration Depth in 

Superconducting UBe13," Z. Phys. B – Condens. Matter 64, 175 (1986). 

[53]. D. Einzel, P. J. Hirschfeld, F. Gross, B. S. Chandrasekhar, K. Andres, H. R. Ott, J. Beuers, Z. Fisk, 

and J. L. Smith, "Magnetic Field Penetration Depth in the Heavy-Electron Snyerconductor UBe13," 

Phys. Rev. Lett. 56, 2513 (1986). 

[54]. L. Krusin-Elbaum, R. L. Greene, F. Holtzberg, A. P. Malozemoff, and Y. Yeshurun, "Direct 

Measurment of the Temperature-Dependent Magnetic Penetration Depth in Y-Ba-Cu-O Crystals," 

Phys. Rev. Lett. 62, 217 (1989). 

[55]. Peter J. Hirschfeld and Nigel Goldenfeld, "Effect of Strong Scattering in the Low-Temperature 

Penetration Depth of A d-wave Superconductor," Phys. Rev. B 48, 4219 (1993). 

[56]. W. N. Hardy, D. N. Bonn, D. C. Morgan, Ruxin Liang, and Kuan Zhang, “Precision measurements 

of the temperature dependence of λ in YBa2Cu3O6.95: Strong evidence for nodes in the gap function,” 

Phys. Rev. Lett. 70, 3999 (1993). 

[57]. A. Fuchs, W. Prusseit, P. Berberich, and H. Kinder, “High-precision penetration-depth 

measurement of YBa2Cu3O7-δ as a function of oxygen content,” Phys. Rev. B 53, R14745 (1996). 

[58]. R. Prozorov, R.W. Giannetta, P. Fournier, and R. L. Greene, “Evidence for Nodal Quasiparticles in 

Electron-Doped Cuprates from Penetration Depth Measurements,” Phys. Rev. Lett. 85, 3700 (2000). 

[59]. I. Bonalde, Brian D. Yanoff, M. B. Salamon, D. J. Van Harlingen, E. M. E. Chia, Z. Q. Mao, and 

Y. Maeno, “Temperature Dependence of the Penetration Depth in Sr2RuO4: Evidence for Nodes in 

the Gap Function,” Phys. Rev. Lett. 85, 4775 (2000). 

[60]. J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytis, J.-H. Chu, A. S. Erickson, I. R. Fisher, and A. 

Carrington, “Evidence for a Nodal-Line Superconducting State in LaFePO,” Phys. Rev. Lett. 102, 

147001 (2009). 

[61]. R. T. Gordon, C. Martin, H. Kim,1 N. Ni, M. A. Tanatar, J. Schmalian, I. I. Mazin, S. L. Bud’ko, 

P. C. Canfield, and R. Prozorov, “London penetration depth in single crystals of Ba(Fe1−xCox)2As2 



 29 

spanning underdoped to overdoped compositions,” Phys. Rev. B 79, 100506 (R) (2009).  

[62]. C. Martin, R. T. Gordon, M. A. Tanatar, H. Kim, N. Ni, S. L. Bud’ko, P. C. Canfield, H. Luo, H. 

H. Wen, Z. Wang, A. B. Vorontsov, V. G. Kogan, and R. Prozorov, “Nonexponential London 

penetration depth of external magnetic fields in superconducting Ba1−xKxFe2As2 single crystals,” 

Phys. Rev. B 80, 020501 (R) (2009). 

[63]. C. Martin, M. E. Tillman, H. Kim, M. A. Tanatar, S.K. Kim, A. Kreyssig, R. T. Gordon, M. D. 

Vannette, S. Nandi, V. G. Kogan, S. L. Bud’ko, P. C. Canfield, A. I. Goldman, and R. Prozorov, 

“Nonexponential London Penetration Depth of FeAs-Based Superconducting RFeAsO0.9F0.1 (R=La, 

Nd) Single Crystals,” Phys. Rev. Lett. 102, 247002 (2009). 

[64]. A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, “Superfluid density and penetration depth 

in the iron pnictides,” Phys. Rev. B 79, 140507 (R) (2009). 

[65]. R. T. Gordon, N. Ni, C. Martin, M. A. Tanatar, M.D. Vannette, H. Kim, G. D. Samolyuk, J. 

Schmalian, S. Nandi, A. Kreyssig, A. I. Goldman, J. Q. Yan, S. L. Bud’ko, P. C. Canfield, and R. 

Prozorov, “Unconventional London Penetration Depth in Single-Crystal Ba(Fe0.93Co0.07)2As2 

Superconductors,” Phys. Rev. B 102, 127004 (2009). 

[66]. C. Martin, H. Kim, R. T. Gordon, N. Ni, V. G. Kogan, S. L. Bud’ko, P. C. Canfield, M. A. Tanatar, 

and R. Prozorov, “Evidence from anisotropic penetration depth for a three-dimensional nodal 

superconducting gap in single-crystalline Ba(Fe1−xNix)2As2,” Phys. Rev. B 81, 060505 (R) (2010). 

[67]. R. T. Gordon, H. Kim, M. A. Tanatar, R. Prozorov, and V. G. Kogan, “London penetration depth 

and strong pair breaking in iron-based superconductors,” Phys. Rev. 81, 180501 (R) (2010). 

[68]. H. Kim, C. Martin, R. T. Gordon, M. A. Tanatar, J. Hu, B. Qian, Z. Q. Mao, Rongwei Hu, C. 

Petrovic, N. Salovich, R. Giannetta, and R. Prozorov, “London penetration depth and superfluid 

density of single-crystalline Fe1+y(Te1−xSex) and Fe1+y(Te1−xSx),” Phys. Rev. B 81, 180503 (R) (2010). 

[69]. H. Kim, R. T. Gordon, M. A. Tanatar, J. Hua, U. Welp, W. K. Kwok, N. Ni, S. L. Bud’ko, P. C. 

Canfield, A. B. Vorontsov, and R. Prozorov, “London penetration depth in Ba(Fe1−xTx)2As2 (T=Co, 

Ni) superconductors irradiated with heavy ions,” Phys. Rev. B 82, 060518(R) (2010). 

[70]. R Prozorov and V G Kogan, “London Penetration Depth in Iron-Based Superconductors,” Rep. 

Prog. Phys. 74, 124505 (2011). 

[71]. R. F. Wang, S. P. Zhao, G. H. Chen, and Q. S. Yang, “Absolute Measurement of Penetration Depth 

in A Superconducting Film by The Two-Coil Technique,” Appl. Phys. Lett. 75, 3865 (1999). 

[72]. Philipp Gegenwart, Qimiao Si, and Frank Steglich, “Quantum Criticality In Heavy-Fermion Metals,” 

Nat. Phys. 4, 186 (2008).  

[73]. Jeffrey M. McMahon, Miguel A. Morales, Carlo Pierleoni, and David M. Ceperley, “The Properties 

of Hydrogen And Helium Under Extreme Conditions,” Rev. Mod. Phys. 84, 1607 (2012). 

[74]. Ranga P. Dias and Issac F. Silvera, “Metallic Hydrogen Finally Made In Lab At Mind-Boggling 

Pressure,” Sci. 26. 1579 (2017).  

[75]. Walter Greiner, Ludwig Neise, and Horst Stocker, Thermodynamics And Statistical Mechanics 

(Springer, 2nd ed., New York, 1995).  



 30 

[76]. A. Andreone, A. Cassinese, M. Iavarone, R. Vaglio, I. I. Kulik, and V. Palmieri, “Relation between 

Normal-State and Superconductive Properties of Sputtered Niobium Films,” Phys. Rev. B 52, 4473, 

(1995).  

[76]. Ting-Hang Pei (2020). “The new perspective for the superconductor,” Materials Cloud, V.1, Dataset.  


