A note on the arbelos in Wasan geometry, Satoh's problem and a circle pattern

HIROSHI OKUMURA Maebashi Gunma 371-0123, Japan e-mail: hokmr@yandex.com

Abstract. We generalize a problem in Wasan geometry involving an arbelos, and construct a self-similar circle pattern.

Keywords. arbelos, self-similar figure

Mathematics Subject Classification (2010). 01A27, 51M04

1. INTRODUCTION

Let α , β and γ be circles of diameters AO, BO and AB, respectively, for a point O on the segment AB. The configuration consisting of the three circles and the radical axis of α and β are called an arbelos and the axis, respectively. The radii of α and β are denote by a and b, respectively, and the reflection in the axis is denoted by σ . In this note we generalize the following problem proposed by Satoh (佐藤幸吉定寄) in a sangaku presented in Iwate in 1850 (Yasutomi, 1987) (see Fig. 1).

Problem 1. Show that the two circles touching β^{σ} externally γ internally and the axis from the side opposite to *B* have radius a/2.

2. Generalization

Let $\alpha(n)$ (resp. $\beta(n)$) be the circle of radius na (resp. nb) touching the axis at O from the side opposite to A (resp. B) for a non-negative real number n. Let α_2 (resp. β_2) be one of the two circles touching $\beta(n)$ (resp. $\alpha(n)$) externally γ internally and the axis from the side opposite to B (resp. A), where the circles α_2 and β_2 lie on the same side of the segment AB. Problem 1 is the case n = 1 in the next theorem (see Fig. 2).

Theorem 1. The circles α_2 and β_2 have radii a/(n+1) and b/(n+1), respectively, and touch at a point on the axis.

Proof. We assume that D is the center of α_2 , F is the foot of perpendicular from D to AB and d = |DF|. If r is the radius of α_2 , then we get $(a+b-r)^2 - ((a-b)-r)^2 = (nb+r)^2 - (nb-r)^2 = d^2$ from the two right triangles formed by D, F and the center of γ , and D, F and the center of $\beta(n)$. Solving the equations, we have r = a/(n+1) and $d = 2\sqrt{nab/(n+1)}$. Similarly β_2 has radius b/(n+1). Since d is symmetric in a and b, the distance from the center of β_2 to AB also equals d. Therefore the circle α_2 , β_2 touch at a point on the axis.

Notice that if n = 0, then the circle $\beta(n)$ is a point circle and the circles α and α_2 coincide, also β and β_2 coincide.

3. A self-similar circle pattern

In this section we construct a self-similar circle pattern by Theorem 1. We now consider the case n = 1 in the theorem as in Problem 1. We denote the arbelos formed by α , β and γ by (α, β, γ) , and denote the configuration consisting of (α, β, γ) and $(\alpha, \beta, \gamma)^{\sigma}$ by C_1 , which is symmetric in the axis (see Fig. 3). Notice that the axis and the segment AB are not included in C_1 . For a similar mapping τ , we call the figure C_1^{τ} a symmetric arbelos of radius $|A^{\tau}B^{\tau}|$. Let us assume |AB| = 1.

Let γ_2 be the smallest circle touching α_2 and β_2 internally. Then the arbelos $(\alpha_2, \beta_2, \gamma_2)$ is similar to (α, β, γ) by Theorem 1. We call the figure consisting of $(\alpha_2, \beta_2, \gamma_2) \cup (\alpha_2, \beta_2, \gamma_2)^{\sigma}$ and its reflection in AB the two small copies of C_1 , which consists of two symmetric arbeloi of radius 1/2. We define the two small copies of C_1^{τ} for a similar mapping τ similarly. We denote the configuration consisting

of C_1 and its two small copies by C_2 (see Fig. 4). If the figure C_k is constructed, which consists of C_1 , two symmetric arbeloi of radius 1/2, four symmetric arbeloi of radius $1/2^2$, \cdots , 2^{k-1} symmetric arbeloi of radius $1/2^{k-1}$, then we add the two small copies of each of the 2^{k-1} symmetric arbeloi of radius $1/2^k$, and denote the resulting configuration by C_{k+1} . By this construction, we can get C_n for any positive integer n. Then $C_0 = \bigcup_{i \ge 1} C_i$ is a self-similar circle configuration (see Fig. 5).

Figure 5: C_0

References

[1] Yasutomi, Y. (安富有恒) (1987). The extant sangakus in Iwate (和算一岩手の現存算額のすべて). Tokyo: Seijisha (青磁社).