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Abstract. Previous work regarding low-rank matrix recovery has concentrated on the scenarios in which

the matrix is noise-free and the measurements are corrupted by noise. However, in practical application, the

matrix itself is usually perturbed by random noise preceding to measurement. This paper concisely investigates

this scenario and evidences that, for most measurement schemes utilized in compressed sensing, the two models

are equivalent with the central distinctness that the noise associated with (1.4) is larger by a factor to mn/M ,

where m, n are the dimension of the matrix and M is the number of measurements. Additionally, this paper

discusses the reconstruction of low-rank matrices in the setting, presents sufficient conditions based on the

associating null space property to guarantee the robust recovery and obtains the number of measurements.

Furthermore, for the non-Gaussian noise scenario, we further explore it and give the corresponding result. The

simulation experiments conducted, on the one hand show effect of noise variance on recovery performance, on

the other hand demonstrate the verifiability of the proposed model.

Key words. Compressed sensing; low-rank matrix recovery; noise folding; null space property; restricted

isometry property.

1 Introduction

In recent years, low-rank matrix recovery (LRMR) from noisy measurements, with applications in collabo-

rative filtering [1], machine learning [2] [3], control [4], quantum tomography [5], recommender systems [6], and

remote sensing [7], has gained significant interest. Formally, this problem considers linear measurements of a

(approximately) low-rank matrix X ∈ Rm×n of the following form

y = A(X) + w, (1.1)

where y ∈ RM is the observed vector, w ∈ RM is an additive noise term, and A : Rm×n → RM is a linear

measurement map, which is determined by

A(X) =
[
tr(X⊤A(1)), tr(X⊤A(2)), · · · , tr(X⊤A(M))

]⊤
. (1.2)

∗Corresponding author, E-mail: wjjmath@gmail.com, wjj@swu.edu.cn(J.J. Wang)
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Here, tr(·) is the trace function, X⊤ is the transposition of X and A(1), A(2), · · · , A(M) are called measurement

matrices. Each A(i) can be equal to a row of a compressive measurement matrix, and A(X) could be written as

A(X) =


vec⊤(A(1))

vec⊤(A(2))
...

vec⊤(A(M))

 vec(X) := Avec(X), (1.3)

where vec(X) is a long vector gained by stacking the columns of X and A is an M ×mn matrix defined by (1.3)

which associates with the linear measurement map A.

However, the aforementioned model (1.1) only considers the noise introduced at the measurement stage. In

a variety of application scenarios, the matrix X to be recovered may also be corrupted by noise. Such issue

exists in a great number of applications such as the recovery of a video sequence [8] [9], statistical modeling

of hyperspectral imaging [10], robust matrix completion [11], and signal processing [12] [13]. Accordingly, it is

appropriate to take into the following model account

y = A(X + Z) + w, (1.4)

where Z ∈ Rm×n denotes the noise on the original matrix. Throughout this paper, we suppose that w is a

white noise vector satisfying E(w) = 0M and Var(w) = σ2IM , and similarly Z is a white noise matrix obeying

E(Z) = 0m×n and Var(Z) = σ2
0Imn, independent of w. Here and elsewhere in this paper, Im stands for the

identity matrix of order m. Under these hypotheses, in the next section, we will reveal that the model (1.4) is

equivalent to

ỹ = B(X) + u, (1.5)

where B is a linear measurement map, whose restricted isometry property and spherical section property con-

stants are very close to those of A, and u is white noise with mean zero and covariance matrix (σ2+mnσ2
0/M)IM .

When m = n and the matrices X = diag(x) (x ∈ Rm) and Z = diag(z) (z ∈ Rm) are diagonal, the models

(1.1) and (1.4) degenerates to the vector models

y = Ãx+ w, (1.6)

y = Ã(x+ z) + w, (1.7)

where Ã ∈ RM×m is the measurement matrix, and z is the noise on the original signal, for more details, see [14]

[15] [12] and [13]. As far as we know, recently most researchers either only discuss the situation of the noise

matrix Z = 0 in (1.4), or merely think over the vector model (1.7) and its associating sparse recovery problem.

Specifically, Arias-Castro and Eldar [12] considered the model (1.7) and showed that, for the vast majority of

measurement schemes employed in compressed sensing, the two models (1.6) and (1.7) are equivalent with the

significant distinction that the signal-to-noise ratio (SNR) is divided by a factor proportional to m/M . For the
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model (1.4) with Z = 0, Recht et al. [5] showed that the minimum-rank solution can be recovered by solving

a convex optimization problem if a certain restricted isometry property holds for the linear transformation

defining the constraints. More related works can be found in [16] [17] and [18].

In this paper, our main work incorporates the following parts: firstly, we investigate the relation between

the restricted isometry property constants and the spherical section property constants of B and A when

∥IM − (M/mn)AA⊤∥ < 1/2; secondly, based on certain properties of the null space of the linear measurement

map, we establish a sufficient condition for stable and robust recovery of the low-rank matrix itself contaminated

by noise and the corresponding upper bound estimation of recovery error; thirdly, we obtain the minimal amount

of measurements regarding the sufficient condition guaranteeing recovery via the nuclear norm minimization;

finally, the results of numerical experiments show that the method of nuclear norm minimization is effective in

recovering low rank matrices after whitening treatment.

The rest of the paper is constructed as follows. In Section 2, we discuss the relationship between the restricted

isometry property constants and spherical section property constants of B and A under certain conditions. In

Section 3, the recovery of low-rank matrices is thought over via the nuclear norm minimization method and

sufficient conditions are established to ensure the robust reconstruction. In Section 4, the sampling number

based on null space property that make sure the stable recovery is present. Some simulation experiments are

carried out in Section 5. The proofs of the main results are provided in Section 6. Finally, the conclusion is

given in Section 7.

2 RIP and SSP Analysis

In order to derive our results, the model (1.4) can be transformed into

y = A(X) + v, (2.8)

where v is determined by

v = A(Z) + w = Avec(Z) + w. (2.9)

Due to the assumption of white noise and independence, one can easily verify that the covariance Σ of the

noise vector v is equal to σ2IM + σ2
0AA

⊤. Obviously, v is not white noise like the noise w, so the recovery

analysis may become more complex.

Set θ := σ2 +mnσ2
0/M , Σ1 := Σ/θ, ỹ := Σ

−1/2
1 y, B := Σ

−1/2
1 A, u := Σ

−1/2
1 v. In order to whiten the noise

vector v, through multiplying the equation (2.8) by Σ
−1/2
1 , then we derive the equivalent equation below

ỹ = Bvec(X) + u. (2.10)

By applying (1.3), the model (2.10) can be written as

ỹ = B(X) + u, (2.11)

3



where

B(X) =
[
tr(X⊤B(1)), tr(X⊤B(2)), · · · , tr(X⊤B(M))

]⊤
, (2.12)

vec⊤(B(i)) = Bi· = (Σ
−1/2
1 )i·A, and Bi· denotes the ith row of the matrix B. Observe that the noise vector u is

the white noise and its covariance matrix equals to θIM . In order to investigate (1.4), we can utilize the results

which are exploited to deal with (1.1), with the central distinctness that the noise corresponding with (1.4) is

larger by a factor proportional to mn/M . In the case of M ≪ mn, this gives rise to a large noise amplification

or noise folding. The specific reason is the linear measurement A amalgamates all the noise entries in Z, even

those associated to zero entries in X, accordingly it brings about a large noise raise in the compressed sampling.

Our analysis depends on approximating AA⊤ by (mn/M)IM . Set

δ :=

∥∥∥∥IM − M

mn
AA⊤

∥∥∥∥ . (2.13)

Here, δ weighs the quality approximating AA⊤ by (mn/M)IM and ∥·∥ represents the operator norm on RM×M .

For the rest of this paper, suppose that δ is small. The assumption not only holds with high probability, but

also has been shown in [19].

In the following, we investigate what is the relationship between the restricted isometry constants of B and

A.

For each integer r = 1, 2, · · · , n0, where n0 = min{m,n}, we say that a linear measurement map A : Rm×n →

RM has the restricted isometry property (RIP) with constants 0 < µr ≤ νr if

µr∥X∥2F ≤ ∥A(X)∥22 ≤ νr∥X∥2F (2.14)

holds for all matrices X ∈ Rm×n of rank at most r (abbreviated as r-rank), where ∥X∥F :=
√
⟨X,X⟩ =√

tr(X⊤X). The theorem below presents the relationship between the RIP constants of B and A. Set δ1 =

δ/(1− δ).

Theorem 2.1. Suppose that δ < 1/2 in (2.13) and that the linear measurement map A fulfills the RIP of

order r with constants 0 < µr ≤ νr. It holds that the linear measurement map B obeys the RIP of order r with

constants µr(1− δ1) and νr(1− δ1).

Remark 2.2. The theorem shows that under the assumption of δ < 1/2 the RIP constants of B and A are

equivalent.

Remark 2.3. In the case of m = n and the matrices X = diag(x) (x ∈ Rm) is diagonal with x being r-sparse

(i.e., the number of non-zero elements in x is r at most), Theorem 2.1 is the same as Proposition 1 in [12].

Proof of the theorem 2.1. The idea is inspired by [12]. In order to bound ∥Σ1 − IM∥ we utilize the definition of
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δ in (2.13),

∥Σ1 − IM∥ =
σ2
0mn

θM
∥IM −

M

mn
AA⊤∥

=
σ2
0mn
M

σ2 +
σ2
0mn
M

δ

≤ δ. (2.15)

In the following, by applying the geometric series formula 1/(1−x) =
∑∞

k=0 x
k for |x| < 1, Σ−1

1 − I is expressed

as

Σ−1
1 − I = [I − (I − Σ1)]

−1 − I =
∞∑
k=1

(I − Σ1)
k. (2.16)

The above power series converges because ∥Σ1 − I∥ ≤ δ < 1. In order to bound ∥Σ−1
1 − I∥, we take operator

norms on both sides of the equality (2.16), we get

∥Σ−1
1 − I∥

(a)

≤
∞∑
k=1

∥(I − Σ1)
k∥

(b)

≤
∞∑
k=1

∥I − Σ1∥k

(c)

≤
∞∑
k=1

δk =
δ

1− δ
=: δ1, (2.17)

where (a) follows from the triangle inequality, (b) uses the fact that ∥AB∥ ≤ ∥A∥∥B∥ for all matrices A and B

in RM×M , and (c) is due to (2.15).

Take any X ∈ Rm×n satisfying rank at most r. Note that

∥B(X)∥22 − ∥A(X)∥22

= ∥Bvec(X)∥22 − ∥Avec(X)∥22

= vec⊤(X)A⊤(Σ−1
1 − I)Avec(X). (2.18)

By employing Hölder’s inequality, the definition of operator norm and (2.17), we get

|vec⊤(X)A⊤(Σ−1
1 − I)Avec(X)|

≤ ∥(Avec(X))⊤∥2∥(Σ−1
1 − I)Avec(X)∥2

≤ ∥(Σ−1
1 − I)∥∥Avec(X)∥22

≤ δ1∥Avec(X)∥22 = δ1∥A(X)∥22. (2.19)

A combination of (2.18) and (2.19), we get

(1− δ1)∥A(X)∥22 ≤ ∥B(X)∥22 ≤ (1 + δ1)∥A(X)∥22. (2.20)

Combining with (2.20) and (2.14), it implies

µr(1− δ1)∥X∥2F ≤ ∥B(X)∥22 ≤ νr(1 + δ1)∥X∥2F .

This completes the proof.
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Next, we present the concept of spherical section property of a linear measurement map.

The spherical section constant of a linear measurement map A is defined as

∆(A) = min
X∈N (A)\{0}

∥X∥2∗
∥X∥2F

,

and we say A satisfies the ∆-spherical section property (SSP) if ∆(A) ≥ ∆, where ∥X∥∗ is the nuclear norm of

the matrix X, i.e., the sum of its singular values. In the following proposition, we will explore the connection

between SSP constants of A and B.

Proposition 2.4. Suppose that the linear measurement map A satisfies the ∆-SSP with ∆ > 0. Then the linear

measurement map B obeys the ∆-SSP with ∆.

Remark 2.5. The proposition indicates that the SSP constants of B and A are identical.

Proof of the lemma 2.4. Firstly, we show that N (A) = N (B).

For any X ∈ N (A)\{0}, then A(X) = 0, i.e. Avec(X) = 0. Note that B(X) = Bvec(X) = Σ−1/2Avec(X).

Hence, B(X) = 0, namely, X ∈ N (B)\{0}. Therefore, N (A) ⊆ N (B). Similarly, we could deduce that

N (B) ⊆ N (A). Combining with the above facts, N (A) = N (B).

Now, we calculate the SSP constant of B. By making use of the definition of SSP, we get

∆(B) = min
X∈N (B)\{0}

∥X∥2∗
∥X∥2F

= min
X∈N (A)\{0}

∥X∥2∗
∥X∥2F

= ∆(A) ≥ ∆.

The proof is complete.

3 The null space property for LRMR

For recovering X, a prominent model is solving a constrained nuclear norm minimization problem

min
X̂∈Rm×n

∥X̂∥∗ subject to ∥B(X̂)− ỹ∥2 ≤ ϵ, (3.21)

where ϵ =
√
θ(M + 2

√
M logM) stands for the noise level, and ∥B(X̂) − ỹ∥2 ≤ ϵ holds with high probability,

for more details, see Lemma 6.1. As one of the crucial tool for the analysis of LRMR, the Frobenius-robust rank

null space property (FRRNSP) of a linear measurement map A attracts specific interest.

Definition 3.1. (FRRNSP [22]) The linear measurement map A : Rm×n → RM is said to satisfy the Frobenius-

robust rank null space property of order r with constants 0 < ρ < 1 and τ > 0 if for any X ∈ Rm×n, the singular

values of X fulfill

∥X[r]∥F ≤
ρ√
r
∥X[r]c∥∗ + τ∥A(X)∥2.
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Here, the singular value decomposition (SVD) of X is
∑n0

i=1 σi(X)uiv
⊤
i with n0 = min{m,n}, where σi(X)

is the ith largest singular value of X, and ui and vi are respectively the left and right singular value vectors

of X. In this situation, write X = X[r] + X[r]c , where X[r] is the best r-rank approximation of X, i.e.,

X[r] =
∑r

i=1 σi(X)uiv
⊤
i . Combining with Definition 3.1 and (2.20), we obtain the FRRNSP of the linear

measurement map B given by the following lemma.

Lemma 3.2. Set δ1 = δ/(1− δ). Under the assumptions of Definition 3.1 and δ < 1/2, the linear measurement

map B obeys the FRRNSP of order r, namely, for all X ∈ Rm×n,

√
1− δ1∥X[r]∥F ≤

ρ
√
1− δ1√
r
∥X[r]c∥∗ + τ∥B(X)∥2,

holds for the singular values of X.

Based on the above notion and lemma, we will establish an FRRNSP condition for stable and robust recovery

of low-rank matrix via the nuclear norm minimization and discuss the upper bound estimation of reconstruction

error.

Theorem 3.3. Suppose that a linear measurement map A : Rm×n → RM satisfies the Frobenius-robust rank

null space property of order r with constants 0 < ρ < 1 and τ > 0. Set δ1 = δ/(1 − δ). Assume that δ < 1/2.

Then, for any X ∈ Rm×n, a solution X∗ of (3.21) with ỹ = B(X)+ u and ∥u∥2 ≤ ϵ approximates the matrix X

with error

∥X −X∗∥F ≤ C1

∥X[r]c∥∗√
r

+ C2ϵ, (3.22)

where

C1 =
2(1 + ρ)2

1− ρ

and

C2 =
2(3 + ρ)τ

(1− ρ)
√
1− δ1

.

Remark 3.4. The theorem gives a sufficient condition to ensure the stable and robust reconstruction of the

low-rank matrices.

Remark 3.5. The inequality (3.22) in Theorem 3.3 provides an upper bound estimation on the reconstruction of

the nuclear norm minimization. Especially, this estimation evidences that reconstruction precision of the nuclear

norm minimization can be controlled by the noise level and the best r-rank approximation error. Furthermore,

the estimation (3.22) shows that the reconstruction accuracy of the method (3.21) can be bounded by the degree

of rank of the matrix. In this sense, Theorem 3.3 demonstrates that under certain conditions, an r-rank matrix

can be robustly reconstructed by the method (3.21).

Remark 3.6. When no noise is introduced, i.e., u = 0 and ϵ = 0, it will result in the exact recovery when

matrices are r-rank.
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Remark 3.7. By Lemma 6.1, we know that u is Gaussian noise, so it is usually bounded by l2-norm. However,

when u is non-Gaussian noise, for example, Gaussian mixture noise, it is more appropriate to exploit lp-norm

to bound that noise, see [21]. Then the real matrix could be robustly recovered by

min
X̂∈Rm×n

∥X̂∥∗ subject to ∥B(X̂)− ỹ∥p ≤ ϵ, (3.23)

where p ≥ 1, ϵ denotes the noise level which varies according to the range of p, and ∥B(X) − ỹ∥p ≤ ϵ holds

with high probability, for more details, see Lemma 6.2. In the following, we only consider the case of 1 ≤ p < 2

because of another (i.e. p ≥ 2) situation is similar. In this case, assuming the conditions of Lemma 3.2 (just

replace ∥B(X)∥2 by ∥B(X)∥p), the linear map B satisfies the FRRNSP of order r, viz,

∥X[r]∥F ≤
ρ√
r
∥X[r]c∥∗ +

τ

M1/2−1/p
√
1− δ1

∥B(X)∥2.

Under the assumptions of Theorem 3.3, the solution X∗ of (3.23) satisfies

∥X −X∗∥F ≤
2(1 + ρ)2

1− ρ

∥X[r]c∥∗√
r

+
2τ(3 + ρ)

(1− ρ)M1/2−1/p
√
1− δ1

ϵ,

∥X −X∗∥p ≤
2(1 + ρ)2

(1− ρ)r1−1/p
∥X[r]c∥∗ +

2τ(3 + ρ)r1/p−1/2

(1− ρ)M1/2−1/p
√
1− δ1

ϵ,

where ϵ = M1/p

√
θ′(1 + 2

√
M−1 logM) with θ′ = [(1− ξ) + κξ]σ2 +mn[(1− η) + γη]σ2

0/M .

In the following, we present the stable rank null space property (SRNSP) of a linear measurement map

weaker than the Frobenius-robust rank null space property, see Definition 4.17 in [24] for the analogue in the

sparse signal reconstruction situation.

Definition 3.8. (SRNSP) We say that the linear measurement map A : Rm×n → RM satisfies the stable rank

null space property of order r with constants 0 < ρ < 1 and τ > 0 if for any X ∈ Rm×n, the singular values of

X fulfill

∥X[r]∥∗ ≤ ρ∥X[r]c∥∗ + τ∥A(X)∥2.

Similar to Lemma 3.2, we derive the following result on the SRNSP of the linear measurement map B.

Lemma 3.9. Set δ1 = δ/(1 − δ). Assume that the conditions of Definition 3.8 and δ < 1/2. Then, the linear

measurement map B satisfies the SRNSP of order r, viz., for all X ∈ Rm×n,

√
1− δ1∥X[r]∥∗ ≤ ρ

√
1− δ1∥X[r]c∥∗ + τ∥B(X)∥2,

holds for the singular values of X.

With preparation above, we now state the stability and robustness of the method (3.21) under the definition

scheme of SRNSP of a linear measurement map.
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Theorem 3.10. We assume that a linear measurement map A : Rm×n → RM satisfies the sable rank null

space property of order r with constants 0 < ρ < 1 and τ > 0. Set δ1 = δ/(1− δ) with δ < 1/2. Then, for any

X ∈ Rm×n, a solution X∗ of (3.21) with ỹ = B(X) + u and ∥u∥2 ≤ ϵ approximates the matrix X with error

∥X −X∗∥F ≤ D1

∥X[r]c∥∗√
r

+D2ϵ, (3.24)

where

D1 =
2(1 + ρ)(ρ

√
r + 1)

1− ρ

and

D2 =
2[(1 + ρ)

√
r + 2]τ

(1− ρ)
√
r(1− δ1)

.

Corollary 3.11. Under the same assumptions as in Theorem 3.10, suppose that u = 0 and X is r-rank. Then,

X can be exactly reconstructed via the method (3.21).

4 Measurement map with independent entries and four finite mo-

ments

In this section, we will determine how many measurement matrices with independent elements and four

finite moments are needed for the FRRNSP condition to be fulfilled with high probability.

Theorem 4.1. Set n0 = min{m,n}. Let A : Rm×n → RM , and A(X) is defined by (1.2), where the A(i) are

independent copies of a random matrix Φ = (Xij)i,j with independent mean zero elements following

Var(Xij) = (σ2 + σ2
0)/(σ

2 +mnσ2
0/M)

and

EX4
ij ≤ (σ2 + σ2

0)
2/(σ2 +mnσ2

0/M)2C4

for all i, j and some positive constant C4. In addition, assume that A(1), A(2), · · · , A(M) are mutually orthogonal,

and the columns of A(i) are mutually orthogonal and the lengths of its columns equal to 1/
√
n.

Then, for given 1 ≤ r ≤ n0 and δ1 = δ/(1 − δ) with δ < 1/2, there exists c1, c2 relying on C4 that are positive

constants, such that A satisfies the Frobenius-robust rank null space property with constants 0 < ρ < 1 and

τ > 0 with probability at least 1− e−c2M whenever

M ≥ c1r(m+ n).

Proof of the theorem 4.1. By the assumptions of Theorem 4.1, we get

vec⊤(A(i))vec(A(i)) = 1, i = 1, 2, · · · ,M,

vec⊤(A(i))vec(A(j)) = 0, i ̸= j.
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Consequently,

AA⊤ =


vec⊤(A(1))

vec⊤(A(2))
...

vec⊤(A(M))


(
vec(A(1)), vec(A(2)), · · · , vec(A(M))

)
= IM .

By employing the identity above and the definition of Σ1, we get

Bi· = (Σ
−1/2
1 )i·A

=

(
σ2 +mnσ2

0/M

σ2 + σ2
0

)1/2

Ai·,

i.e.,

vec⊤(B(i)) =

(
σ2 +mnσ2

0/M

σ2 + σ2
0

)1/2

vec⊤(A(i)).

By applying the conditions of Theorem 4.1, we get

E(Bij) = E

[(
σ2 +mnσ2

0/M

σ2 + σ2
0

)1/2

Aij

]
= 0,

Var(Bij) = Var

[(
σ2 +mnσ2

0/M

σ2 + σ2
0

)1/2

Aij

]
= 1,

E(B4
ij) = E

[(
σ2 +mnσ2

0/M

σ2 + σ2
0

)1/2

Aij

]4
≤ C4.

The remainder of the proof follows similarly the proof of Theorem 1.1 in [22], which is omitted here for suc-

cinctness.

5 Numerical Simulations

In this section, we present the optimization inside information of the constrained problem (3.21). The

regularization form of the problem (3.21) is

min
X̂
∥X̂∥∗ +

λ

2
∥Bvec(X̂)− ỹ∥2, (5.25)

where λ is a regularization parameter, X̂ ∈ Rm×n, B ∈ RM×mn, ỹ ∈ RM and vec(X̂) stands for the vectorization

of X̂. Then, we solve the unconstrained problem (5.25) by using the alternating direction method of multipliers

(ADMM) [26] [25] [27]. The problem (5.25) can be equivalently rewritten as

min
X̂
∥X̂∥∗ +

λ

2
∥Bvec(U)− ỹ∥2 s.t. X̂ = U. (5.26)

The associating augmented Lagrangian function is

L(X̂, U,W ) = ∥X̂∥∗ +
λ

2
∥Bvec(X̂)− ỹ∥2 +

⟨
W, X̂ − U

⟩
+

ρ1
2
∥X̂ − U∥2F . (5.27)
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where W ∈ Rm×n indicates the Lagrangian multiplier, and ρ1 is a positive scalar. Then X̂ and W can be

obtained by minimizing each variable alternately while fixing the other variables. The updated details are

summarized in Algorithm 5.1.

Algorithm 5.1 : Solve problem (3.21) by ADMM

1: Input A ∈ RM×mn, y ∈ RM , σ, σ0.

2: Whitening B = Σ
−1/2
1 A, ỹ = Σ

−1/2
1 y.

3: Initialize X̂0 = U0 = W 0, γ = 1.1, λ0 = 10−6, λmax = 1010, ρ1 = 10−6, ε = 10−8, j = 0.

4: while not converged do

5: Updated Xj+1 by

x̂ = argmin
X̂

(B⊤B + ρ1I)
−1
(
B⊤ỹ − ρ1vec(U

j) + vec(W j)
)
;

X̂j+1 ← x̂: reshape x̂ to the matrix X̂j+1 of size m× n.

6: Update U j+1 by

argmin
U

ρ1

(
λ

ρ1
∥U∥∗ +

1

2

∥∥∥∥U − (Xj+1 +
W j

ρ1

)∥∥∥∥2
F

)
;

7: Update W j+1 by

W j+1 = W j + X̂j+1 − U j+1;

8: Update λj+1 by λj+1 = min(γλj , λmax);

9: Check the convergence conditions

∥X̂j+1 −Xj∥∞ ≤ ε, ∥U j+1 − U j∥∞ ≤ ε,

∥Bvec(X̂j+1)− ỹ∥∞ ≤ ε, ∥X̂j+1 − U j+1∥∞ ≤ ε.

In our experiments, the measurement matrix A ∈ RM×mn is generated with its elements being i.i.d., zero-

mean, 1/M -variance Gaussian distribution. Next, the matrixX ∈ Rm×n of rank r is generated byX = XL∗XR,

where XL ∈ Rm×r and XL ∈ Rr×n are with i.i.d. draw from a standard Gaussian distribution. The noise

matrix Z and the measurement noise vector w are then respectively generated with its entries being i.i.d.,

zero-mean, σ2
0-variance Gaussian distribution (σ0 = 0.05, 0.10, 0.15) and σ2-variance Gaussian distribution

(σ = 0.01). We choose m = n = 30 and r = 0.2m. With A, X, Z and w, the measurement y is produced

by y = A(vec(X) + vec(Z)) + w. Due to θ = σ2 + mnσ2
0/M , Σ1 = Σ/θ, accordingly we derive ỹ = Σ

−1/2
1 y,

B = Σ
−1/2
1 A after whitening noise. In order to prevent the occurrence of randomness, we reveal the average

results over independent 100 trails in all experiments.

To find the better λ which derives the maximal Signal-to-Noise Ratio (SNR, 20 log(∥X∥F /∥X − X̂∥F )), a

set of trails have been carried out. In Fig. 5.1 with M = 750, the SNR is plotted versus the regularization

parameter λ for different σ0 values, σ0 = 0.05, 0.10, 0.15, and λ is varied between 10−9 and 1, and the image

evidences that the parameter λ ∈ [10−9, 10−1] is a well selection.
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Fig. 5.1: Recovery performance of the constrained nuclear norm minimization (3.21) versus λ.

In order to verify the justifiability of the model (3.21), two sets of experiments have been conducted. In Fig.

5.2(a) with M = 700, the average relative error (∥X − X̂∥F /∥X∥F ) is plotted versus the rank r for different

standard deviation values (i.e., σ0), σ0 = 0.05, 0.10, 0.15, and the rank r ranges from 4 and 8 and Fig. 5.2(b)

depicts the SNR versus the number of measurements M for different σ0 values, σ0 = 0.05, 0.10, 0.15, and the

number of measurements M varies from 720 to 800 with r = 6. It is easy to see that as the rank of the original

matrix Xdecreases and the number of measurements increases, the recovery error decreases gradually, and a

decreasing standard deviation σ0 leads to a better performance.
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Fig. 5.2: (a) Relative error varying rank with M = 700, (b) SNR varying number of measurements with r = 6.

To further verify the validity of the model (3.21) recovery, we choose random Bernoulli matrix as the

measurement matrix, whose entries follows Bernoulli distribution, i.e.,

Aij =
1√
M

1, p = 1
2 ,

−1, p = 1
2 .

SNR versus the rank and the relative error versus the number of samples, the results are shown in Fig. 5.3(a)

and (b) in different σ0 = 0.05, 0.10, 0.15. In Fig. 5.3(a), the values of the rank r of the original matrix vary

12



from 4 to 8 with M = 700 and in Fig. 5.3(b), the number of samples M ranges from 730 to 810 with r = 6.

Fig. 5.3(a) and (b) demonstrate that as the variance of noise matrix Z decreases, the recovery effect becomes

better, and a smaller rank of the original matrix and a larger number of samples make the reconstruction error

smaller (SNR larger).
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Fig. 5.3: (a) SNR varying rank with M = 700, (b) Relative error varying number of samples with r = 6.

Finally, the effect of noise variance on the performance of model (3.21) reconstruction is illustrated by

grayscale image recovery. The original image (in Fig. 5.4) has a resolution of 256 × 256. The selection of

measurement matrix is the same as that in Fig. 5.2. We fix the standard deviation σ = 0.01 of the measurement

noise w. Due to the limitation of experimental conditions, we scale the original image to a resolution of 30×30.

The number of measurements is equal to M = 2.5r(m+n− r)+1 and the rank r equals to 0.2m. To access the

quality of the recovered image, we adopt Structural SIMilarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

The gained results are reported in Table 5.1. The results show again the smaller the variance of noise, the better

the recovery effect.

Fig. 5.4: Grayscale image of 256× 256 pixels.
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Table 5.1: PSNR|SSIM results on recovery of test image

σ0 PSNR SSIM

1 0.05 35.588 0.95328

2 0.10 33.248 0.92672

3 0.15 30.142 0.86879

4 0.20 27.033 0.77871

Some experts may ask, what is the effect of the model on image denoising? We have made some attempts

in this respect, but we have not yet achieved good experimental results. We are still trying to explore this issue

and regard it as an important research direction in the future.

6 The proofs of theorems

Before proving our main results, we need some auxiliary lemmas. The following lemma presents a matrix of

Stechkin’s bound generalizing the result of sparse vectors [24] to the case of low-rank matrices.

Lemma 6.1. (Gaussian white noise) Recall that w is a white noise vector with E(w) = 0M and Var(w) = σ2IM ,

and that similarly Z is a white noise matrix satisfying E(Z) = 0m×n and Var(Z) = σ2
0Imn, independent of w.

In addition, we assume that both w and Z follow Gaussian distribution. Then

u = Σ
−1/2
1 v ∼ N(0, θIM ),

where Σ1 = Σ/θ, Σ = σ2IM + σ2
0AA

⊤, θ = σ2 +mnσ2
0/M , and v = Avec(Z) + w.

Furthermore, the noise u ∼ N(0, θIM ) satisfies

P
(
∥u∥2 ≤

√
θ(M + 2

√
M logM)

)
≥ 1− 1

M
, (6.28)


P
(
∥u∥p ≤M1/p

√
θ(1 + 2

√
M−1 logM)

)
> 1− 1

M , 0 ≤ p < 2,

P
(
∥u∥p ≤

√
θ(M + 2

√
M logM)

)
≥ 1− 1

M , p ≥ 2.

(6.29)

Proof of the lemma 6.1. Note that A is a linear transformation. By applying the property of Gaussian random

vector, the definition of covariance matrix and some elementary calculations, we get

v ∼ N(0, σ2IM + σ2
0AA⊤).

Since Σ
−1/2
1 is a linear map, we get

u = Σ
−1/2
1 v ∼ N(0, θIM ).

The proof of the inequality of (6.28) is similar to Lemma III.3 in [20].
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In the following, we prove the equation (6.29). Since the proofs of two cases are similar, we only provide the

proof of 0 ≤ p < 2. By employing the inequality that ∥x∥2 ≤ ∥x∥p ≤ M1/p−1/2∥x∥2 for all x ∈ RM and fixed

1 ≤ p < 2 and ∥u∥2 ≤
√

θ(M + 2
√
M logM), we get

∥u∥p ≤M1/p−1/2

√
θ(M + 2

√
M logM),

which implies

P
(
∥u∥p ≤M1/p

√
θ(1 + 2

√
M−1 logM)

)
> P

(
∥u∥2 ≤

√
θ(M + 2

√
M logM)

)
≥ 1− 1

M
.

Lemma 6.2. (Gaussian mixture noise) Assume that i.i.d. wi and Zij follow respectively two-term Gaussian

mixture models, i.e., wi ∼ (1−ξ)N(0, σ2)+ξN(0, κσ2), i = 1, · · · ,M , and Zij ∼ (1−η)N(0, σ2
0)+ηN(0, γσ2

0), i =

1, · · · ,m, j = 1, · · · , n, where 0 ≤ ξ < 1 (0 ≤ η < 1) represents the portion of outliers in the noise and

κ > 1 (γ > 1) stands for the strength of outliers. Then

u = Σ
′−1/2
1 v ∼ N(0, θ′IM ),

namely, ui obeys the Gaussian mixture noise, i.e., ui ∼ (1− ξ)N(0, σ2) + ξN(0, κσ2) + (1− η)N(0,mnσ2
0/M) +

ηN(0,mnγσ2
0/M), where Σ′

1 = Σ′/θ′, Σ′ = [(1− ξ) + κξ]σ2IM + [(1− η) + γη]σ2
0AA⊤, θ′ = [(1− ξ) + κξ]σ2 +

mn[(1− η) + γη]σ2
0/M , and v = Avec(Z) + w.

Besides, the noise u ∼ N(0, θ′IM ) fulfills
P
(
∥u∥p ≤M1/p

√
θ′(1 + 2

√
M−1 logM)

)
> 1− 1

M , 0 ≤ p < 2,

P
(
∥u∥p ≤

√
θ′(M + 2

√
M logM)

)
≥ 1− 1

M , p ≥ 2,

(6.30)

where θ′ = [(1 − ξ) + κξ]σ2 + mn[(1 − η) + γη]σ2
0/M . And similar to [21], the p-th moment of such a noise

process is given by

E{∥u∥pp} =
M2p/2θ′p/2Γ(p+1

2 )
√
π

(6.31)

where θ′ = [(1− ξ) + κξ]σ2 +mn[(1− η) + γη]σ2
0/M .

Lemma 6.3. ([22]) Let X ∈ Rm×n and r ≤ min{m,n}. Then, for p > 0,

∥X[r]c∥p ≤
1

r1−1/p
∥X∥∗.

The following lemma is a useful inequality on matrix norm.

Lemma 6.4. ([23]) For any X,Y ∈ Rm×n, we have

∥X − Y ∥∗ ≥
n0∑
i=1

|σi(X)− σi(Y )|,

where n0 = min{m,n}.
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The result below reveals that the distance between the original matrix and its corresponding solution is

bounded by the best r-rank approximation error and the Euclidean norm of the difference between their mea-

surements provided that the Frobenius-robust rank null space property.

Lemma 6.5. Set δ1 = δ/(1− δ) with δ < 1/2. Assume that A : Rm×n → RM fulfills the Frobenius-robust rank

null space property with constants 0 < ρ < 1 and τ > 0. Then, a solution X∗ of problem (3.21) approximates

the matrix X with errors

∥X −X∗∥∗ ≤
2(1 + ρ)

1− ρ
∥X[r]c∥∗ +

2τ
√
r

(1− ρ)
√
1− δ1

∥B(X −X∗)∥2. (6.32)

Proof of the lemma 6.5. By exploiting Lemma 6.4, we get

∥X∗∥∗ = ∥X − (X −X∗)∥∗ ≥
n0∑
i=1

|σi(X)− σi(X −X∗)|

=
r∑

i=1

|σi(X)− σi(X −X∗)|+
n0∑

i=r+1

|σi(X)− σi(X −X∗)|

≥
r∑

i=1

(σi(X)− σi(X −X∗)) +

n0∑
i=r+1

(σi(X −X∗)− σi(X)).

Therefore,

∥(X −X∗)[r]c∥∗ ≤ ∥X∗∥∗ −
r∑

i=1

σi(X) +
r∑

i=1

σi(X −X∗) +

n0∑
i=r+1

σi(X)

(a)

≤ ∥X∗∥∗ − ∥X∥∗ +
√
r∥(X −X∗)[r]∥F + 2∥X[r]c∥∗

(b)

≤
√
r∥(X −X∗)[r]∥F + 2∥X[r]c∥∗,

where (a) follows from Hölder’s inequality, and (b) is due to the minimality of X∗. Employing the Frobenius-

robust rank null space property of the linear measurement map B to the inequality above, rearranging the terms

and observing 0 < ρ < 1, we get

∥(X −X∗)[r]c∥∗ ≤
1

1− ρ

(
τ
√
r√

1− δ1
∥B(X −X∗)∥2 + 2∥X[r]c∥∗

)
. (6.33)

Then,

∥X −X∗∥∗ = ∥(X −X∗)[r]∥∗ + ∥(X −X∗)[r]c∥∗
(a)

≤
√
r∥(X −X∗)[r]∥F + ∥(X −X∗)[r]c∥∗

(b)

≤ (1 + ρ)∥(X −X∗)[r]c∥∗ +
τ
√
r√

1− δ1
∥B(X −X∗)∥2

(c)

≤ 2(1 + ρ)

1− ρ
∥X[r]c∥∗ +

2τ
√
r

(1− ρ)
√
1− δ1

∥B(X −X∗)∥2,

where (a) is from Hölder’s inequality, (b) is due to the Frobenius-robust rank null space property of B, and (c)

follows from the inequality (6.33). The proof is complete.
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Proof of the theorem 3.3. By utilizing Lemma 6.3, we get

∥X −X∗∥F
(a)

≤ ∥(X −X∗)[r]∥F + ∥(X −X∗)[r]c∥F

≤ ∥(X −X∗)[r]∥F +
1√
r
∥X −X∗∥∗

(b)

≤ 1 + ρ√
r
∥X −X∗∥∗ +

τ√
1− δ1

∥B(X −X∗)∥2,

where for (a) we make use of the triangular inequality, and (b) follows from the Frobenius-robust rank null

space property of B. Plugging (6.32) into the above inequality, observing the fact that ∥u∥2 ≤ ϵ, and due to the

inequality ∥B(X −X∗)∥2 ≤ ∥B(X)− ỹ∥2 + ∥B(X∗)− ỹ∥2, the result is deduced.

The following outcome clears that under the stable rank null space property, the distance between the

matrix to be recovered and its associating solution is controlled by the best r-rank approximation error and the

Euclidean distance between their measurements.

Lemma 6.6. Set δ1 = δ/(1− δ) with δ < 1/2. Let X∗ be the optimal solution of problem (3.21) with ∥B(X∗)−

ỹ∥2 ≤ ϵ. Suppose that we observe ỹ = B(X) + u with ∥B(X) − ỹ∥2 ≤ ϵ and A : Rm×n → RM meets the stable

rank null space property with constants 0 < ρ < 1 and τ > 0. Then,

∥X −X∗∥∗ ≤
2(1 + ρ)

1− ρ
∥X[r]c∥∗ +

2τ

(1− ρ)
√
1− δ1

∥B(X −X∗)∥2. (6.34)

Proof of the lemma 6.6. The proof is similar to that of Lemma 6.5.

Proof of the theorem 3.10. Combining with the stable rank null space property, Cauchy-Schwarz inequality,

Lemmas 6.3 and 6.6, the desired result is established. This completes the proof.

7 Conclusion

Although the literature on low-rank matrix recovery is almost silent on the impact of pre-measurement noise

on recovery performance, this paper certificated that it maybe have an important effect on signal-noise-ratio.

Certainly, we indicated that for the widespread measuring formula employed in low-rank matrix recovery, the

model with pre-measurement noise is, after whitening, equivalent to a standard model with merely additional

noise and a raise in the noise variance by a factor of mn/M . We presented bounds on the RIP constants and

the SSR constants of new linear measurement map which cleared that as m, n, M → ∞ with mn/M → 0,

the RIP constants are fundamentally unaltered. As the performance of standard reconstruction approaches is

regularly expressed with respect to the RIP constants, this demonstrates that, these approaches manipulate like

the standard, as well as noise folding causes a large noise increase. Besides, based on the two kinds of null space

properties, we extended the study to the noise folding scenario, established sufficient conditions for robustly

reconstructing low-rank matrix itself subject to noise, and provided upper bound estimations of recovery error.

Furthermore, the minimal number of measurement such that sufficient condition based on FRRNSP obeys was

gained. Numerical simulations are presented to verify the theoretical results.
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