The Scientific Principles of Natural Philosophy

To Those in Search of The Truth To Generations of Civilization

UNIVERSAL AND UNIFIED FIELD THEORY Philosophical and Analytical Overview

Wei Xu(徐崇伟) April of 2019 <u>wxu@virtumanity.us</u> Copyright@ 2019 All rights reserved

The author grants this presentation redistributable as a whole freely for non-commercial use only.

Ladies and Gentlemen,

It is a great honor to present to you a message that will make history.

Debate on quantum effects, giving rise to the scientific ontology

Uncover secrets of Universal and Unified Field for a hundred years

- I. Glorious and Crisis in Search for Truth (20 min, 11p)
- II. Natural Principles of Universal Topology (40 min, 10p)
- III. Visualization of Unification of Physics (40 min, 15p)

AGENDA –

11 SLIDES IN 20 MIN

- 1. Glorious of Physical Sciences
- 2. Historical Essentials of Physics
- 3. Research Methodology
- 4. Quest for a Unified Theory

Glorious and Crisis of Physics Yesterday and Today

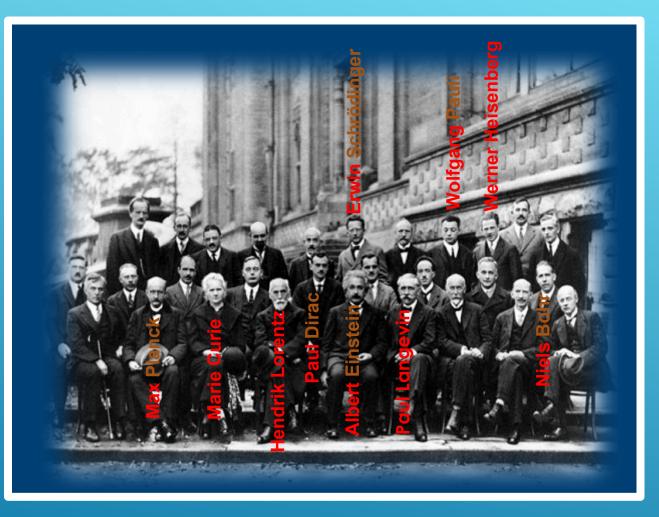
$$\begin{split} \mathscr{L}_{YM} &\equiv -\frac{1}{4} (F_{\mu\nu}^{i})^{2} \\ F_{\mu\nu}^{i} &\equiv \partial_{\mu} A_{\nu}^{i} - \partial_{\nu} A_{\mu}^{i} + g f^{ijk} A_{\mu}^{j} A_{\nu}^{k} \\ i\hbar \frac{\partial \Phi(\mathbf{r}, \mathbf{t})}{\partial t} &= \hat{H} \Phi(\mathbf{r}, \mathbf{t}) \\ \frac{1}{c^{2}} \frac{\partial^{2} \Phi_{n}}{\partial t^{2}} - \nabla^{2} \Phi_{n}^{+} + \left(\frac{mc}{\hbar}\right)^{2} \Phi_{n} = 0 \\ \frac{d}{dt} A(t) &= \frac{i}{\hbar} \left[H, A(t)\right] + \left(\frac{\partial A}{\partial t}\right)_{H} \\ \frac{8\pi G_{0}}{c^{4}} T_{\mu\nu} &= R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} \\ \nabla \cdot \mathbf{E} &= \frac{\rho_{\nu}}{\varepsilon} \qquad \text{(Gauss'Law)} \\ \nabla \cdot \mathbf{H} &= 0 \qquad \text{(Gauss'Law) for Magnetism)} \\ \nabla \times \mathbf{E} &= -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \text{(Faraday's Law)} \\ \nabla \times \mathbf{H} &= \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t} \qquad \text{(Ampere's Law)} \\ \end{bmatrix} \\ F(\mathbf{r}) &= m \mathbf{g}(\mathbf{r}) = -m m_{0} G_{0} \frac{\mathbf{r}}{r^{2}} \end{split}$$

Yang-Mils, Gauge of Standard Model, 1954 Schrödinger Equation, 1926 **Dirac** Equation, 1926 Heisenberg Picture, 1925 Einstein General Relativity, 1915 Maxwell equations, 1861 Thermodynamics, Carnot 1824 - Kelvin 1854

Newton's Law and Gravity, 1687

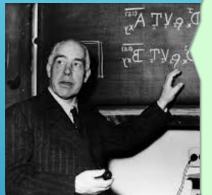
Glorious History of Physics

17 OF 29 ATTENDEES WERE OR BECAME NOBEL PRIZE WINNERS



Remaining Issues since Solvay Conference of 1927? Perhaps the most famous conference of Fifth Solvay International Conference on Electrons and Photons,

Bohr-Einstein debates on quantum mechanics were a series of public disputes remembered for revealing that there is no consensus to the Philosophy of Modern Sciences ...



Niels Bohr:

Stop telling God what

he can and can't do.

Niels Bohr (1885–1962): • Everything we call real is made of things that cannot be regarded as real.

Werner Karl Heisenberg

(1901–1967): • The more precise the measurement of position, the more imprecise the measurement of momentum, and vice versa.

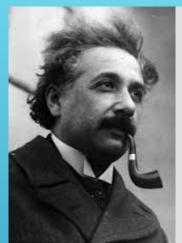
• Light and matter are both single entities, and the apparent duality arises in the limitations of our language.

Einstein (1879-1955):

- Disenchanted with Heisenberg's "Uncertainty Principle," remarked "God does not play dice."
- if quantum mechanics were correct then the world would be crazy.

- 1. The first classical unified field theory (UFT) 44 years
 - ♦ From 1820 Oersted to 1864 Maxwell (Successful)
- 2. The 2nd UFT of gravity and electromagnetism 39 years
 - ♦ From 1916 to 1955 Einstein (Failed)
- 3. Standard Model, "Theory of Almost Everything" 66 years
 - ♦ Since 1950 (Lack of gravity, dark matter, neutrino mass, …)
- 4. Grand Unified Theory to merge 4-forces into one 42 years
 - Since 1974 (A single force of gauge symmetry without gravity)
- 5. Fairy-tale theories (since1970) 46 years
 - String, 11-dimensional M-theory, superstring, (F-theory)Singular geometries, D-branes, flux compactification and warped geometry.

Quest for Unified Theory



Albert Einstein (March 14th, 1879 – April 18th, 1955)

For the time being, we have to admit that **we do not possess any general theoretical basis for physics**, which can be regarded as its logical foundation. It is agreed on all hands that the only principle which could serve as the basis of quantum theory would be one that constituted **a translation of the field theory into the scheme of quantum statistics**. Whether this will actually come about in a satisfactory manner, nobody can say.

> Albert Einstein, **Science**, 1940 (25 years after General Relativity on 1915)

"The general theory of relativity is as yet incomplete ... to the total field. We do not yet know with certainty, by what mathematical mechanism the total field in space is to be described and what the general invariant laws are to which this total field is subject. ..."

> - Albert Einstein, "The theory of relativity" 1949 (34 years after General Relativity of 1915)

"... all attempts to obtain a deeper knowledge of the **foundations** of physics seem doomed to me unless the basic concepts are in accordance with general relativity **from the beginning**. "

- Albert Einstein, "On the generalized theory of gravitation" April 1950 (35 years after General Relativity of 1915)

Lack of basic concepts from the beginning !

Stephen Hawking

the renowned physicist (January 8, 1942, age 74, Oxford)

1.Declared that "Philosophy is dead. Philosophers have not kept up with modern developments in science. Particularly physics."

2.Claimed that "Scientists have become the **bearers** of the torch of discovery in our quest for knowledge."

3.Stated that "new, bigger Hadron Collider the size of the Milky Way was needed to collect more data ..."

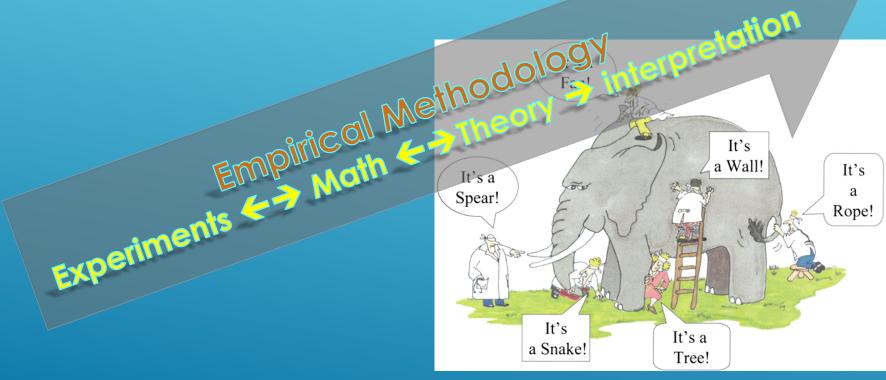
- Google talk May 17^{th,} 2011

Our Current Crisis

Science ?

Bottom Up

A body of empirical, theoretical, and practical knowledge about the natural world, emphasized on the observation, explanation, and prediction of real world phenomena.



Methodology In Search of The Truth?

1. First Generation: Classical Physics

- From Euclidean space to Newtonian mechanics in 1687: Motion and Force, Space and time are individual parameters without interwoven relationship
- Basic concept for Real Existence of space and Virtual Existence of time without expression of virtual reality
- Unification Maxwell's Equations of Analytical Physics in 1861

2. Second Generation: Modern Physics

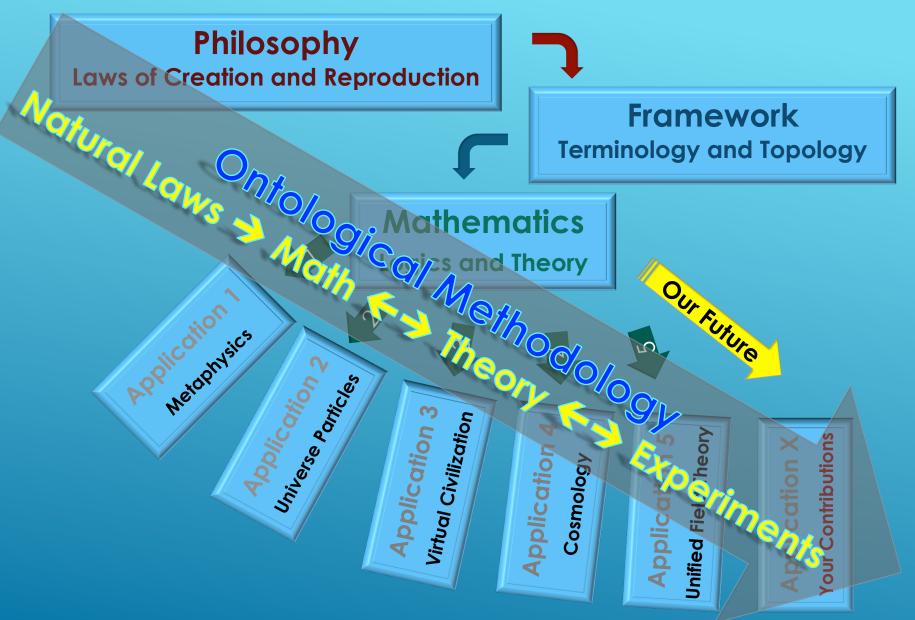
- Limited to physical existence only, Quantum and Relativity are pioneered since 1838 without using the interwoven continuum of quantum state fields
- Coupled virtual existence of time with real existence of space into an interwoven continuum: spacetime Manifold introduced in1905.
- > Unification Virtual and Physical Entanglements of Topological Duality in 2018
- 3. Third Generation: New Era of Physics
 - Virtual Formation of elementary particles (e.g. quarks, leptons, bosons) in 1961
 - > Virtual Massage Compositions, introduced as "Universal Messaons" in 2012
 - > Biophysical Formulations and Metaphysical Reformulation ...

GENERATIONS OF PHYSICS

MISSION Overview

Unification of the Second Generation

- Unified Fields superseding and imposing an integrity of all empirical models of relativity, quantum, light, electromagnetism, graviton, gravitation, thermodynamics, cosmology, and others.
- Universal Theory evolving and prevailing an generality of all ubiquitous laws of topology, event, duality, horizon, conservation, continuity, symmetry, asymmetry, entanglement, and beyond.



Vertical Hierarchy in the Search for Truth

Top Down

- Nature is systematically composed of building blocks, dualities, which take on an abstract form as simple as Yin and Yang, and as sophisticated as Virtual and Physical existence.
- Our ancestors discovered that duality orchestrated and harmonized their reality since 5000 years ago.
- Everywhere our world shines with a beautiful nature. In every fraction of every creature, we shall find the principles and laws of physics, biology, metaphysics, information technology, and all other sciences.

Horizontal Concepts in the Search for Truth

AGENDA – II

10 SLIDES IN 40 MIN

2016-2018年

- 2. Topology of Physical World
- 3. Groundbreaking of Unified Theory

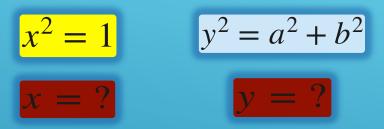
http://vixra.org/abs/1903.0487

Universal Fields: Highlights of Groundbreakings

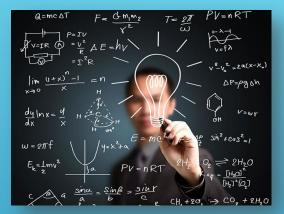
Mathematical Solutions of the Sciences

How to describe our universe in mathematics?

@ {0, ±1, ±2, …, ±n}?



Answers by Today's Science:



$$x_1 = 1, x_2 = -1$$
 $y_1 = \sqrt{(a^2 + b^2)}$ $y_2 = -\sqrt{(a^2 + b^2)}$

Answers by Future Science:

xānni,natanni<mark>nn</mark>yānamini,ņānami

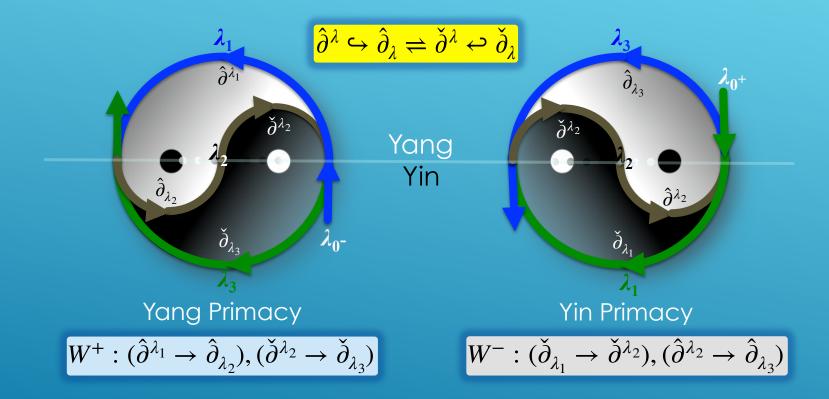
Dialectics of Ontological and Scientific Epistemology Philosophical Impact to Mathematical Principles

Math Principles of Ontology

Philosophy: World = Physical Space + Virtual Phase $W^{\pm} = We^{\pm \vartheta \theta} = P(Events) \mathcal{O}^{\vartheta} V(Events)$ Change = ∂ Event = λ Science: Physical Events, Virtual Events $\partial : \{\partial_{\lambda} \partial^{\lambda}\}$: $\partial \{\partial^{\lambda} \partial_{\lambda}\}$

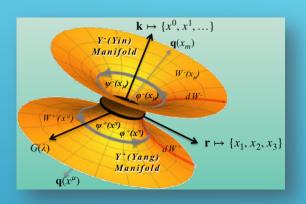
Truth is Simple !

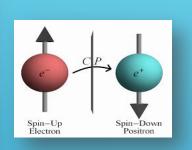
World = Physical $\check{\partial}_{\lambda} \check{\partial}^{\lambda} +$ **Virtual** $\hat{\partial}^{\lambda} \hat{\partial}_{\lambda}$ Universal Topology: YinYang Events of World Equations



First Principle of Ontology: Event Operations

1. Dual Manifolds





$$\zeta$$
 Generator

$$\hat{\partial}^{\lambda} \hookrightarrow \hat{\partial}_{\lambda} \rightleftharpoons \check{\partial}^{\lambda} \hookrightarrow \check{\partial}_{\lambda}$$

2. Boost Generators, photon

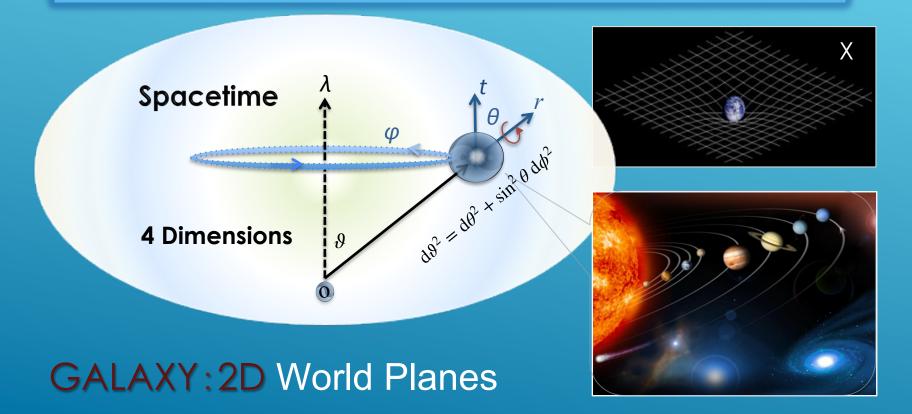
$$s_{\kappa} = \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{0}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{1}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{2}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_{3} \right]$$

3. Torque Generators, graviton

$$\epsilon_{\kappa} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_0, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}_1, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}_2, \frac{1}{\tilde{r}^2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_3 \end{bmatrix}$$

$$\begin{aligned} \boldsymbol{\zeta}^{\nu} &= \boldsymbol{\gamma}^{\nu} + \boldsymbol{\chi}^{\nu} \\ \boldsymbol{\gamma}^{\nu} &= \begin{bmatrix} \begin{pmatrix} \sigma_{0} & 0 \\ 0 & -\sigma_{0} \end{pmatrix}_{0}, \begin{pmatrix} 0 & \sigma_{1} \\ -\sigma_{1} & 0 \end{pmatrix}_{1}, \begin{pmatrix} 0 & \sigma_{2} \\ -\sigma_{2} & 0 \end{pmatrix}_{2}, \begin{pmatrix} 0 & \sigma_{3} \\ -\sigma_{3} & 0 \end{pmatrix}_{3} \end{bmatrix} \\ \boldsymbol{\chi}^{\nu} &= \begin{bmatrix} \begin{pmatrix} \varsigma_{0} & 0 \\ 0 & -\varepsilon_{0} \end{pmatrix}_{0}, \begin{pmatrix} 0 & \varsigma_{1} \\ -\varsigma_{1} & 0 \end{pmatrix}_{1}, \begin{pmatrix} 0 & \varsigma_{2} \\ -\varsigma_{2} & 0 \end{pmatrix}_{2}, \begin{pmatrix} 0 & \varsigma_{3} \\ -\varsigma_{3} & 0 \end{pmatrix}_{3} \end{bmatrix} \\ \sigma_{0} &= s_{0} \quad \sigma_{1} = s_{1} \quad \sigma_{2} = is_{2} \quad \sigma_{3} = -s_{3} \\ \varsigma_{0} &= \tilde{r}^{2} \epsilon_{0} \quad \varsigma_{1} = \tilde{r} \, \tilde{\vartheta} \, \epsilon_{1} \quad \varsigma_{2} = i \tilde{r} \, \tilde{\vartheta} \, \epsilon_{2} \quad \varsigma_{3} = -\tilde{r}^{2} \epsilon_{3} \end{aligned}$$

- 4. No Torque r-Singularity on wordline of **2D** Manifolds. Superposing Interruption of light and energy at eternal curvature
- 5. Enhanced Mass-energy Equivalence $E_n^{\mp} = \pm imc^2$
- 6. Torque Singularity in physical-freedom of the 4D Spacetime



7. Mass Acquisition & Annihilation

Dirac harmonic oscillator between horizons at exponential ratio 1:3

$$\varphi_0^+ = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega r_w^2}{2\hbar}}$$

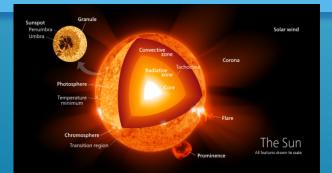
$$\rho^- \approx \phi_0^- \varphi_0^+ = 2\frac{m\omega}{\pi\hbar} exp\left[-\frac{m\omega}{2\hbar}(r_s^2 + r_w^2)\right]$$

$$\phi_0^- = 2\left(\frac{m\omega}{\pi\hbar}\right)^{3/4} e^{-\frac{m\omega}{2\hbar}r_s^2}$$

Example: Most of galaxies have its topological hierarchy that operates interruption between physical and virtual worlds. Our milky way, the Galactic Center communicates with Earth through Sun of Solar System. At the 2nd horizon (semi-virtual), the Sun is at a horizon of the topology between Earth at the 3rd horizon and center blackhole, blackhole at 1st horizon (virtual). It has about 11 solar rotations.

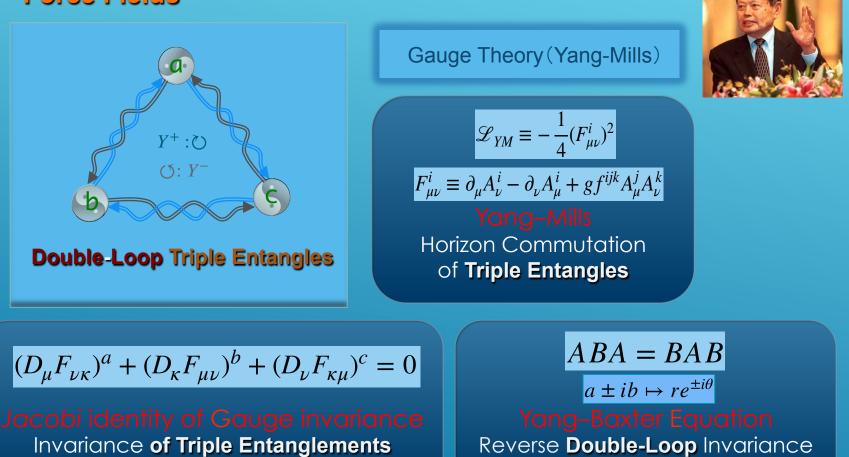
The core of Sun extends from the center to about 20–25% of the solar radius.

ACQUISITION & ANNIHILATION



Second Principle of Ontology: Loop Entanglement

Horizon of Force Fields $\tilde{\mathscr{L}}_{h}^{a} = \mathscr{L}_{D}^{-a} + \overline{\psi}_{j}(\hat{\partial} \wedge \check{\partial})\psi_{k}$

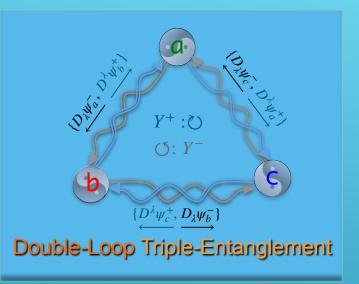


Third Principle of Ontology: Evolutionary Forces

(Grand Unification of Weak, Strong, Electromagnetic and gravitation)

 $\zeta^{\nu} = \gamma^{\nu} + \chi^{\nu}$

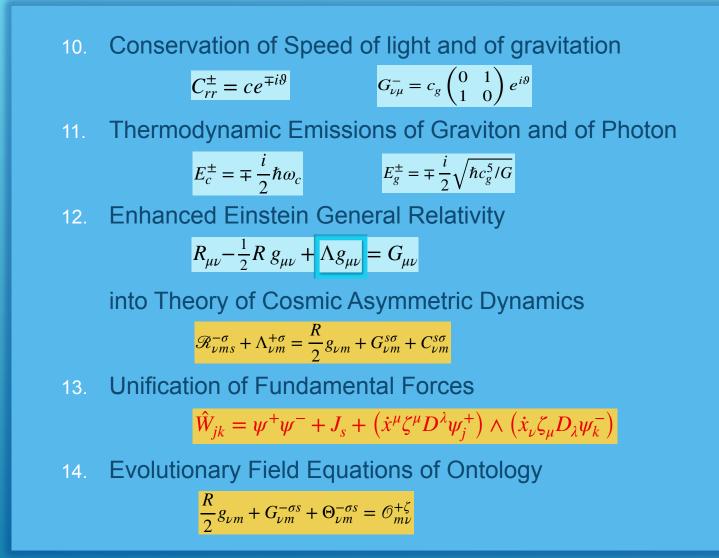
$$\begin{split} & \textbf{Unification}\\ & \textbf{of Forces:} \end{split} \\ \tilde{\mathscr{L}}_{h}^{a} = \mathscr{L}_{D}^{-a} + \overline{\psi}_{j}(\hat{\partial} \wedge \check{\partial})\psi_{k} \\ & \check{\partial} = \dot{x}_{\nu}\zeta_{\nu}D_{\nu} = \dot{x}_{\nu}\zeta_{\nu}\partial_{\nu} + i\dot{x}_{\nu}\zeta_{\nu}\left(\Theta_{\nu} + \tilde{\kappa}_{2}^{-}\dot{\Theta}_{\mu\nu} + \cdots\right) \\ & \Theta_{\nu} = \frac{\partial\vartheta(\lambda)}{\partial x_{\nu}} \quad \dot{\Theta}_{\nu\mu} = \frac{\partial A_{\mu}}{\partial x_{\nu}} - \frac{\partial A_{\nu}}{\partial x_{\mu}} = F_{\nu\mu}^{-n} \\ & \check{\partial} = \dot{x}_{\nu}\zeta_{\nu}D_{\nu} = \dot{x}_{\nu}\zeta_{\nu}\partial_{\nu} + i\dot{x}_{\nu}\zeta_{\nu}\left(\frac{e}{\hbar}A_{\nu} + \frac{1}{2}F_{\nu\mu}^{+n} + \cdots\right) \\ & \hat{\partial} = \dot{x}^{\nu}\dot{\zeta}^{\nu}D^{\nu} = \dot{x}^{\nu}\zeta^{\nu}\partial^{\nu} - i\dot{x}^{\nu}\zeta^{\nu}\left(\frac{e}{\hbar}A^{\nu} + \frac{1}{2}F_{\nu\mu}^{-n} + \cdots\right) \end{split}$$



$$\begin{aligned} \mathscr{L}_{Y}^{a} &= -\frac{1}{4} F_{\nu\mu}^{+j} F_{\mu\nu}^{-k} - \frac{1}{4} W_{\mu\nu}^{+j} W_{\nu\mu}^{-k} \\ F_{\mu\nu}^{i} &\equiv \partial_{\mu} A_{\nu}^{i} - \partial_{\nu} A_{\mu}^{i} + g f^{ijk} A_{\mu}^{j} A_{\nu}^{k} \\ 8. \text{ Yang-Mills Actions} \\ \textbf{Double-Loop Fields} \\ (\text{Weak Force}) \end{aligned}$$

$$\mathscr{L}_{QCD}(\chi) = -\frac{1}{4} G^n_{\nu\mu} G^n_{\nu\mu} - \frac{e}{c} \left(\bar{\psi}^+_n \chi_\nu A_\nu \psi^-_n \right)_{jk}$$
$$\mathscr{L}^{SU3}_{ST} = \kappa_f \left(\lambda_0 (\partial^\nu \varphi^+_b) (\partial_\nu \phi^-_a) - m^2 \phi^2_{bc} + \lambda_2 \phi^2_{bc} \phi^2_{ca} \right)$$

9. Quantum Chromodynamics Triple-Entanglement Forces (Strong Force)



GROUNDBREAKING OF UNIVERSAL AND UNIFIED FIELDS

Fourth Principle of Ontology: Superphase Events

$$\begin{aligned} \frac{R}{2}g_{\nu m} + G_{\nu m}^{-\sigma s} + \Theta_{\nu m}^{-\sigma s} &= \mathcal{O}_{m\nu}^{+\zeta} \\ \Theta_{\nu m}^{+\sigma s} &= i \Xi_{\nu m}^{+} + i \frac{e}{\hbar}F_{\nu m}^{+} - i \eth_{m\nu}^{+s\sigma} - \mathfrak{S}_{\nu m}^{+} \\ \Xi_{\nu m}^{\pm} &= \mp \frac{1}{\dot{x}^{\nu}\dot{x}^{m}} \left[\dot{x}^{\nu}\Theta^{\nu}\dot{x}^{m}\partial^{m}, \dot{x}_{m}\Theta_{m}\dot{x}_{\nu}\partial_{\nu}\right]_{s}^{\pm} \\ F_{\nu m}^{\pm} &= \pm \frac{\hbar}{e}\frac{1}{\dot{x}^{\nu}\dot{x}^{m}} \left[\dot{x}^{\nu}\partial^{\nu}(\dot{x}^{m}\Theta^{m}), \dot{x}_{m}\partial_{m}(\dot{x}_{\nu}\Theta_{\nu})\right]_{s}^{\pm} \\ \eth_{m\nu}^{\pm s\sigma} &= \pm \frac{1}{\dot{x}^{\nu}\dot{x}^{m}} \left[\dot{x}^{m}\Gamma_{\nu m}^{+\sigma}\dot{x}^{\sigma}\Theta^{\sigma}, \dot{x}_{m}\Gamma_{m\nu}^{-s}\dot{x}_{s}\Theta_{s}\right]_{s}^{\pm} \\ \mathfrak{S}_{m\nu}^{\pm} &= \pm \frac{1}{\dot{x}^{\nu}\dot{x}^{m}} \left[\dot{x}^{\nu}\Theta^{\nu}\dot{x}^{m}\Theta^{m}, \dot{x}_{m}\Theta_{m}\dot{x}_{\nu}\Theta_{\nu}\right]_{s}^{\pm} \\ \Theta^{\nu} &= \frac{e}{\hbar}A^{\nu} \quad \mathcal{O}_{\mu\mu}^{+\sigma} &= 2\mathcal{O}_{d}^{+} - 2\left(\partial^{t}\mathbf{u}^{+}\nabla\right) \begin{pmatrix} \mathbf{0} & \mathbf{D}_{a}^{+} \\ -\mathbf{D}_{a}^{*}\frac{\mathbf{u}^{*}}{c^{2}} \times \mathbf{H}_{a}^{+} \end{pmatrix} \quad \Theta_{\nu} &= \frac{e}{\hbar}A_{\nu} \\ \rho_{a} &= \frac{1}{4\pi G}\nabla\cdot\mathbf{D}_{a}^{*} \qquad p_{a} &= c^{2}Tr(\mathbf{J}_{a}^{+}) \qquad 4\pi G\mathbf{J}_{a}^{+} &= \frac{\partial}{\partial t}\mathbf{D}_{a}^{+} - \nabla\times\mathbf{H}_{a}^{+} \end{aligned}$$

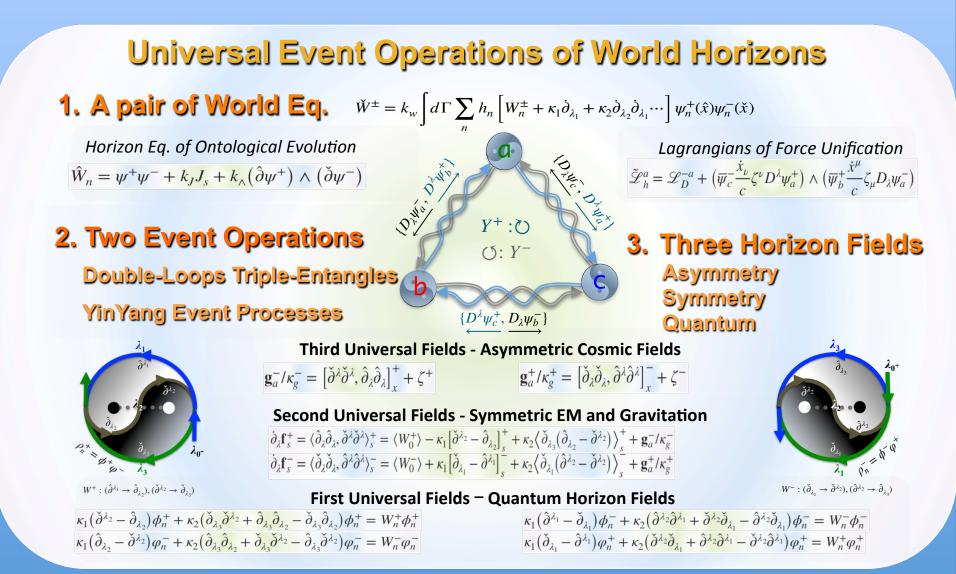
Ontological Field Equations

15 SLIDES IN 40 MIN

AGENDA – III

- 2. Nine Sets of Essential Equations
- 3. Horizon Infrastructure of the Universe
- 4. Six sets of Scientific Groundbreakings
- 5. Visualization of Worldline Cosmology
- 6. Visualization of Spacetime Cosmology

Unification of Physics: Overview Highlights



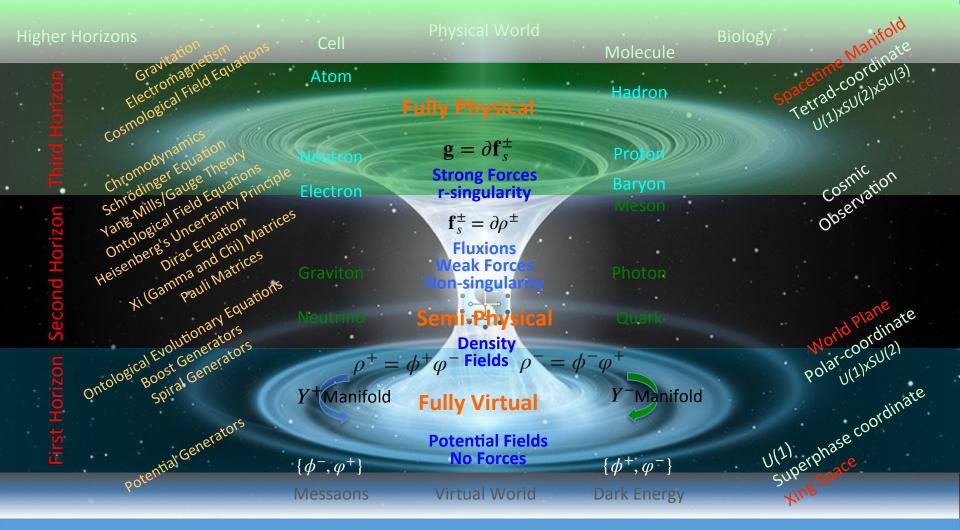
Universal Fields: Three Unified Topologies

Fundamental Equations of Universal Fields

1.Generators	$s_{\kappa} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{0}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{1}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{2}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_{3} \end{bmatrix} \epsilon_{\kappa} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{0}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}_{1}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}_{2}, \frac{1}{\tilde{r}^{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{3} \end{bmatrix}$
2. Mass-Energy	$E_n^{\mp} = \pm imc^2$ Photon speed: $C_{rr}^{\pm} = ce^{\pm i\vartheta}$ Graviton Speed: $G_{\nu\mu}^{-} = c_g \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} e^{i\vartheta}$
3. Thermo Emission	$\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = 4 \frac{E_n^- E_n^+}{(\hbar c)^2} \qquad \text{Photon:} E_c^{\pm} = \mp \frac{i}{2} \hbar \omega_c \text{Graviton:} E_g^{\pm} = \mp \frac{i}{2} \sqrt{\hbar c_g^5 / G}$
4. Mass Creation- Annihilations	$\rho^{-} \approx \phi_{0}^{-} \varphi_{0}^{+} \qquad \qquad \phi_{0}^{-} = 2 \left(\frac{m\omega}{\pi\hbar}\right)^{3/4} e^{-\frac{m\omega}{2\hbar}r_{s}^{2}} \qquad \varphi_{0}^{+} = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega r_{w}^{2}}{2\hbar}}$
5. Horizon Evolution	$\hat{W}_{n} = \psi^{+}\psi^{-} + k_{J}J_{s} + k_{\wedge}(\hat{\partial}\psi^{+}) \wedge (\check{\partial}\psi^{-}) \qquad \qquad$
6. Force Evolution	$\tilde{\mathcal{Z}}_{h}^{a} = \mathcal{Z}_{D}^{-a} + \left(\overline{\psi}_{c}^{-} \frac{\dot{x}_{\nu}}{c} \zeta^{\nu} D^{\lambda} \psi_{a}^{+}\right) \wedge \left(\overline{\psi}_{b}^{+} \frac{\dot{x}^{\mu}}{c} \zeta_{\mu} D_{\lambda} \psi_{a}^{-}\right) \qquad \qquad$
7. Cosmic Ontology	$\frac{R}{2}\mathbf{g}^{-} + \mathbf{G} = \mathbf{O}^{+} \qquad \qquad$
8. Cosmological Fields	$\mathfrak{R}^{-} + \mathbf{\Lambda}^{+} = \frac{R}{2} \mathbf{g}^{-} + \mathbf{G} + \mathbf{C}^{-} \qquad \Lambda_{\nu\mu}^{+\sigma} = \Lambda_{d}^{+} - \kappa_{\Lambda}^{+} \begin{pmatrix} -(\mathbf{u}^{+} \nabla) \cdot \mathbf{D}_{\nu}^{*} \\ \frac{\partial}{\partial t} \mathbf{D}_{\nu}^{+} + \frac{\mathbf{u}^{+}}{c} \nabla \left(\frac{\mathbf{u}^{+}}{c} \times \mathbf{H}_{\nu}^{+} \right) \end{pmatrix}$
9. Ontological Fields	$\frac{R}{2}g_{\nu m} + G_{\nu m}^{-\sigma s} + \Theta_{\nu m}^{-\sigma s} = \mathcal{O}_{m\nu}^{+\zeta} \qquad \qquad \Theta_{\nu m}^{\pm\sigma s} = i\Xi_{\nu m}^{\pm} + i\frac{e}{\hbar}F_{\nu m}^{\pm} - i\eth_{m\nu}^{\pm s\sigma} - \mathfrak{S}_{\nu m}^{\pm}$

Universal Fields: Nine Sets of Essential Equations

Horizon Infrastructure of the Universe



Horizon Infrastructure of the Universe

Universal and Unified Fields (I) - Topology

Category	Classical an	d Contemporary Physics		Universal and Unified Field Theory	
Contents	Description	Formulations	Elevations	Formulations	References
Manifold Topology	Minkowski Spacetime	$\{\mathbf{r} - \mathbf{k}\} \qquad \mathbf{k} = \begin{cases} x_0 = -ct \\ x_0 = ct \end{cases}$	Dual Manifolds	$w^{+} = r - ik = Re^{i\Omega} \qquad \{\mathbf{r} \pm i\mathbf{k}\} k = ic\lambda$ $w^{-} = r + ik = Re^{-i\Omega} \qquad R\sin\Omega = ic\lambda$	Eq. (1.6.1) Eq. (1.6.2)
Scalar Fields	A Pair of Scalar Fields	ϕ, ϕ^*	Two Pairs of Scalar Fields	$\psi^{+} = \psi^{+}(\hat{x}) \ exp[i\hat{\vartheta}(\lambda)] \qquad \qquad \psi^{+} = \{\phi^{+}, \phi^{+}\} \\ \psi^{-} = \psi^{-}(\check{x}) \ exp[i\check{\vartheta}(\lambda)] \qquad \qquad \psi^{-} = \{\phi^{-}, \phi^{-}\}$	Eq. (1.7.1) Eq. (1.7.2)
Math Framework	Math Operators	$\partial_m \in \{\partial_\kappa = \partial/\partial x_0, \partial_r = \nabla\}$	(Boost and Torque)	$\hat{\partial}^{\lambda}\psi = \dot{x}^{\mu}X^{\nu\mu}(\partial^{\nu} - i\Theta^{\mu}(\lambda))\psi \qquad X^{\nu\mu} = S_{2}^{+} + R_{2}^{+}$ $\check{\partial}_{\lambda}\psi = \dot{x}_{m}X_{nm}(\partial_{n} + i\Theta_{m}(\lambda))\psi \qquad X_{nm} = S_{2}^{-} + R_{2}^{-}$	Eq. (2.6.2) Eq. (2.6.3)
Scalar Transformation	N/A		Event Operations	$ \hat{\partial}_{\lambda} \psi = \dot{x}_a X^{\nu}{}_a \left(\partial^{\nu} - i \Theta^{\nu}(\lambda) \right) \psi \qquad X_m{}^{\alpha} = S_1^- + R_1^- $ $ \check{\partial}^{\lambda} \psi = \dot{x}^{\alpha} X_m{}^{\alpha} \left(\partial_m + i \Theta_m(\lambda) \right) \psi \qquad X^{\nu}{}_a = S_1^+ + R_1^+ $	Eq. (2.6.5) Eq. (2.6.6)
Entangle Generators	N/A		Boost /Torque Generators	$S_2^+ = \frac{\partial x^{\nu}}{\partial x^{\mu}} S_2^- = \frac{\partial x_n}{\partial x_m} \qquad S_1^+ = \frac{\partial x^{\nu}}{\partial x_a} S_1^- = \frac{\partial x_m}{\partial x^{\alpha}}$ $R_2^+ = x^{\mu} \Gamma_{\nu\mu\alpha}^+ R_2^- = x_m \Gamma_{nm\alpha}^- \qquad R_1^+ = x^{\mu} \Gamma_{\mu\alpha}^+ R_1^- = x_s \Gamma_{s\alpha}^-$	Eq. (2.6.2)- Eq. (2.6.6)
Event Operations	Loop Events		Yin Yang Operations	$\begin{split} W^{+} &: (\hat{\partial}^{\lambda_{1}} \to \hat{\partial}_{\lambda_{2}}), (\check{\partial}^{\lambda_{2}} \to \check{\partial}_{\lambda_{3}}) \\ W^{-} &: (\check{\partial}_{\lambda_{1}} \to \check{\partial}^{\lambda_{2}}), (\hat{\partial}^{\lambda_{2}} \to \hat{\partial}_{\lambda_{3}}) \end{split}$	Fig. 2.6 Eq. (2.6.1)
Motion Operation	Euler-Lagrange Equation	$\frac{\partial \mathscr{L}}{\partial f_i} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial \mathscr{L}}{\partial f'_i} \right) = 0_i$	Dual Motion Entanglements	$\check{\partial}^{-}(\frac{\partial W}{\partial(\hat{\partial}^{+}\phi)}) - \frac{\partial W}{\partial\phi} = 0 \qquad \hat{\partial}^{+}(\frac{\partial W}{\partial(\check{\partial}^{-}\phi)}) - \frac{\partial W}{\partial\phi} = 0$	Eq. (2.5.1) Eq. (2.5.2)
Event Evolutions	N/A		Event Sequence	$f(\lambda) = f(\lambda_0) + f'(\lambda_0)(\lambda - \lambda_0)\dots + f^n(\lambda_0)(\lambda - \lambda_0)^n/n!$	Eq. (1.8.1)
Generic Equations	Lagrangians	$\mathscr{L}(\varphi, \nabla \varphi, \partial \varphi / \partial t, \mathbf{x}, t)$	World Equations	$ \hat{W}_n = \psi_n^+(\lambda, \hat{x})\psi_n^-(\lambda, \check{x}) \psi_n^{\mp}(\lambda, x) = \left(1 \pm \tilde{\kappa}_1 \dot{\partial}_{\lambda_1} \pm \tilde{\kappa}_2 \dot{\partial}_{\lambda_2} \dot{\partial}_{\lambda_1} \cdots \right) \psi_n^{\mp}(\lambda, x) _{\lambda = \lambda_0} $	Eq. (2.4.1) Eq. (2.4.2)
First Universal	N/A		$\kappa_1 \left(\check{\partial}^{\lambda_2} - \hat{\partial}_{\lambda_2} \right)$	$\phi_n^+ + \kappa_2 \left(\check{\partial}_{\lambda_3} \check{\partial}^{\lambda_2} + \hat{\partial}_{\lambda_3} \hat{\partial}_{\lambda_2} - \check{\partial}_{\lambda_3} \hat{\partial}_{\lambda_2} \right) \phi_n^+ = W_n^+ \phi_n^+$	Eq. (1.8.10a)
Fields (Yang)	N/A		$\kappa_1 \left(\check{\partial}_{\lambda_1} - \hat{\partial}^{\lambda_1} \right) d$	$\varphi_n^+ + \kappa_2 \left(\check{\partial}^{\lambda_2} \check{\partial}_{\lambda_1} + \hat{\partial}^{\lambda_2} \hat{\partial}^{\lambda_1} - \check{\partial}^{\lambda_2} \hat{\partial}^{\lambda_1} \right) \varphi_n^+ = W_n^+ \varphi_n^+$	Eq. (2.8.21a)
First Universal	N/A		$\kappa_1 \left(\hat{\partial}^{\lambda_1} - \check{\partial}_{\lambda_1} \right)$	$\phi_n^- + \kappa_2 \left(\hat{\partial}^{\lambda_2} \hat{\partial}^{\lambda_1} + \check{\partial}^{\lambda_2} \check{\partial}_{\lambda_1} - \hat{\partial}^{\lambda_2} \check{\partial}_{\lambda_1} \right) \phi_n^- = W_n^- \phi_n^-$	Eq. (2.8.21b)
Fields (Yin)	N/A		$\kappa_1\left(\hat{\partial}_{\lambda_2}-\check{\partial}^{\lambda_2}\right)$	$\varphi_n^- + \kappa_2 \left(\hat{\partial}_{\lambda_3} \hat{\partial}_{\lambda_2} + \check{\partial}_{\lambda_3} \check{\partial}^{\lambda_2} - \hat{\partial}_{\lambda_3} \check{\partial}^{\lambda_2} \right) \varphi_n^- = W_n^- \varphi_n^-$	Eq. (1.8.10b)

http://vixra.org/abs/1903.0487

Universal and Unified Fields (II) - Quantum Fields

Category	Classica	al and Contemporary Physics	Universal and Unified Field Theory		
Contents	Description	Formulations	Elevations	Formulations	References
General	Operators	$\hat{\mathbf{p}} = -i\hbar \nabla$ $\hat{E} = i\hbar\partial/\partial t$	$-\frac{\hbar^2}{2E_n^+}\hat{\partial}_\lambda\hat{\partial}_\lambda\phi_n^+$ -	$-\frac{\hbar}{2}\left(\hat{\partial}_{\lambda}-\check{\partial}^{\lambda}\right)\phi_{n}^{+}+\frac{\hbar^{2}}{2E_{n}^{+}}\check{\partial}_{\lambda}\left(\hat{\partial}_{\lambda}-\check{\partial}^{\lambda}\right)\phi_{n}^{+}=\frac{W_{n}^{+}}{c^{2}}\phi_{n}^{+}$	Eq. (3.6.1)
Quantum	N/A		$\frac{\hbar^2}{2E_n^-}\check{\partial}^\lambda\check{\partial}^\lambda\varphi_n^$	$-\frac{\hbar}{2}\left(\check{\partial}^{\lambda}-\hat{\partial}_{\lambda}\right)\varphi_{n}^{-}+\frac{\hbar^{2}}{2E_{n}^{-}}\left(\check{\partial}_{\lambda}-\hat{\partial}_{\lambda}\right)\check{\partial}^{\lambda}\varphi_{n}^{-}=\frac{W_{n}^{-}}{c^{2}}\varphi_{n}^{-}$	Eq. (3.6.2)
Equations (First Universal	N/A		$\frac{\hbar^2}{2E_n^-}\check{\partial}^\lambda\check{\partial}_\lambda$	$\phi_n^ \frac{\hbar}{2} \left(1 + \frac{\hbar}{E_n} \hat{\partial}^{\lambda} \right) \left(\check{\partial}_{\lambda} - \hat{\partial}^{\lambda} \right) \phi_n^- = \frac{W_n^-}{c^2} \phi_n^-$	Eq. (3.6.4)
Field Equations)	N/A		$\frac{-\hbar^2}{2E_n^+}\hat{\partial}^\lambda\hat{\partial}^\lambda$	${}^{\lambda}\varphi_{n}^{+} - \frac{\hbar}{2} \Big(1 - \frac{\hbar}{E_{n}^{+}} \check{\partial}^{\lambda} \Big) \Big(\hat{\partial}^{\lambda} - \check{\partial}_{\lambda} \Big) \varphi_{n}^{+} = \frac{W_{n}^{+}}{c^{2}} \varphi_{n}^{+}$	Eq. (3.6.5)
Dynamic Equations	Lagrangians	$\mathscr{L}(\varphi, \nabla \varphi, \partial \varphi / \partial t, \mathbf{x}, t)$	Yin Yang Lagrangians	$\begin{split} \tilde{\mathscr{L}}_{L}^{\pm} &= -\frac{1}{c^{2}} \big[\hat{\partial}^{\lambda} \hat{\partial}^{\lambda}, \check{\partial}_{\lambda} \check{\partial}_{\lambda} \big]_{x}^{\pm} \\ \tilde{\mathscr{L}}_{I}^{\pm} &= -\frac{1}{c^{2}} \big[\hat{\partial}_{\lambda} \hat{\partial}_{\lambda}, \check{\partial}^{\lambda} \check{\partial}^{\lambda} \big]_{x}^{\pm} \end{split}$	Eq. (2.2.7) Eq. (2.2.8)
Mass Energy	Einstein Equation	$E = mc^2$	Virtual Duality	$E_n^{\mp} = \pm imc^2$	Eq. (1.4.1)
Generators	N/A		Boost	$s_{\kappa} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{0}, & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{1}, & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_{2}, & \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_{3} \end{bmatrix}$	Eq. (3.2.5)
Generators	N/A		Spiral	$\boldsymbol{\epsilon}_{\kappa} = \left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{0}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}_{1}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}_{2}, \frac{1}{\tilde{r}^{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_{3} \right]$	Eq. (3.3.7)
	Pauli Matrix	$\sigma_{\kappa} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_0, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}_1, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}_2, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}_3 \end{bmatrix}$		Derived the Same	Eq. (3.2.7)
Relativistic Wave Equation	Dirac Equation	$\left(i\hbar\gamma^{\nu}\partial^{\nu}-mc\right)\varphi_{n}^{-}=0$	Generator Fields	$\frac{\hbar}{2} \left(\dot{x}_{\nu} \zeta_{\mu} D_{\nu} - \dot{x}^{\mu} \zeta^{\mu} D^{\mu} \right) \psi_n^{\pm} \mp E_n^{\pm} \psi_n^{\pm} = 0$	Eq. (3.8.1)
Spinor Fields	Pauli Equation	$i\hbar\frac{\partial}{\partial t} \psi\rangle = \left\{\frac{1}{2m}\left(\mathbf{p} - e\mathbf{A}\right)^2 - \frac{e\hbar}{2m}\boldsymbol{\sigma}\cdot\mathbf{B} + \tilde{V}\right\} \psi\rangle \equiv \check{H} \psi\rangle$	Spinor Fields	Derived the Same	Eq. (3.10.6)
Wave-Practical Equation	Schrödinger Equation	$i\hbar \frac{\partial \psi_n}{\partial t} = \hat{H}\psi_n$ $\hat{H} \equiv -\frac{\hbar^2}{2m}\nabla^2 + \hat{V}(\mathbf{r})$	Yin Interaction	Derived the Same	Eq. (3.9.4)
Energy- Momentum	Klein–Gordon	$\frac{1}{c^2}\frac{\partial^2 \phi_n}{\partial t^2} - \nabla^2 \phi_n + \left(\frac{mc}{\hbar}\right)^2 \phi_n = 0$	Yin Yang Propagation	$-\frac{1}{c^2}\frac{\partial^2 \Phi_n^-}{\partial t^2} + \nabla^2 \Phi_n^- = 4\frac{E_n^- E_n^+}{(\hbar c)^2} \Phi_n^-$	Eq. (4.4.3)
Mass Acquisition	N/A		YinYang Density	$\phi_0^- = 2\left(\frac{m\omega}{\pi\hbar}\right)^{3/4} e^{-\frac{m\omega}{2\hbar}r_s^2} \varphi_0^+ = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega r_w^2}{2\hbar}}$	Eq. (3.12.7)
Speed of Energy	Light	С	Photon Graviton	$C_{rr}^{\pm} = c e^{\mp i \vartheta}$ $G_{\nu\mu}^{-} = c_g \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} e^{i \vartheta}$	Eq. (3.14.4) Eq. (3.15.4)

http://vixra.org/abs/1903.0487

Universal and Unified Fields (III) - Force Unification

Category	Classical a	lassical and Contemporary Physics		Universal and Unified Field Theory		
Contents	Description	Formulations	Elevations	Formulations	References	
	N/A		Lagrangians	$\hat{W}_n = \psi^+ \psi^- + k_J J_s + k_\wedge (\hat{\partial} \psi^+) \wedge (\check{\partial} \psi^-)$	Eq. (7.2.1)	
General Equations	N/A		Yin Field Evolutions	$\check{\partial} = \dot{x}_{\nu}\zeta_{\nu}D_{\nu} = \dot{x}_{\nu}\zeta_{\nu}\partial_{\nu} + i\dot{x}_{\nu}\zeta_{\nu}\left(\frac{e}{\hbar}A_{\nu} + \frac{1}{2}F_{\nu\mu}^{+n} + \cdots\right)$	Eq. (7.1.5)	
	N/A		Yang Field Evolutions	$\hat{\partial} = \dot{x}^{\nu} \dot{\zeta}^{\nu} D^{\nu} = \dot{x}^{\nu} \zeta^{\nu} \partial^{\nu} - i \dot{x}^{\nu} \zeta^{\nu} \left(\frac{e}{\hbar} A^{\nu} + \frac{1}{2} F_{\nu\mu}^{-n} + \cdots\right)$	Eq. (7.1.6)	
Breaking	Spontaneous Symmetry Breaking	$ \check{\partial}_{\lambda} \mapsto c D_{\nu} \tilde{\rho}_n \mapsto \psi_n^{\pm} \mp \sqrt{\lambda_0} D^{\nu} \psi_n^{\pm} / m $	Triple-Entangle Explicit Fields	$\mathcal{L}_{ST}^{SU3} = \kappa_f \Big(\lambda_0 (\partial^\nu \varphi_b^+) (\partial_\nu \phi_a^-) - m^+ m^- \phi_{bc}^2 + \lambda_2 \phi_{bc}^2 \phi_{ca}^2 \Big)$	Eq. (7.7.4)	
Invariance	Gauge Invariance	$F^a_{\nu\mu} = \partial_\nu A^a_\mu - \partial_\mu A^a_\nu + g f^{abc} A^b_\nu A^c_\mu$	Double-Loop Invariance	$\mathcal{L}_{F}(\gamma) = i \frac{e}{\hbar} \left[\gamma_{\mu} \partial_{\mu} (\gamma^{\nu} A_{a}^{\nu}), \gamma^{\nu} \partial^{\nu} (\gamma_{\mu} A_{\mu}^{a}) \right]^{-} - \frac{e^{2}}{\hbar^{2}} \left(\gamma_{\mu} A_{\mu}^{b} \gamma^{\nu} A_{c}^{\nu} \right)$	Eq. (7.4.1)	
	Yang-Mills Theory	$\mathscr{L}_{gf} = \frac{-1}{2} \operatorname{Tr}(F^2) = \frac{-1}{4} F^{a\mu\nu} F^a_{\mu\nu}$	Dual States of Triplet Quarks	$\mathscr{L}_{M}(\gamma) \approx -\frac{1}{4} \left(\gamma^{\nu} F_{\nu\mu}^{+n} \gamma_{\mu} F_{\mu\nu}^{-n} \right)_{jk} = -\frac{1}{4} F_{\nu\mu}^{+j} F_{\mu\nu}^{-k}$	Eq. (7.3.2)	
QED +	Weak Fields	$\hat{\mathscr{L}}_{WF} = \bar{\psi}_n \Big(i \hbar \gamma_\nu D_\nu + D_\nu - D$	$-m\Big)\varphi_n^ \frac{1}{4}\hat{W}_{\nu\mu}^{-n}\hat{W}$	$f_{\nu\mu}^{\prime+n} - \frac{1}{4}\hat{F}_{\nu\mu}^{-n}\hat{F}_{\nu\mu}^{+n}$	Eq. (7.3.3)	
QCD + Standard Model	Gauge Forces	$\hat{\mathscr{L}}_{SD} = \bar{\psi}_n \Big(i\hbar\gamma_\nu D_\nu - m \Big) \varphi_n^ \frac{1}{4} G_{\nu\mu}^n$	$_{\iota}G^{n}_{\nu\mu}+\hat{\mathscr{L}}_{CP}$	$G^a_{\nu\mu} = i \frac{e}{\hbar} \Big[\chi_\mu \partial_\mu (\chi^\nu A^\nu_a), \chi^\nu \partial^\nu (\chi_\mu A^a_\mu) \Big]^ \frac{e^2}{\hbar^2} \Big(\chi_\mu A^b_\mu \chi^\nu A^\nu_c \Big)$	Eq. (7.5.1) Eq. (7.5.2)	
	Field Interactions	$\hat{\mathcal{L}}_{CP} = -\bar{\psi}_n \gamma^\mu \left(g_1 \frac{1}{2} Y_W B_\mu + g_2 \frac{1}{2} \sigma_\nu W_\nu \right)$	$_{\mu}+g_{3}\frac{1}{2}\lambda_{a}G_{\nu}^{a}\right)\varphi_{n}^{-}$	$\hat{\partial} \wedge \check{\partial} = \dot{x}^{\mu} \dot{x}_{\nu} \big(\hat{D} \cdot \check{D} + i \zeta^{\mu} \cdot \hat{D} \times \check{D} \big)$	Eq. (7.5.5)	
	Strong Forces	$\check{\mathscr{Z}}_{Force}^{-SU2} \propto 4 \frac{E_n^- E_n^+}{(\hbar c)^2} \Phi_n^+$	$\mathscr{D} \Phi_n^- \mapsto \mathscr{D}_{ST}^{SU3} =$	$\kappa_f \Big(\lambda_0 (\partial^\nu \varphi_b^+) (\partial_\nu \phi_a^-) - m^+ m^- \phi_{bc}^2 + \lambda_2 \phi_{bc}^2 \phi_{ca}^2 \Big)$	Eq. (7.7.4)	

Universal and Unified Fields (IV) - Electromagnetism

Category	Classical and Contemporary Physics		Universal and Unified Field Theory		
Contents	Description	Formulations	Elevations	Formulations	References
	Continuity	$c \partial_{\nu} F^{\nu\mu} = j^{\mu} \\ j^{\mu} = e c \bar{\phi} \gamma^{\mu} \partial_{\nu} \varphi$	Yin Continuity	$-\frac{\hbar c}{2E^{+}} \left\langle \check{\partial}_{\lambda} (\hat{\partial}_{\lambda} - \check{\partial}^{\lambda}) \right\rangle_{\nu}^{+} = c \check{\partial}_{\lambda} \mathbf{F}^{+}$	Eq. (10.2)
	Lorenz Gauge	$-\frac{1}{c^2}\frac{\partial^2 A_{\nu}^+}{\partial t^2} + \nabla^2 A_{\nu}^+ = \frac{e}{c}\bar{\phi}_n\gamma^\nu\hat{\partial}^\lambda\varphi_n^-$	Conservation of Yang Fluxion	$\check{\partial}_{\lambda}\hat{\partial}^{\lambda}A_{\nu}^{+}=\check{\partial}_{\lambda}\hat{F}_{\nu\mu}^{-n}$	Eq. (10.13)
	Magnetic Flux	$\nabla\cdot\mathbf{B}_q=0$		$(\mathbf{u}\nabla)\cdot\mathbf{B}_q^-=0$	Eq. (5.5.8)
Electromagnetic Fields	Farads's Law	$\nabla \times \mathbf{E}_q + \frac{\partial \mathbf{B}_q}{\partial t} = 0$	Yin Continuity	$\frac{\partial \mathbf{B}_{q}^{-}}{\partial t} + \left(\frac{\mathbf{u}}{c}\nabla\right) \times \mathbf{E}_{q}^{-} = 0$	Eq. (5.5.9)
	Electric Flux	$\nabla\cdot\mathbf{D}_q=\rho_q$		$(\mathbf{u}\nabla)\cdot\mathbf{D}_q^+=\mathbf{u}\rho_q$	Eq. (5.5.10)
	Ampère's Circuital Law	$\nabla \times \mathbf{H}_q - \frac{\partial \mathbf{D}_q}{\partial t} = \mathbf{J}_q$	Yang Continuity	$\frac{\mathbf{u} \cdot \mathbf{u}}{c^2} \nabla \times \mathbf{H}_q^+ - \frac{\partial \mathbf{D}_q^+}{\partial t} = \mathbf{J}_q + \mathbf{H}_q^+ \cdot \left(\frac{\mathbf{u}}{c} \nabla\right) \times \frac{\mathbf{u}}{c}$	Eq. (5.5.11)
	Lorentz Force	$\mathbf{F}_q = Q \Big(\mathbf{E}_q^- + \mathbf{u}_q \times \mathbf{B}_q^- \Big)$	Yin Fluxion Force	Derived the Same	Eq. (5.4.7)
Photon	Planck's Law	$S_A(\omega_c, T) = \left(\frac{\omega_c^2}{4\pi^3 c^2}\right)$	Area Entropy	$S_A(\omega_c, T) = \eta_c \left(\frac{\omega_c}{c}\right)^2 \mapsto 4 \frac{E_c^- E_c^+}{(\hbar c)^2}$	Eq. (4.6.2)
	Planck and Einstein Relations	$E = m c^2 \rightleftharpoons \hbar \omega$	Dual States of Triplet Quacks	$E_c^{\pm} = \mp i \frac{1}{2} \hbar \omega_c \qquad \eta_c = \pi^{-3} \approx 33 \%$	Eq. (4.6.5)
Conservation of Light	Constant Speed	с	YinYang Boost Entanglements	Law of Conservation of Light	Ch 4, Sec 7

Universal and Unified Fields (V) - Gravitation

Category	Classical and Contemporary Physics		Universal and Unified Field Theory			
Contents	Description	Formulations	Elevations	Formulations	References	
		$\nabla \cdot \mathbf{\Omega} = 0$	Conservation of	$\left(\mathbf{u}_{g}\nabla\right)\cdot\mathbf{B}_{g}^{-}=0$	Eq. (5.7.1)	
	/	$\frac{\partial \mathbf{\Omega}}{\partial t} + \nabla \times \mathbf{\Gamma} = 0$	Yin Fluxion	$\frac{\partial}{\partial t}\mathbf{B}_{g}^{-} + \left(\frac{\mathbf{u}_{g}}{c_{g}}\nabla\right) \times \mathbf{E}_{g}^{-} = 0$	Eq. (5.7.2)	
Weak Fields	Lorentz's Theory (LITG)	$\nabla \cdot \mathbf{\Gamma} = -4\pi G\rho$		$\mathbf{u}_g \nabla \cdot \mathbf{D}_g^+ = -4\pi G \mathbf{u}_g \rho_g$	Eq. (5.7.3)	
		$\nabla \times \mathbf{\Omega} = \frac{1}{c_g^2} \left(-4\pi G \mathbf{J} + \frac{\partial \mathbf{\Gamma}}{\partial t} \right)$	Conservation of Yang Fluxion	$\frac{\mathbf{u}_g \cdot \mathbf{u}_g}{c^2} \nabla \times \mathbf{H}_g^+ - \left(\frac{c_g}{c}\right)^2 \frac{\partial \mathbf{D}_g^+}{\partial t} \\ = -4\pi G \mathbf{J}_g + \mathbf{H}_g^+ \cdot \left(\frac{\mathbf{u}_g}{c} \nabla\right) \times \frac{\mathbf{u}_g}{c}$	Eq. (5.7.4)	
Gravitational Force	Lorentz's Theory (LITG)	$\mathbf{F}_{m} = m\left(\mathbf{\Gamma} + \mathbf{v}_{m} \times \mathbf{\Omega}\right)$	Yin Fluxion Force	$\mathbf{F}_{g} = M\mu_{g}\left(c_{g}^{2}\mathbf{D}_{g}^{+} + \mathbf{u}_{g} \times \mathbf{H}_{g}^{+}\right) = M\left(\mathbf{E}_{g}^{-} + \mathbf{u}_{g} \times \mathbf{B}_{g}^{-}\right)$	Eq. (5.4.8)	
Continuity of Gravitation	N/A		Conservation of YinYan Fluxion	$-\frac{1}{c_g^2}\frac{\partial^2 \Phi_g^-}{\partial t^2} + \nabla^2 \Phi_g^- = 4\frac{E_g^- E_g^+}{(\hbar c_g)^2}\Phi_g^-$	Eq (4.4.3)	
Black Hole Entropy	Bekenstein- Hawking	$S_A(\omega_g, T) = 4\left(\frac{c_g^3}{4\hbar G}\right)$	YinYang Area Entanglements	$-\frac{1}{c_g^2}\frac{\partial^2 \Phi_g^-}{\partial t^2} + \nabla^2 \Phi_g^- = 4\frac{E_g^- E_g^+}{\left(\hbar c_g\right)^2}\Phi_g^-$ $\mathcal{S}_g = 4\frac{E_g^- E_g^+}{\left(\hbar c_g\right)^2}\Phi_g$	Eq. (4.8.1)	
Graviton	N/A		A pair of Gravitons	$E_g^{\pm} = \mp i \frac{1}{2} E_p \qquad {}^{\circ} E_p = \sqrt{\hbar c_g^5/G}$	Eq. (4.8.3)	
Conservation of Gravitation	N/A		Law of Conservation	Law of Conservation of Gravitation	Ch. 4 Sec. 9	
Force of Gravity	Newton's Law of Gravity	$\mathbf{F}^- = -m\nabla\Phi_g = -mG\rho_g\frac{\mathbf{r}}{r^2}$	Restricted Law of Conservation	Derived the Same	Eq. (5.7.6)	

Universal and Unified Fields (VI) - Symmetric Fields

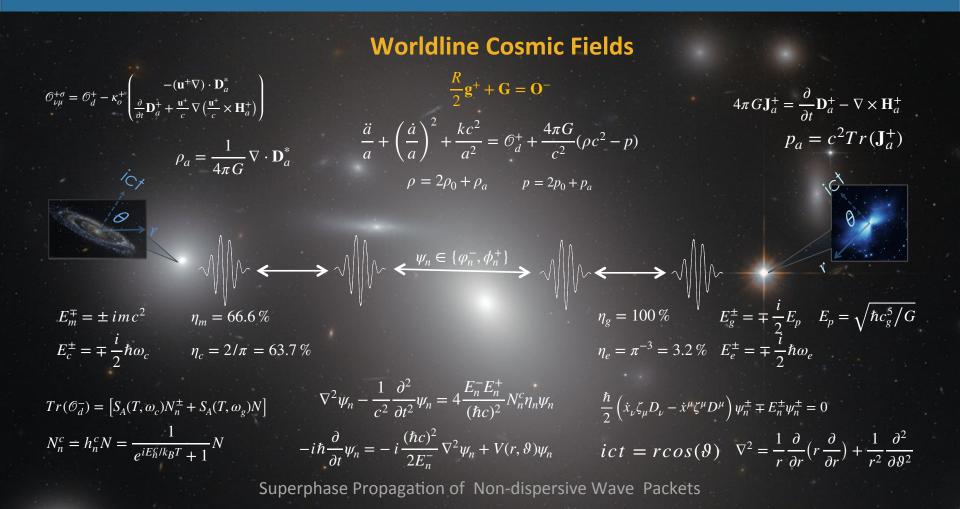
Category	Classical and	Contemporary Physics		Universal and Unified Field Theory	
General	N/A		Second Universal Field	$\dot{\partial}_{\lambda} \mathbf{f}_{\nu}^{+} = \langle W_{0}^{+} \rangle - \kappa_{1} \left[\check{\partial}^{\lambda_{2}} - \hat{\partial}_{\lambda_{2}} \right]_{\nu}^{+} + \kappa_{2} \left\langle \check{\partial}_{\lambda_{3}} \left(\hat{\partial}_{\lambda_{2}} - \check{\partial}^{\lambda_{2}} \right) \right\rangle_{\nu}^{+}$	Eq. (5.2.2)
Equations	N/A		Equations	$\dot{\partial}_{\lambda}\mathbf{f}_{\nu}^{-} = \langle W_{0}^{-} \rangle + \kappa_{1} \big[\check{\partial}_{\lambda_{1}} - \hat{\partial}^{\lambda_{1}} \big]_{\nu}^{-} + \kappa_{2} \big\langle \check{\partial}_{\lambda_{1}} \big(\hat{\partial}^{\lambda_{2}} - \check{\partial}^{\lambda_{2}} \big) \big\rangle_{\nu}^{-}$	Eq. (5.2.3)
Symmetric Commutation	Commutator, Anti-commutator	$[A_1, A_2] \left\langle A_1, A_2 \right\rangle$	Commutator and Density Fluxion	$[]^{\mp} \langle \rangle^{\mp}$	Eq. (2.7.1)- Eq. (2.7.8)
Asymmetric Commutation	Quantum State	$\langle m \lambda n \rangle$	Asymmetry & Anti-asymmetry	$\left(\dot{\lambda}\right)^{\pm} = \varphi_n^{\pm}\dot{\lambda}\phi_n^{\pm} \qquad \left(\dot{\lambda}\right)^{\pm} = \phi_n^{\pm}\dot{\lambda}\varphi_n^{\mp}$	Eq. (2.7.6)- Eq. (2.7.8)
Field	The 4-potential	$\partial_{ u}D_{\mu} - \partial_{\mu}D_{ u}$	Boost Generator	$T^{-n}_{\nu\mu}(L) = \left(L^{\nu\mu}\partial_\nu A_\mu - L^+_{\mu\nu}\partial^\mu A^\nu\right)_n$	Eq. (3.11.6)
Entanglements	N/A		Torque Generator	$\Upsilon^{-n}_{\nu\mu}(L) = \left(L^{-}_{\nu\mu}\partial_{\nu}V_{\mu} - L^{+}_{\mu\nu}\partial^{\mu}V^{\nu}\right)_{n}$	Eq. (3.11.7)
	N/A		Boost Transform and Spiral Transport	$\nabla \cdot \mathbf{B}_s^- = 0^+ \qquad \mathbf{B}_s^- = \mathbf{B}_q^- + \eta \mathbf{B}_g^- \eta = c_g/c$	Eq. (5.5.4)
	N/A			$\nabla \cdot \mathbf{D}_s^+ = \rho_q - 4\pi G \eta \rho_g \qquad \mathbf{D}_s^+ = \mathbf{D}_q^+ + \eta \mathbf{D}_g^+$	Eq. (5.5.5)
General	N/A			$\frac{\partial \mathbf{B}_s^-}{\partial t} + \nabla \times \mathbf{E}_s^- = 0^+ \qquad \qquad \mathbf{E}_s^- = \mathbf{E}_q^- + \eta \mathbf{E}_g^-$	Eq. (5.5.6)
Symmetric Dynamics	N/A			$\nabla \times \left(\mathbf{H}_{q}^{+} + \eta^{2} \mathbf{H}_{g}^{+} \right) - \frac{\partial}{\partial t} \left(\mathbf{D}_{q}^{+} + \eta^{2} \mathbf{D}_{g}^{+} \right) = \mathbf{J}_{q} - 4\pi G \mathbf{J}_{g}$	Eq. (5.5.7)
	Lorentz Force	$\mathbf{F}_q^+ = Q\Big(\mathbf{E}_c^- + \mathbf{u} \times \mathbf{B}_c^-\Big)$	Motion and	Derived the Same	Eq. (5.4.5)
	Lorentz's Theory (LITG)	$\mathbf{F}_m = m \left(\mathbf{\Gamma} + \mathbf{v}_m \times \mathbf{\Omega} \right)$	Torque Entanglements	$\mathbf{F}_{g} = M\mu_{g} \left(c_{g}^{2} \mathbf{D}_{g}^{+} + \mathbf{u}_{g} \times \mathbf{H}_{g}^{+} \right) = M \left(\mathbf{E}_{g}^{-} + \mathbf{u}_{g} \times \mathbf{B}_{g}^{-} \right)$	Eq. (5.4.6)
	Boltzmann Distribution	$p_n^{\pm} = \frac{h_n^{\pm}}{\sum h_m} = \frac{e^{i\beta E_n}}{Z}$ $Z \equiv \sum_m e^{i\beta E_m}$	Horizon Factor $h_n^{\pm} = \frac{N_n^{\pm}}{N} = \frac{1}{e^{\pm\beta E_n^{\pm}} + 1}$		Eq. (4.10.7)
Thermo- Dynamics	Thermal Eq.		Maximum Yin Supremacy	$d\rho_E^- = Td\rho_s^- + \sum_i \mu_i d\rho_{n_i}^-$	Eq. (4.1.4)
	mermur Eq.	$dS = \frac{1}{T} \left(dE + PdV - \sum_{n} \mu_{n} dN_{n}^{\pm} \right)$	Minimum Yang Supremacy	$P + \rho_E^+ = T\rho_s^+ + \sum_i \mu_i \rho_{n_i}^+$	Eq. (4.1.5)
	Bloch Density Equations	$-i\frac{\partial\rho^{-}}{\partial\beta} = \hat{H}\rho^{-} - h_{\beta}\frac{\partial^{2}\rho}{\partial\beta^{2}} = \hat{H}\rho$	Density of Yang Supremacy	Derived the Same	Eq. (4.1.6)

http://vixra.org/abs/1903.0487

Universal and Unified Fields (VII) - Asymmetric Fields

Category	Contem	porary Physics	Universal and Unified Field Theory		
General Asymmetric Equations	N/A		Third Universal Field Equations	$\mathbf{g}_{a}^{-}/\kappa_{g}^{-} = \begin{bmatrix} \check{\partial}^{\lambda}\check{\partial}^{\lambda}, \hat{\partial}_{\lambda}\hat{\partial}_{\lambda} \end{bmatrix}_{x}^{+} + \zeta^{+} \qquad \zeta^{+} = \begin{pmatrix} \hat{\partial}_{\lambda_{2}}\check{\partial}^{\lambda_{2}} - \hat{\partial}_{\lambda_{2}}\check{\partial}_{\lambda_{3}} \end{pmatrix}^{+} \\ \mathbf{g}_{a}^{+}/\kappa_{g}^{+} = \begin{bmatrix} \check{\partial}_{\lambda}\check{\partial}_{\lambda}, \hat{\partial}^{\lambda}\hat{\partial}^{\lambda} \end{bmatrix}_{x}^{-} + \zeta^{-} \qquad \zeta^{-} = \begin{pmatrix} \check{\partial}^{\lambda_{2}}\check{\partial}^{\lambda_{1}} - \hat{\partial}^{\lambda_{2}}\check{\partial}_{\lambda_{1}} \end{pmatrix}^{-}$	Eq. (2.10.1) Eq. (2.10.2)
Scalar Commutation	Stress Tensor	$G^{\mu}_{n\nu\sigma} \equiv \Gamma^{-\mu}_{\sigma n} \partial_{\nu} - \Gamma^{+\mu}_{\sigma\nu} \partial_{n}$	Yin Entanglement	$\left[\check{\partial}_{\lambda}\check{\partial}_{\lambda},\hat{\partial}^{\lambda}\hat{\partial}^{\lambda}\right]_{s}^{-}=\dot{x}_{\nu}\dot{x}_{m}\left(\frac{R}{2}g_{\nu m}+G_{\nu m}\right)$	Eq. (6.5.5) Eq. (6.5.8)
Vector Commutation	Riemannian Ricci Tensors	$R^{\mu}_{n\nu\sigma} R_{n\nu} = \frac{1}{2}g_{n\nu}R$	Yang Entanglement	$\left[\hat{\partial}_{\lambda}\hat{\partial}_{\lambda},\check{\partial}^{\lambda}\check{\partial}^{\lambda}\right]_{\nu}^{+} = \dot{x}_{n}\dot{x}_{\nu}\left(\frac{R}{2}g_{n\nu} - R^{\mu}_{n\nu\sigma} + G^{\mu}_{n\nu\sigma} + C^{n\mu}_{\nu\sigma}\right)$	Eq. (6.6.7)
Ontology	N/A		Yin Cosmic Fields	$\frac{R}{2}g_{\nu m} + G_{\nu m}^{\sigma s} = \mathcal{O}_{\nu m}^{+\sigma} \mathcal{O}_{\nu \mu}^{+\sigma} = \mathcal{O}_{d}^{+} - \kappa_{o}^{+}(\partial^{t} \mathbf{u}^{+}\nabla) \begin{pmatrix} 0 & \mathbf{D}_{a}^{+} \\ -\mathbf{D}_{a}^{*} & \frac{\mathbf{u}^{+}}{c^{2}} \times \mathbf{H}_{a}^{+} \end{pmatrix}$	Eq. (6.9.5) Eq. (6.9.7)
of Cosmic Fields	N/A		Yang Comic Fields	$\tilde{R}^{\nu m} + \tilde{G}^{\sigma s}_{\nu m} = \mathcal{O}^{-\sigma}_{\nu m} \qquad \mathcal{O}^{-\sigma}_{\nu m} = \mathcal{O}^{-}_{d} - \kappa^{-}_{o} (\partial^{t} \mathbf{u}^{-} \nabla) \begin{pmatrix} 0 & \mathbf{B}^{-}_{a} \\ -\mathbf{B}^{*}_{a} & \frac{\mathbf{b}}{c} \times \mathbf{E}^{-}_{a} \end{pmatrix}$	Eq. (6.9.6) Eq. (6.9.8)
and Modulators	N/A		Ontological Fields	$\frac{R}{2}g_{\nu m} + G_{\nu m}^{-\sigma s} + \Theta_{\nu m}^{-\sigma s} = \mathcal{O}_{m\nu}^{+\zeta}$	Eq. (7.8.12)
(World Planes 2-Dimensions)	N/A		Ontological Modulators	$\Theta_{\nu m}^{\pm \sigma s} = i \Xi_{\nu m}^{\pm} + i \frac{e}{\hbar} F_{\nu m}^{\pm} - i \eth_{m\nu}^{\pm s\sigma} - \mathbb{S}_{\nu m}^{\pm}$	Eq. (7.8.7)
,	N/A		Acceleration	$\mathbf{g}_{s}^{-}/\kappa_{g}^{-}=\left[\check{\partial}^{\lambda}\check{\partial}^{\lambda},\hat{\partial}_{\lambda}\hat{\partial}_{\lambda} ight]_{s}^{-}-\mathbf{O}^{+}$	Eq. (6.11.1)
	General Relativity	$R_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{R}{2}g_{\mu\nu} + G_{\mu\nu}$	Yin Fields	$\mathscr{R}_{\nu ms}^{-\sigma} + \Lambda_{\nu m}^{+\sigma} = \frac{R}{2}g_{\nu m} + G_{\nu m}^{s\sigma} + C_{\nu m}^{s\sigma}$	Eq. (6.12.4)
Cosmology	Cosmological Constant	Λ	Off-diagonal Modulator	$\Lambda_{\nu\mu}^{+\sigma} = \Lambda_d^+ - \kappa_{\Lambda}^+ \begin{pmatrix} -(\mathbf{u}^+ \nabla) \cdot \mathbf{D}_{\nu}^* \\ \frac{\partial}{\partial t} \mathbf{D}_{\nu}^+ + \frac{\mathbf{u}^+}{c} \nabla \left(\frac{\mathbf{u}^+}{c} \times \mathbf{H}_{\nu}^+ \right) \end{pmatrix}$	Eq. (6.12.3)
(Spacetime 4-Dimensions)	Horizon Equations	$3H_2^2 + 3\frac{kc^2}{a^2} = c^2 \Lambda_{tt}^+ + 4$ $3H_2H_3 = c^2 \Lambda_{rr}^+ - \frac{4\pi G}{c^2}$	$\pi G\rho H_2 = \frac{\dot{a}}{a} H_3 $	$= \frac{\ddot{a}}{\dot{a}} \rho = 2\rho_0 + \rho_{tt} p = 2p_0 + \frac{1}{3}p_{rr} \nabla \cdot \mathbf{D}_v^* = 4\pi G\rho_v$ $= p_{tt} + p_{rr} = c^2 Tr(\mathbf{J}_v^+) \qquad \qquad \frac{\partial}{\partial t}\mathbf{D}_v^+ - \nabla \times \mathbf{H}_v^+ = 4\pi G\mathbf{J}_v^+$	Eq. (6.14.5)- Eq. (6.14.10)
	N/A		Cosmic Emissions	$\nabla^2 \psi_n - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = 4 \frac{E_n^- E_n^+}{(\hbar c)^2} N_n^c \eta_n \psi_n$	Eq. (6.15.1)
http://www.org/	N/A		Acceleration	$\mathbf{g}_{v}^{-}/\kappa_{g}^{-}=\left[\check{\partial}^{\lambda}\check{\partial}^{\lambda},\hat{\partial}_{\lambda}\hat{\partial}_{\lambda}\right]_{v}^{-}-\mathbf{\Lambda}^{+}$	Eq. (6.13.3)

http://vixra.org/abs/1903.0487



Worldline Cosmology

Spacetime Asymmetric Fields

$$\begin{aligned} 3H_2^2 + 3\frac{kc^2}{a^2} &= c^2\Lambda_{tt}^+ + 4\pi G\rho & \Re^- + \Lambda^+ &= \frac{R}{2}g^- + G + C & \Lambda_{t\mu}^{+\sigma} &= \Lambda_d^+ - \kappa_A^+ \begin{pmatrix} -(\mathbf{u}^+\nabla) \cdot \mathbf{D}_{v}^* \\ \frac{\partial}{\partial t}\mathbf{D}_{v}^+ + \frac{\mathbf{u}^*}{c}\nabla(\frac{\mathbf{u}^*}{c}\times\mathbf{H}_{v}^+) \end{pmatrix} \\ 3H_2H_3 &= c^2\Lambda_{tr}^- - \frac{4\pi G}{c^2}(\rho c^2 + 3p) & & & \\ \rho &= 2\rho_0 + \rho_{tt} & p &= 2\rho_0 + \frac{1}{3}\rho_{tr} & & \\ G_{\mu\nu} &= \frac{8\pi G}{c^4}T_{\mu\nu} & H_2 &= \frac{a}{a} & H_3 &= \frac{a}{a} & \\ \frac{\partial}{\partial t}\mathbf{D}_{v}^+ - \nabla\times\mathbf{H}_{v}^* &= 4\pi G\mathbf{J}_{v}^+ & \nabla\cdot\mathbf{D}_{v}^* &= 4\pi G\rho_{v} & & \\ d\Sigma^2 &= dr^2 + S_k(r)^2 d\vartheta^2 & S_k(r) &= sinc(r\sqrt{k}) & & \\ \vartheta^2 &= d\theta^2 + \sin^2\theta d\phi^2 & & \\ E^{\pm} &= \pm iE_n^{\pm}(\frac{1}{2} + \frac{1}{e^{\pm iE_n^{\pm}ik_BT} - 1}) & & \nabla^2\psi_n - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\psi_n &= 4\frac{E_n^-E_n^+}{(hc)^2}N_n^c\eta_n\psi_n & & \\ H^2 &= -i\frac{(\hbar c)^2}{2E_n}\nabla^2 + V(\mathbf{r}, t) \\ &-i\hbar\frac{\partial}{\partial t}\psi &= \hat{H}\psi & \nabla^2 &= \frac{1}{r^2}\frac{\partial}{\partial t}(e^2\frac{\partial}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta\frac{\partial}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial q^2} \end{aligned}$$

Propagation of Dispersive Wave Packets

Spacetime Cosmology

Natural Ontology of Horizon Infrastructure

Higher Horizons	Cell	Molecule Biolo	ate () ∂) g
Higher Horizons $ \begin{array}{l} \nabla \cdot (\mathbf{B}_{q}^{-} + \eta \mathbf{B}_{g}^{-}) = 0^{+} \nabla \cdot (\mathbf{D}_{q}^{+} + \eta \mathbf{D}_{g}^{+} \\ \nabla \times (\mathbf{H}_{q}^{+} + \mathbf{H}_{g}^{+}) - \frac{\partial}{\partial t} (\mathbf{D}_{q}^{+} + \mathbf{D}_{g}^{+}) = \mathbf{J}_{q} \\ \nabla \times (\mathbf{E}_{q}^{-} + \mathbf{E}_{g}^{-}) + \frac{\partial}{\partial t} (\mathbf{B}_{q}^{-} + \mathbf{B}_{g}^{-}) = 0^{+} \\ (\mathcal{D}_{\mu} \mathcal{F}_{\nu \kappa})^{a} + (\mathcal{D}_{\kappa} \mathcal{F}_{\mu \nu})^{b} + (\mathcal{D}_{\nu} \mathcal{F}_{\kappa \mu})^{c} = 0 \\ (\mathcal{R} \otimes 1)(1 \otimes \mathcal{R})(\mathcal{R} \otimes 1) = (1 \otimes \mathcal{R})(\mathcal{R} \otimes 0) \\ (\mathcal{R} \otimes 1)(1 \otimes \mathcal{R})(\mathcal{R} \otimes 1) = (1 \otimes \mathcal{R})(\mathcal{R} \otimes 0) \\ \mathcal{F}_{\nu \mu}^{+n} (\mathcal{V}) \qquad \qquad$	$\begin{array}{c} 4\pi G \mathbf{J}_{g} \\ \hline \mathbf{k}_{jk} = \psi^{+}\psi^{-} + J_{s} + \left(\dot{x}^{\mu}\zeta^{\mu}D^{\lambda}\psi_{j}^{+}\right) \\ \hline \hat{w}_{jk} = \psi^{+}\psi^{-} + J_{s} + \left(\dot{x}^{\mu}\zeta^{\mu}D^{\lambda}\psi_{j}^{+}\right) \\ \hline \hat{w}_{jk} = \psi^{+}\psi^{-} + J_{s} + \left(\dot{x}^{\mu}\zeta^{\mu}D^{\lambda}\psi_{j}^{+}\right) \\ \hline \hat{w}_{jk} = \psi^{+}\psi^{-} + J_{s} + \left(\dot{x}^{\mu}\zeta^{\mu}D^{\lambda}\psi_{j}^{+}\right) \\ \hline \mathbf{k}_{s} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\right) \\ \mathbf{k}_{s} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g}^{-} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\chi_{g}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g}^{-} = \frac{1}{2} \left(\mathbf{k}_{s}^{-}\chi_{g}^{-}\right) \\ \hline \hat{w}_{s}^{-}\chi_{g}^$	$\mathcal{L}_{ST}^{SU3} = \kappa_f \left(\lambda_0 (\partial^{\nu} \varphi_b^+) (\partial_{\nu} \varphi_a^-) \right)$ Hadron $\Theta_{\nu m}^{+\sigma s} = i \Xi_{\nu m}^+ + i \frac{e}{h}$ $(\lambda_{\nu} \zeta_{\mu} D_{\lambda} \psi_k^-) \qquad \qquad$	$F_{\nu m}^{+} - i \eth_{m\nu}^{+s\sigma} - \textcircled{S}_{\nu m}^{+} \qquad \qquad$
$W^{+}: (\hat{\partial}^{\lambda_{1}} \rightarrow \hat{\partial}_{\lambda_{2}}), (\check{\partial}^{\lambda_{2}} \rightarrow \check{\partial}_{\lambda_{3}})$ $E_{c}^{\pm} = \mp \frac{i}{2} \hbar \omega_{c}$ $E_{p} = \sqrt{\hbar c_{g}^{5}/G}$	$\rho^{+} = \phi^{+} \varphi^{-} \text{Fields} \rho$ $Y^{+} \text{Manifold} \textbf{Fully Virtus}$ $\varphi_{n}^{\pm}(\lambda, x) = (1 \pm \tilde{\kappa}_{1} \dot{\partial}_{\lambda_{1}} \pm \tilde{\kappa}_{2} \dot{\partial}_{\lambda_{2}} d\lambda_{2})$	Y Manifold	$E_g^{\pm} = \mp \frac{i}{2} E_p$
Potential Generators	$\{\phi^-, \phi^+\}$ Potential Field No ForcesMessaonsVirtual World		J(1) Superphase coordinate Xing Space

Everything turned out to be simple and concise, yet extremely challenge — desensitized by its puzzling complexity of current traditional concepts

- Our challenge is, in fact, to leave behind the ambiguous philosophy that we were born with.
- Our challenge is to open up our minds to the facts hidden in the fabric of daily life.
- Our challenge is to soften our metaphysical prejudices, for the assumption that there is no metaphysical reality is also a metaphysics itself
- Our challenge is all the ignominious desensitized by the clamor of the excessive hype.

OUR CHALLENGE IS EVEN GREATER

OUR GLORIOUS Future

No mater

Where you come from, where you are, and where you go, Human society is at the dawn of a series of revolutions for a new era.

- 1. Advancing scientific philosophies to the next generation
- 2. Standardizing ontological frameworks for modern physics
- 3. Developing information technologies through virtual reality
- 4. Theorizing biology and biophysics in innovative life sciences
- 5. Reformulating metaphysics on the basis of scientific naturalism
- It is time to reevaluate and give Rise of the Ancient Philosophy
- It is time to teamwork together to Back to the Scientific Future...

Mr. Wei XU is a highly organized, resourceful and focused entrepreneur. From software engineer to tech guru, from executive to entrepreneur, he has over thirty years of extensive experiences in delivering comprehensive innovations in information technologies. From scientist to philosopher, his focus is to uncover whole structures of Elementary Particles, Dark Energy, and fundamental theories, known as Unified, Universal and Cosmological Physics.

Funded by the White House in 1993 to secure the first website of whitehouse.gov, Wei developed one of the top application firewalls in June 1994: Gauntlet Firewall, initiating the third generation firewalls. Upon his successful completion of IPSec research, he released the first commercial VPN product in the IT industry market in December 1994. As a pioneer of information security, Wei founded Spontaneous Networks in 1999, where he created the cloud service security on-demand transformable at the click of a button. Since then, he served as a Chief Architect in many commercial and government organizations and delivered thousands of virtual secure datacenter networks nationally and internationally. Today, he is developing the groundbreaking innovations: Virtual Productive Forces and next generation of Internet Protocols, enlightened by his recent scientific discoveries.

During the two years in 2009 and 2010, Wei received a set of the divine books in the old classic manuscripts: Worlds in Universe. Appeared initially as the profound topology of universe in philosophy, it turns gradually out groundbreakings and has concisely revealed the theoretical physics: i) the constitution of Elementary Particles including Virtual Dark Energy in 2013, ii) Universal Topology and Framework in 2015, iii) Universal and Unified Physics in 2018 [f], iv) Framework of "Natural Cosmology" in 2018, and v) inception of "Ontology of Nature" in 2019.

Mr. Xu holds his BS and his first MS degrees in Theoretical Physics from Ocean University of China and Tongji University, and his second MS degree in Electrical and Computer Engineering from University of Massachusetts.

Author Xu, Wei 徐崇伟

《Universal and Unified Field Theory》

- Xu, Wei (2019) (Philosophy of Nature, Universal Field Theory, Natural Cosmology, and Ontological Evolution) http://vixra.org/abs/1903.0487
- 2. Xu, Wei (2019) **(Universal and Unified Field Theory)**
- 3. Xu, Wei (2019) **(Framework of Natural Cosmology**)
- 4. Xu, Wei (2018) **(Universal and Unified Physics)**

http://vixra.org/abs/1903.0487 http://vixra.org/abs/1903.0182 http://vixra.org/abs/1812.0363 http://vixra.org/abs/1810.0016

Records of Information Technology

- a. https://en.wikipedia.org/wiki/Trusted Information Systems#Products
- b. <u>https://en.wikipedia.org/wiki/Application_firewall#History</u>
- c. https://en.wikipedia.org/wiki/Firewall (computing)#Third generation: application layer
- d. https://en.wikipedia.org/wiki/IPsec#History

References

A branch of sciences in dialectics of virtual and physical existences

wxu@virtumanity.com