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Abstract. This work explains how to extend standard conformal geometric al-
gebra of the Euclidean plane in a novel way to describe cubic curves in the Eu-
clidean plane from nine contact points or from the ten coefficients of their implicit
equations. As algebraic framework serves the Clifford algebra Cl(9,7) over the
real sixteen dimensional vector space R9,7. These cubic curves can be intersected
using the outer product based meet operation of geometric algebra. An analogous
approach is explained for the description and operation with cubic surfaces in
three Euclidean dimensions, using as framework Cl(19,16).
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1 Introduction

Cubic curves in the Euclidean plane have historically already been studied by Isaac
Newton. In the context of geometric algebra [6], especially conformal geometric alge-
bra, triple conformal geometric algebra (TCGA) Cl(9,3) of the Euclidean plane pro-
vides a frame work for representing cubics and some higher order algebraic curves [7],
albeit with the disadvantage of not being able to intersect two cubic curves with each
other using the outer product. Yet, TCGA has the advantage of low dimensions, the un-
derlying vector space only has dimension twelve, and modern PCs can easily compute
with Clifford algebras over such vector spaces. Another advantage is that the intuitive
and efficient quaternion like versor form of geometric transformations is available in
TCGA.

Another line of development was the representation of conic curves in the plane
by C. Perwass in Chapter 4.5 of [16] using the extended conformal geometric algebra
Cl(5,3), we call conic CGA. Including transformation versors for rotation, translation
and scaling, this has been worked out in more detail in [13], and with a further simplified
set of transformation versors in [11]. Again, nowadays computer algebra systems like
Maple [1], Mathematica [2] and Matlab [17], etc., can easily work with Cl(5,3). We
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now present the algebra of an implementation of cubic curves constructed from nine
contact points, or alternatively from the ten coefficients of their implicit equation in
the extended conformal geometric algebra Cl(9,7), named cubic CGA, over the real
vector space R9,7. This is currently at the limit what an implementation like [17] can
compute. The expectation is, that optimization will very soon progress, and enable us
to apply [17] to this problem, and we even anticipate that other implementations using
e.g. the optimization framework GAALOP [8] or even GARAMON [4] or ganja.js [14],
may indeed already be able to reasonable compute in the Cl(9,7) framework. The aim
of the present paper is not to present a full framework, including a complete software
implementation, but rather to outline the algebraic framework, and thus enable other
researchers to work with cubic curves in cubic CGA, including the general intersection
computation.

The paper is structured as follows. Section 2 outlines the algebraic setup of the ex-
tended CGA for cubic curves. Section 3 then proceeds to introduce the notion of cubic
points (points in two dimensions, that are extended to include quadratic and cubic co-
ordinate monomials as vector coefficients). This includes explanations on how standard
CGA of two dimensional Euclidean space and conic CGA are embedded in cubic CGA.
Section 4 explains how to construct cubic curve representing blades either from nine
contact points, or from the ten coefficients of the implicit cubic curve equation in two
dimensions. Section 5 introduces the way of computing intersections of cubic curves,
utilizing the outer product of blades. Furthermore, Section 6 extends the approach to the
cubic surface CGA Cl(19,16) for describing in an analogous way to the previous sec-
tions the construction of cubic surfaces in three Euclidean dimensions, either from 19
surface points, or from the twenty coefficients of the implicit equation of cubic surfaces
in three dimensions. The work concludes with Section 7, followed by references.

2 Cubic conformal geometric algebra

We use the following notation: Lower-case bold letters denote basis blades and multi-
vectors (vector or multivector a). Italic lower-case letters refer to multivector compo-
nents (a1,x,y2, · · · ). For example, ai is the ith coordinate of the (multi)vector a. The
superscript star used in x∗ represents the dualization of the multivector x. Finally, sub-
script ε on xε refers to the two-dimensional Euclidean vector associated to the vector x
of CCGA.

Note that when used in geometric algebra the inner product, contractions and the
outer product have priority over the full geometric product. For instance, a∧bI = (a∧
b)I.

The inner products between the basis vectors of Cl(9,7) are defined in Table 1.
The transformation from the common diagonal metric basis to that of Table 1 can

be defined as follows: for 1≤ i, j ≤ 7,

eoi =
1√
2
(e−i− e+i), e∞i =

1√
2
(e+i + e−i). (1)

We further define for later use another pair of null vectors

e∞ = 1
2 (e∞1 + e∞2), eo = eo1 + eo2. (2)
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Table 1. Inner product between cubic CGA basis vectors.

e1 e2 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6 eo7 e∞7
e1 1 0 · · · · · · · · · · · · · ·
e2 0 1 · · · · · · · · · · · · · ·

eo1 · · 0 −1 · · · · · · · · · · · ·
e∞1 · · −1 0 · · · · · · · · · · · ·
eo2 · · · · 0 −1 · · · · · · · · · ·
e∞2 · · · · −1 0 · · · · · · · · · ·
eo3 · · · · · · 0 −1 · · · · · · · ·
e∞3 · · · · · · −1 0 · · · · · · · ·
eo4 · · · · · · · · 0 −1 · · · · · ·
e∞4 · · · · · · · · −1 0 · · · · · ·
eo5 · · · · · · · · · · 0 −1 · · · ·
e∞5 · · · · · · · · · · −1 0 · · · ·
eo6 · · · · · · · · · · · · 0 −1 · ·
e∞6 · · · · · · · · · · · · −1 0 · ·
eo7 · · · · · · · · · · · · · · 0 −1
e∞7 · · · · · · · · · · · · · · −1 0

Inner products lead to

e∞i · eoi =−1, e∞ · eo =−1, e2
o = e2

∞ = 0, (3)
e∞k · eo =−1 (k = 1,2), e∞l · eo = 0 (l = 3,4,5,6,7), e∞i · e∞ = 0, (4)

We further define the bivectors Ei, E, as

Ei = e∞i∧ eoi = e+ie−i, E = e∞∧ eo, (5)

and obtain the following products

E2
i = 1, EiE j = E jEi, (6)

eoiEi =−Eieoi =−eoi, e∞iEi =−Eie∞i = e∞i, (7)

eo jEi
i 6=i
= Eieo j, e∞ jEi

i 6=i
= Eie∞ j, (8)

E2 = 1, eoE =−Eeo =−eo, e∞E =−Ee∞ = e∞. (9)

We further define the following blades

I∞12 = e∞1e∞2, I∞c = e∞4e∞5e∞6e∞7, I∞b = e∞3I∞c, I∞ = I∞12I∞b, (10)
Io12 = eo1eo2, Ioc = eo4eo5eo6eo7, Iob = eo3Ioc, Io = Io12Iob, (11)
I∞o = I∞∧ Io =−E1E2E3E4E5E6E7, (12)

e�o12 = eo1− eo2, I�o = e�o12Iob, e�
∞12 = e∞1− e∞2, I�∞ = e�

∞12I∞b, (13)

Note that we defined the 7-blades I∞ and Io as the products of all infinity null vectors,
respectively of all origin null vectors. As we will see later in this model, the 6-blades
I�∞ and I�o are frequently used, e.g. to work with the embedding of standard CGA in
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cubic CGA (Section 3), for the dual vector representation of cubics (Section 4), and
for intersection computations (Section 5). The blades I∞ and I�∞ are directly related by
(18). A similar relationship exists between Io and I�o . As a consequence of the blade
definitions we have

e�
∞12 · e

�
o12 =−2, (14)

I∞c · Ioc = Ioc · I∞c = I∞ccIoc = I∞cbIoc = 1, (15)
I�∞ · I�o = I�o · I�∞ = I�∞ cI�o = I�∞ bI�o =−2. (16)

We have the following outer product relationships

I∞12 =−e∞1∧ e�
∞12 =−e∞2∧ e�

∞12 =−e∞∧ e�
∞12

=−e∞1 e�
∞12 =−e∞2 e�

∞12 =−e∞ e�
∞12, (17)

which further lead to

I∞ =−e∞1∧ I�∞ =−e∞2∧ I�∞ =−e∞∧ I�∞
=−e∞1 I�∞ =−e∞2 I�∞ =−e∞ I�∞ , (18)

Similar to [11] we obtain for products with the simple 6-vector I�∞ that

{1,eo,e∞,E}∧ I�∞ = {1,eo,e∞,E}I�∞ = I�∞ {1,eo,e∞,E}, (19)

We define the pseudo-scalar Iε in R2:

Iε = e1e2, I2
ε =−1, I−1

ε =−Iε . (20)

The full pseudo-scalar I and its inverse I−1 (used for dualization) are:

I = Iε I∞o =−Iε E1E2E3E4E5E6E7, I2 =−1, I−1 =−I. (21)

The dual of a multivector indicates division by the pseudo-scalar, e.g., a∗ = −aI, a =
a∗I. From eq. (1.19) in [10], we have the useful duality between outer and inner products
of non-scalar blades A,B in geometric algebra:

(A∧B)∗ = A ·B∗, A∧ (B∗) = (A ·B)∗ ⇔ A∧ (BI) = (A ·B)I, (22)

which indicates that

A∧B = 0 ⇔ A ·B∗ = 0, A ·B = 0 ⇔ A∧B∗ = 0. (23)

3 Point in cubic CGA

The point x of cubic CGA corresponding to the Euclidean point xε = xe1 +ye2 ∈R2, is
defined as3

x = xε +
1
2 (x

2e∞1 + y2e∞2)+ xye∞3 + x3e∞4 + x2ye∞5 + xy2e∞6 + y3e∞7 + eo. (24)

3 The use of the factor one half in 1
2 (x

2e∞1 + y2e∞2) is taken over from the point definition in
standard CGA [6], and has importance in preserving the inner product to distance relationship
of CGA in (26).
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Note that basically each quadratic and cubic coordinate monomial is assigned to a dif-
ferent infinity null vector. Standard CGA Cl(3,1) has only one infinity null vector,
which means that only objects of constant curvature (flat or round) can be described.
Already, the fundamental approach for the description of conics by Perwass [16] in
Cl(5,3) needed to assign each of the quadratic monomials x2, y2 and xy to individual,
linearly independent (mutually orthogonal) null vector dimensions. Our point definition
(24) is the consequent continuation of this approach. Note further that the five null vec-
tors eo3,eo4,eo5,eo6,eo7 are not present in the definition of the point. This is chiefly to
keep the convenient properties of the CGA points, namely, the inner product between
two points is identical with the squared distance between them. Let x1 and x2 be two
points, their inner product is

x1 ·x2 =

(x1ε +
1
2 x2

1e∞1 +
1
2 y2

1e∞2 + x1y1e∞3 + x3
1e∞4 + x2

1y1e∞5 + x1y2
1e∞6 + y3

1e∞7 + eo) (25)

· (x2ε +
1
2 x2

2e∞1 +
1
2 y2

2e∞2 + x2y2e∞3 ++x3
2e∞4 + x2

2y2e∞5 + x2y2
2e∞6 + y3

2e∞7 + eo).

from which together with Table 1, it follows that

x1 ·x2 = x1ε ·x2ε − 1
2 (x

2
1 + y2

1 + x2
2 + y2

2) =− 1
2 (x1ε −x2ε)

2. (26)

We see that the inner product is equivalent to the minus half of the squared Euclidean
distance between x1 and x2.

By wedging a cubic CGA point with the blade I∞c we obtain

x∧ I∞c =
(
xε +

1
2 (x

2e∞1 + y2e∞2)+ xye∞3 + eo
)
∧ I∞c (27)

= xconic∧ I∞c = xconicI∞c, (28)

that is all four third power terms in the coordinates x3, x2y, xy2, y3 drop out, and what
remains is identical to the conic point definition xconic in conic CGA Cl(5,3) generated
by the basis {e1,e2,eo1,e∞1,eo2,e∞2,eo3,e∞3} in [11]. The conic point can be obtained
explicitly by

xconic = xε +
1
2 (x

2e∞1 + y2e∞2)+ xye∞3 + eo = (x∧ I∞c)bIoc. (29)

A consequence of this embedding of conic CGA in cubic CGA is, that all results of
conic CGA are perfectly valid in cubic CGA.

Furthermore, by wedging a cubic CGA point with the blade I�∞ we obtain

x∧ I�∞ =
(
xε +

1
2 (x

2e∞1 + y2e∞2)+ eo
)
∧ I�∞ =

(
xε +

1
2 (x

2 + y2)e∞ + eo
)
∧ I�∞

=
(
xε +

1
2 x2

ε e∞ + eo
)
∧ I�∞ = xC∧ I�∞ = xCI�∞ , (30)

that is all four third power terms in the coordinates x3, x2y, xy2, y3 and the mixed sec-
ond order term xy drop out, and what remains is identical to the standard CGA point
definition xC in standard CGA Cl(3,1) of the Euclidean plane generated by the basis
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{e1,e2,eo,e∞}. The standard CGA point xC can be obtained explicitly4 by

xC = xε +
1
2 x2

ε e∞ + eo =− 1
2 (x∧ I�∞ )bI�o . (31)

We thus see, that standard CGA of the Euclidean plane in Cl(3,1) is fully embedded
in cubic CGA Cl(9,7). The sequence of embedding is standard CGA in conic CGA in
cubic CGA.

4 Cubic curve

This section describes how cubic CGA handles plane cubic curves. A cubic curve in R2

is formulated as

F(x,y) = ax3 +bx2y+ cxy2 +dy3 + ex2 + fy2 +gxy+hx+ iy+ j = 0. (32)

We note, that the set of cubic curves has a natural structure of a projective space P9

[15]. The first way to represent a cubic curve in cubic CGA is constructive by wedging
nine contact points together as follows

q = x1∧x2∧·· ·∧x9. (33)

The multivector q corresponds to the primal form of a cubic curve in cubic CGA, with
grade nine and essentially ten components, with ten coefficients a, b, ..., j. If we further
wedge5 the 9-blade q with the 6-blade I�o , we obtain a 15-blade

q∧ I�0 =
(
− (2eeo1 +2feo2 +geo3 + aeo4 +beo5 + ceo6 +deo7)+he1 + ie2− je∞

)
I

= (q∧ I�0 )∗ I, (34)

The expression for the dual 1-vector (q∧ I�o )∗ is therefore simply

(q∧I�o )∗=−(2eeo1+2feo2+geo3+aeo4+beo5+ceo6+deo7)+he1+ ie2− je∞. (35)

Proposition 41 A point x lies on the cubic curve q if and only x∧q∧ I�o = 0.

Proof.

x∧ (q∧ I�o ) = x∧ ((q∧ I�o )∗I) = x · (q∧ I�o )∗ I
= x ·

(
− (2eeo1 +2feo2 +geo3 + aeo4 +beo5 + ceo6 +deo7)

+he1 + ie2− je∞

)
I

= (ax3 +bx2y+ cxy2 +dy3 + ex2 + fy2 +gxy+hx+ iy+ j)I. (36)

This corresponds to the formula (32) representing a general cubic curve.
4 The operation (x∧ I�∞ )bI�o combining outer product and contraction is typical for projection

operations in geometric algebra. For example, in Cl(3,0) the projection of multivector a onto
a blade b is given by (a∧b)bb−1. Since I�∞ is a product of null vectors and has no inverse, the
projection operation is completed by contracting with I�o from the right, see (16).

5 This is a strategy similarly employed by Perwass for conics [16] and in [11], and for quadrics in
[3,12]. Treating the outer product of contact points (33) as the actual algebraic representation
of the geometric object in question, was essential for the formulation of rotations, translations
and scaling by means of versors in [12]. We intuitively expect that this may turn out to be
similar in the current cubic CGA Cl(9,7).
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The dualization of the primal cubic q wedged with I�o leads to the 1-vector dual
form (q∧ I�o )∗ of (35).

Corollary 42 A point x lies on the cubic curve defined by q if and only if x ·(q∧I�0 )∗ =
0.

The ten coefficients {a, . . . , j} of the cubic equation (32) can be easily extracted from
the cubic curve 9-blade q of (33) by computing the following scalar products with
vector (q∧ I�o )∗ as

a = (q∧ I�o )∗ · e∞4, b = (q∧ I�o )∗ · e∞5, c = (q∧ I�o )∗ · e∞6,

d = (q∧ I�o )∗ · e∞7, e = 1
2 (q∧ I�o )∗ · e∞1, f = 1

2 (q∧ I�o )∗ · e∞2,

g = (q∧ I�o )∗ · e∞3, h = (q∧ I�o )∗ · e1, i = (q∧ I�o )∗ · e2,

j = (q∧ I�o )∗ · eo. (37)

Remark 43 Based on the ten coefficients of the implicit cubic equation (32), the vector
(q∧I�o )∗ of (35), can easily be constructed, providing another valid dual representation
of the cubic curve in cubic CGA, that can e.g. be used for intersection computations as
described in the next Section.

5 Intersections

Any number of linearly independent embedded standard CGA objects, embedded con-
ics and cubic curves {A,B, . . . ,Z}, after wedging with the 6-blade I�o , can be intersected
by computing the dual of the outer product of their duals

(M∧ I�o )∗ = (A∧ I�o )∗∧ (B∧ I�o )∗∧ . . .∧ (Z∧ I�o )∗. (38)

The approach is analogous to intersecting two circles in CGA Cl(3,1) of two-dimension-
al Euclidean space, or two spheres in CGA Cl(4,1) of three-dimensional Euclidean
space. But in Cl(3,1) [8] and Cl(4,1) [6,10] there is only one pair of null-vectors eo,
e∞, and both are used in the point construction. In cubic CGA Cl(9,7), there are seven
pairs of null vectors eoi, e∞i, 1 ≤ i ≤ 7, and only one fixed combination of origin null
vectors eo = eo1 + eo2 of (2) is actually used for the cubic point construction (24). That
is essentially six origin null vector dimensions do not appear in the point construction,
and therefore also not in the multivector q representing a cubic curve (33). To make up
for that, and to maintain the computation of intersections from dual 1-vector represen-
tations, the outer product with the 6-blade I�o extends the multivector q to a 14-blade
q∧ I�o , which by dualization results in the dual 1-vector representation.

A criterion for a general point x to be on the intersection M is

x · (M∧ I�o )∗ = 0, M =− 1
2

(
(M∧ I�o )∗I

)
bI�∞ . (39)

The last equation allows to extract the intersection blade M itself. The product with I
reverses dualization, and the subsequent right contraction with I�∞ removes the factor
I�o , according to (16).
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6 Cubic surfaces

Though it may still be far beyond today’s computing power, cubic surfaces are a classi-
cal subject in mathematics, and they indeed can be represented in a cubic surface CGA
(CSCGA) Cl(3+16,16) =Cl(19,16) over the real vector space R19,16. We are not able
to state all the details here, but will try to outline the algebraic approach.

The vector basis of R19,16 consists of the three Euclidean orthonormal vectors {e1,
e2, e3}, their product forming the Euclidean three dimensional unit pseudoscalar

I3 = e1e2e3, I2
3 =−1, I−1

3 =−I3; (40)

the remaining vectors form 16 pairs of null vectors, {e∞i,eoi}, 1≤ i≤ 16,

e2
∞i = e2

oi = 0, e∞i · eoi =−1, Ei = e∞i∧ eoi, E2
i = 1. (41)

We also define

e∞ = 1
3 (e∞1 + e∞2 + e∞3), eo = eo1 + eo2 + eo3. (42)

We further define the following blades

I�∞a = (e∞1− e∞2)∧ (e∞2− e∞3), I∞b = e∞4e∞5e∞6, (43)
I∞c = e∞7e∞8e∞9e∞10e∞11e∞12e∞13e∞14e∞15e∞16, I�∞ = I�∞aI∞bI∞c, (44)
I�oa = (eo1− eo2)∧ (eo2− eo3), Iob = eo4eo5eo6, (45)
Ioc = eo7eo8eo9eo10eo11eo12eo13eo14eo15eo16, I�o = I�oaIobIoc, (46)

Inner products yield

I�∞a · I�oa =−3, I�∞ · I�o =+3, I∞c · Ioc =−1. (47)

In this setting a cubic surface point in three dimensions is defined from its position
in three dimensional Euclidean space xε = xe1 + ye2 + ze3 as an extension to the CGA
point or to the quadric QCGA point [3]

x =xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ xye∞4 + xze∞5 + yze∞6

+ x3e∞7 + x2ye∞8 + x2ze∞9 + xy2e∞10 + xyze∞11 + xz2e∞12

+ y3e∞13 + y2ze∞14 + yz2e∞15 + z3e∞16 + eo. (48)

Note, that the vectors {eo4, . . . ,eo16} are not used in the above point definition in order
to preserve the CGA property that

x1 ·x2 =
1
2 (x1ε −x2ε)

2. (49)

By wedging a cubic surface point x with the 10-blade I∞c, we effectively remove all
third power coordinate components

x∧ I∞c =
(
xε +

1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ xye∞4 + xze∞5 + yze∞6 + eo
)
∧ I∞c

= xQI∞c, (50)
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which means to project down to the subalgebra of quadric surfaces Cl(9,6) [3] with

xQ = xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ xye∞4 + xze∞5 + yze∞6 + eo

=−(x∧ I∞c)bIoc (51)

By alternatively wedging a cubic surface point x with I�∞ we effectively project the point
to a subalgebra isomorphic to standard CGA [6]

x∧ I�∞ =
(
xε +

1
2 (x

2 + y2 + z2)e∞ + eo
)
∧ I�∞ (52)

with standard CGA point

xC = xε +
1
2 x2

ε e∞ + eo =
1
3 (x∧ I�∞ )bI�o . (53)

This means that we have standard CGA of three dimensions embedded in quadric CGA
embedded in cubic surface CGA. So all the known results of standard CGA, and quadric
CGA can be applied in cubic surface CGA.

Cubic surfaces in three dimensions are described by the implicit equation with 20
coefficients a,b, . . . t,

F(x,y,z) =ax2 +by2 + cz2 +dxy+ exz+ f yz+gx3 +hx2y+ ix2z+ jxy2 + kxyz

+ lxz2 +my3 +ny2z+oyz2 + pz3 +qx+ ry+ sz+ t = 0. (54)

We note, that cubic surfaces are parametrized by the points in (projective space)
P19 [5]. We can use 19 cubic surface contact points {xi,1≤ i≤ 19}, to form a 19-blade
multivector in Cl(19,16), describing a cubic surface q as

q = x1∧x2∧ . . .x19. (55)

Similar to the case of cubic curves we can identify points on a cubic surface as
follows.

Proposition 61 A point x lies on the three dimensional cubic surface q if and only
x∧q∧ I�o = 0.

The proof is analogous to the case of cubic curves. And we also obtain the corollary.

Corollary 62 A point x lies on the cubic surface defined by q if and only if x · (q∧
I�o )∗ = 0.

The construction of the dual representation of a cubic surface (q∧ I�0 )∗ is similarly
possible from the 20 coefficients of the implicit equation (54). Finally intersection op-
erations of linearly independent cubic surfaces work analogous to the description of the
intersection of cubic curves given in Section 5.
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7 Conclusion

This work described how to represent cubic curves by multivector blades in cubic con-
formal geometric algebra Cl(9,7). The construction can either proceed from nine con-
tact points or by using the ten coefficients of the implicit equation of a cubic curve in
the plane. The multivector expressions obtained for cubic curves can then e.g. be used
for computing the intersection of curves, using the outer product. It is found, that cu-
bic CGA contains an embedding of conic CGA [11] and of standard CGA [6] of the
Euclidean plane.

In future work, it is intended to optimize the Clifford Multivector Toolbox for Mat-
lab [17] and GAALOP [8] further, so as to be able to compute with Cl(9,7) on a stan-
dard PC. Furthermore, we intend to establish the geometric transformation versors for
rotation, translation and scaling, which we expect to be somewhat more intricate than
for conics in conic CGA [16,13,11]. We hope, that the current work on cubic curves in
CGA will find applications, wherever cubic curves occur in computations and graphics,
where they may be used for interpolation, etc.

In the last part, we described the analogous construction for the representation
of cubic surfaces in three dimensions and their intersections in cubic surface CGA
Cl(19,16). This latter algebra may not yet be attainable to computations with current
computer algebra systems, except perhaps with super computers. In this case as well
research should be done for constructing versors for rotations, translations and scaling.

We deeply thank the Computer Graphics International 2019 organizers and the EN-
GAGE 2019 workshop organizers for providing the opportunity to present our latest
research results. We gratefully acknowledge the helpful comments of the anonymous
reviewers, and a last minute correction by S. De Keninck for equation (24).
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