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Abstract

After a brief review of the thermal relativistic corrections to the
Schwarzschild black hole entropy, it is shown how the Stefan-Boltzman law
furnishes large modifications to the evaporation times of Planck-size mini-
black holes, and which might furnish important clues to the nature of dark
matter and dark energy since one of the novel consequences of thermal rel-
ativity is that black holes do not completely evaporate but leave a Planck
size remnant. Equating the expression for the modified entropy (due to
thermal relativity corrections) with Wald’s entropy should in principle
determine the functional form of the modified gravitational Lagrangian
L(Rabcd). We proceed to derive the generalized uncertainty relation which

corresponds to the effective temperature Teff = TH(1 − T2
H

T2
P

)−1/2 associ-

ated with thermal relativity and given in terms of the Hawking (TH) and
Planck (TP ) temperature, respectively. Such modified uncertainty rela-
tion agrees with the one provided by string theory up to first order in

the expansion in powers of (δp)2

M2
P

. Both lead to a minimal length (Planck

size) uncertainty. Finally, an explicit analytical expression is found for the
modifications to the purely thermal spectrum of Hawking radiation which
could cast some light into the resolution of the black hole information
paradox.
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Recently we derived the exact thermal relativistic corrections to the Schwarzschild,
Reissner-Nordstrom, Kerr-Newman black hole entropies, and provided a de-
tailed analysis of the many novel applications and consequences of thermal
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relativity to the physics of black holes, quantum gravity, minimal area, minimal
mass, Yang-Mills mass gap, information paradox, arrow of time, dark matter,
and dark energy [1]. The deep origins of the connection between Black Holes
and Thermodynamics is still a mystery (to our knowledge). As pointed out by
[8], the idea of describing classical thermodynamics using geometric approaches
has a long history. Among various treatments, Weinhold [3] used the Hessian of
internal energy to define a metric for thermodynamic fluctuations, Ruppeiner
[4] used the Hessian of entropy for the same purpose. More recently, Quevedo
[5] introduced a formalism called Geometrothermodynamics (GTD) which also
introduces metric structures on the configuration space E of the thermodynamic
equilibrium states spanned by all the extensive variables.

Another fact that was missing is that the above authors (to my knowledge)
did not realize that their constructions are particular examples of the many
important applications of Finsler geometry [6], to the field of Thermodynamics,
contact geometry and a vast number of many other topics [7] . Zhao [8] was
able to outline the essential principles of Thermal Relativity; i.e. invariance
under the group G of general coordinate transformations on the thermodynamic
configuration space, and introduced a metric with a Lorentzian signature on the
space. The line element was identified as the square of the proper entropy. Thus
the first and second law of thermodynamics admitted an invariant formulation
under general coordinate transformations, which justified the foundations for
the principle of Thermal Relativity.

In our case above, one may implement Zhao’s formulation [8] of Thermal
Relativity in the flat analog of Minkowski space as

(ds)2 = (TP dS)2 − (dM)2 ↔ (dτ)2 = (cdt)2 − (dx)2 (1)

The maximal Planck temperature TP plays the role of the speed of light, and s
is the so-called proper entropy which is invariant under the thermodynamical
version of Lorentz transformations [8]. Note the s ↔ τ correspondence. Thus
the flow of the proper entropy s is consistent with the arrow of time.

The left hand side of (1) yields, after recurring to the first law of Thermo-
dynamics TdS = dM ⇒ T = dM

dS ,

(ds)2 = (TP dS)2
(

1 − T 2

T 2
P

)
⇒ (ds) = (TP dS)

√(
1 − T 2

T 2
P

)
=

TP (
dM

T
)

√(
1 − T 2

T 2
P

)
⇒ dM =

T

TP

1√
1− T 2

T 2
P

ds (2)

Eq-(1) allowed to derive the thermal relativistic corrections to the Black Hole
Entropy [1] as follows. Given the thermal dilation factor one can always define
an “effective” temperature by

Teff =
T√

1− T 2

T 2
P

(3)
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such that dM = γ(T )T (ds/TP ) becomes then the thermal relativistic analog of

the Energy-Momentum relations E = moc
2(1 − v2

c2 )−
1
2 , ~p = mo~v(1 − v2

c2 )−
1
2 in

Special Relativity, in terms of the rest mass mo, velocity v, and maximal speed
of light c.

After renaming S̃ ≡ (s/TP ), in terms of the proper entropy s, the first law of
black hole thermal-relativity dynamics dM = γ(TH)THdS̃ yields the corrected
entropy

∫ S̃

S̃o

dS̃ = S̃ − S̃o =

∫ M

Mo

dM

γ(TH)TH
=

∫ M

Mo

dM

√
1− (T 2

H/T
2
P )

TH
(4)

inserting the expression for the Hawking temperature TH(M) = (8πGM)−1

into eq-(4), and after setting (TP )−2 = (MP )−2 = L2
P = G, yields the following

integral

S̃ − S̃o =

∫ M

Mo

dM (8πGM)

√
1− G

(8πGM)2
=

∫ M

Mo

dM
√

(8πGM)2 − G

(5)
The indefinite integral

∫
dx
√
a2x2 − b =

ax
√
a2x2 − b

2a
− b

2a
ln
(
a [
√
a2x2 − b + ax]

)
(6)

permits to evaluate the definite integral in the right hand side of (5) between
the upper limit M , and a lower limit Mo defined by (8πGMo)

2−G = 0, giving

S̃ − S̃o =
A

4G

√
1− 1

16π
(
A

4G
)−1 − 1

16π
ln

(
4
√
π (

A

4G
)

1
2 [ 1 +

√
1− 1

16π
(
A

4G
)−1 ]

)
(7)

after using the relation for the ordinary entropy in the Schwarzschild black hole
(adopting the units h̄ = c = k = 1)

S =
A

4G
= 4πGM2 ⇒ M = (

A

16πG2
)

1
2 (8)

and (8πGMo)
2 = G ⇒ 8πGMo =

√
G. The lower limit Mo of integration is

required in eq-(5) to ensure the terms inside the square root are positive definite
and the integral is real-valued. The value S̃o = S̃(Ao) = 0 is the zero modified

entropy associated to the minimal area Ao = G
4π =

L2
P

4π .
One could then ask what is the modified gravitational action which cor-

responds to the corrected (proper) entropy found in eq-(7). Equating Wald’s
entropy (a Noether charge) [9]
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SWald ∼
∫

∂L
∂Rabcd

nab ncd dΩ (9)

with the expression for the modified entropy found in eq-(7) should in principle
determine the functional form of modified gravitational Lagrangian L(Rabcd)
that would reproduce the entropy (7). The integral (9) is defined over the
bifurcate horizon and nab are the binormals to the horizon.

Let us evaluate now the modifications to the black hole emission rate. As-
suming the black hole radiates photons according to the Stefan-Boltzman law
P = AσT 4, the rate of mass loss through the horizon area A = 4πr2s is

dM

dt
= −A σ T 4, σ =

π2k4

60h̄3c2
, A = 4π(rs)

2 = 4π(2GM)2, T = TH =
1

8πGM
(10)

upon integrating eq-(10) yields the evaporation time

t =
16π3G2

σ

M3

3
(11)

A solar-mass black hole’s evaporation time is of the order ofG2M3 = ( M
MP

)3tP ∼
1062 years1 which is much greater than the age of the universe.

The thermal relativistic corrections to the emission rate are simply ob-
tained by replacing T in the Stefan-Boltzman law for the effective Teff =

T (1 − T 2

T 2
P

)−1/2, and by setting the end point of evaporation to the minimal

of mass Mo ≡ MP

8π . The modified expression for the evaporation time becomes

t̃ =
16π3G2

σ

(
M3

3
− 2M2

oM − M4
o

M
+

8M3
o

3

)
(12)

Taking the ratio of the expressions (11,12) gives

t̃

t
= 1 − 6(

Mo

M
)2 + 8(

Mo

M
)3 − 3(

Mo

M
)3 (13)

from which one learns that for large massesM >> Mo,
t̃
t ' 1 and the corrections

are negligible. However for small masses M ∼Mo (Planck size mini-black holes)

the ratio is much smaller t̃
t << 1, consequently the mini-black holes evaporate

much faster than before, and their lifetimes are much shorter.
This fact can have important consequences for Dark Matter. The possibility

that the dark matter comprises primordial black holes (PBHs) has been con-
sidered by many [14]. While there exist various candidates, the nature of dark
matter remains unresolved. It has been argued that the generalized uncertainty
principle (GUP) may prevent a black hole from evaporating completely, and as
a result there should exist a Planck-size black hole remnant at the end of its
evaporation [15]. If a sufficient amount of small black holes can be produced in

1tp is the Planck time
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the early universe, then the resultant black hole remnants can be an interesting
candidate for Dark Matter [14]. Because above we also have found a minimal
black hole mass remnant of mass Mo, for this reason we shall analyze next the
GUP and its connection to thermal relativity.

Let us begin with the stringy uncertainty relation [10] in h̄ = c = k = 1
units

δx δp ≥ 1

2
+ β

(δp)2

M2
P

, MP = TP (14)

and follow the heuristic derivation of the modifications to the Hawking tem-
perature described by [11]. The position uncertainty of photons emitted by the
static spherically symmetric black hole is of the order of the Schwarzschild di-
ameter (radius) δx ∼ 2rs ∼ 4GM . The momentum uncertainty is represented
by the characteristic energy of the emitted photons δp ∼ p = E. According to
the equipartition theorem the energy can be identified with the temperature,
hence δp ∼ p = E = T . If one sets the proportionality factor δx ∼ 2rs as
δx = 2πrs = 4πGM , the stringy uncertainty relation (14) can be expressed in
terms of the Hawking temperature TH = 1

8πGM as follows

1

2TH
≥ 1

2T
+ β

T

T 2
P

(15)

Focusing only on the equal sign, the last equation yields TH in terms of T .
Inverting it gives T in terms of TH

T = T (TH) =
T 2
P

4βTH

(
1 −

√
1 − 8β

T 2
H

T 2
P

)
(16a)

Note that a minus sign must be chosen in front of the square root in (16a)
otherwise T → ∞ in the β → 0 limit. Eq-(16a) in turn can be rewritten in
terms of M by substituting TH = (8πGM)−1

T = T (M) = (8πGM)
T 2
P

4β

(
1 −

√
1 − 8β (

1

8πGMTP
)2
)

(16b)

The expression for T (TH) in eqs-(16a,16b), and based on the generalized un-
certainty principle inspired from string theory [10], is denoted by T = TGUP (TH).
The β → 0 limit of eqs-(16a,16b) gives T → TH = 1

8πGM as expected.
After performing a Taylor expansion of the square root terms of the expres-

sion for T = TGUP (TH) in eq- (16a) gives

TGUP ∼
T 2
P

4βTH

(
1 − (1− 4β

T 2
H

T 2
P

− 1

8
(8β)2

T 4
H

T 4
P

+ · · · )

)
=

TH + 2β
T 3
H

T 2
P

+ · · · (17)

5



whereas a Taylor expansion of the expression for the thermal relativistic effective

temperature T = TTR(TH) = TH(1− T 2
H

T 2
P

)−1/2 gives

TTR ∼ TH +
1

2

T 3
H

T 2
P

+ · · · (18)

After comparing the first two terms of eqs-(17,18) we find an agreement when
β = 1

4 . Therefore, the second order Taylor expansion of TGUP (TH) agrees
precisely with the first order Taylor expansion of TTR(TH) when β = 1

4 .
However, since there is no exact agreement in the higher order terms of the

expansions of TGUP and TTR one can still show that the full thermal relativistic

expression TTR(TH) = TH(1− T 2
H

T 2
P

)−1/2 can be derived exactly from the modified

uncertainty relation

δx δp ≥ 1

2

√
1 +

(δp)2

M2
P

, TP = MP (19)

when δp ∼ p = E = T , and MP = TP , eq-(19) leads to

δx ≥ 1

2

√
1

(δp)2
+

1

T 2
P

=
1

2

√
1

T 2
+

1

T 2
P

(20)

given δx = 2πrs = 4πGM = 1
2TH

, eq-(20) yields

1

TH
≥

√
1

T 2
+

1

T 2
P

⇒ T ≥ TH√
1− T 2

H

T 2
P

(21)

and one recovers the thermal relativistic expression for the modified Hawking
temperature T = THγ(TH). Concluding, the modified uncertainty relation (19)
is the one which is associated with the modified temperature TH → THγ(TH)
consistent with thermal relativity. Note that the first two terms of the Taylor
expansion of the right hand side in eq-(19) yields the initial stringy uncertainty
relation (14) for β = 1

4 as found earlier. Hence, the thermal relativity theory
singles out the modified uncertainty relation (19) from a number of many other
plausible choices.

Having

(δp)2 ≡ < (p̂ − < p̂ >)2 > = < p̂2 > − (< p̂ >)2 ⇒

< p̂2 > ≥ (δp)2 (22)

and the other inequalities

< p̂2k > ≥ (< p̂2 >)k ≥ (δp)2k, k = 1, 2, 3, · · · (23)

a modified Weyl-Heisenberg algebra given by
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[x̂, p̂] = i (1 − (p̂)2

M2
P

)−
1
2 , h̄ = 1. (24)

and which has the same functional form as the thermal relativistic dilation
factor, leads to the modified uncertainty relation of the form

δx δp ≥ 1

2

1√
1− (δp)2

M2
P

, 0 ≤ (δp)2

M2
P

≤ 1 (25)

Eq-(25) is a result of the following relations

δx δp ≥ 1

2
| < [x̂, p̂] > | =

1

2
< (1 − (p̂)2

M2
P

)−
1
2 > ≥ 1

2

1√
1− (δp)2

M2
P

≥

1

2

√
1 +

(δp)2

M2
P

, 0 ≤ (δp)2

M2
P

≤ 1 (26)

provided that (δp)2

M2
P

≤ 1 since the radius of convergence of the binomial/Taylor

series of eqs-(25,26) is 1. A binomial (Taylor) expansion of (24) yields positive
coefficients for all its terms, and allows to take expectation values of each one of
the operator-valued terms appearing in the expansion. The last term in eq-(26)
is just the expression associated to the effective temperature (21) resulting from
thermal relativity.

One can straightforwardly verify the inequalities (22,23) in the quantum
harmonic oscillator case via the use of the ladder operators (h̄ = 1)

â =

√
mω

2
(x̂ +

i

mω
p̂); â† =

√
mω

2
(x̂ − i

mω
p̂) (27)

acting on the quantum states

â† |n > =
√
n+ 1 |n+ 1 >, â |n > =

√
n |n− 1 > (28)

simply by writing the momentum operator as

p̂ = i

√
mω

2
(â† − â ), [â, â†] = 1 (29)

and evaluating the expectation values of eqs-(22,23) with respect to the quantum
harmonic oscillator states |n >.

The modified uncertainty relation (25) yields δx = ∞ at δp = 0, and δp =
Mp. The minimum length uncertainty (δx)min = LP coincides precisely with
the Planck length, and occurs at δp = MP√

2
. This behavior should be contrasted

with the stringy uncertainty relation (14) which yields δx = ∞ at δp = 0,
and δp = ∞. Whereas the minimal length uncertainty is (δx)min = LP

√
2β

(LP = 1/MP ) at δp = MP√
2β

. As the string’s energy increases it can probe
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smaller and smaller distances. When the energy reaches values of the order of
the Planck’s energy, and higher, the string then begins to grow in size, instead
of probing smaller scales than the Planck length.

On the other hand, the modified uncertainty relation (19), leads to a minimal

length uncertainty (δx)min =
Lp
2 of the order of the Planck length LP when

δp → ∞ ; i.e it takes an infinite momentum to reach the Planck scale, this
is consistent with Scale Relativity [18] (based on fractals) and Doubly Special
Relativity [19] (based on κ-deformed Poincare algebra).

If one sets β < 0 in the stringy uncertainty relation (14), there is no longer
a minimum length uncertainty. It was argued by [11] that the issue of the sign
of β has not been solved completely. In particular, it was found by [12] that
β < 0 is the only choice compatible with the Chandrasekhar limit, otherwise
arbitrarily large white dwarfs would exist conflicting astrophysical observations.
An alternative method that achieves the same effect was found later in [13]
by including a cosmological constant term in the GUP (known as “extended
GUP” in the literature). In this way, the introduction of an arbitrarily small
but nonzero cosmological constant can restore the Chandrasekhar limit. One
should emphasize that the modified uncertainty relations (19,25) have not been
used to our knowledge in the study of the Chandrasekhar limit.

It is important to remark also that the “extended GUP” is in fact consistent
with Born’s reciprocal relativity theory [1]. Under Born’s reciprocity x ↔ p,
the simplest modified uncertainty relation respecting the principle of Born’s
reciprocity is of the form

δx δp ≥ 1

2
+ β1

(δp)2

M2
P

+ β2
(δx)2

R2
H

(30)

where the Hubble radius RH is introduced in eq-(30) as some sort of infrared
cutoff (upper length scale), and LP = 1

MP
can be seen as an ultraviolet cutoff

(lower length scale). The thermal relativity principle can also be applied to
eq-(30) by working in the full thermodynamical phase space, see [1] for more
details.

To finalize, the non-thermal distribution spectrum due to thermal relativity
is given by

N =
1

e
E

THγ(TH ) − 1
=

1

e
E
TH − 1

(
e
E
TH − 1

e
E

THγ(TH ) − 1

)
≡ f

1

e
E
TH − 1

(31)

where the deviation from the purely thermal spectrum is encoded in the multi-
plicative factor f . Given A = E

TH
, B = E

THγ(TH) , one has

1

eB − 1
=

1

eA − 1

eA − 1

eB − 1
=

1

eA − 1

(
1 +

eA − eB

eB − 1

)
(32)

The following fraction can be expanded as

eA − eB

eB − 1
=

eA

eB − 1
(1− eB−A) ∼ (A−B)

eA

eB − 1
+ · · · (33)
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Eqs-(32,33) allow us then to evaluate the multiplicative factor f

f ∼ 1 +
1

2

E

TH

T 2
H

T 2
P

e
E
TH

e
E
TH − 1

+ · · · (34)

where the higher order corrections to the factor f are of the form(
1

2

E

TH

T 2
H

T 2
P

e
E
TH

e
E
TH − 1

)n
, n ≥ 2 (35)

In the thermal non-relativistic limit TP → ∞ one recovers f → 1 as expected.
The facts that thermal relativity leads to a Planck-size black hole remnant and to
modifications to the thermal spectrum could cast some light into the resolution
of the black hole information paradox (loss of unitarity).

We conclude by reflecting on our proposal towards a Space-Time-Matter
Unification program where matter can be converted into spacetime quanta, and
vice versa [1]. Our minimal mass Mo of the order of the Planck mass corre-
sponding to a Planck-size black hole, and whose horizon has Planck-sized area,
could be viewed as spacetime quanta (“atoms” of spacetime). This proposal
must not be confused with the view by [16] of classical background geometries
as quantum Bose-condensates with large occupation numbers of soft gravitons,
such that a black hole is a leaky bound-state in form of a cold Bose-condensate
of N weakly-interacting soft gravitons (very low energy) of wave-length

√
NLP ,

and of quantum interaction strength 1/N . Nor with the view that the event
horizon of a black hole is a quantum phase transition of the vacuum of space-
time analogous to the liquid-vapor critical point of a Bose fluid [17].

There is a fundamental difference between quantization in spacetime ver-
sus quantization of spacetime. The generalized uncertainty principle (GUP)
and corpuscular gravity within the context of quantum Bose-condensates was
recently studied by [11] in order to explain the GUP-induced shift of the Hawk-
ing temperature found in eqs-(16a, 16b). Based on our findings in this letter,
it is warranted to explore all these topics deeper. In particular, to investigate
the modified uncertainty relations (19,25) in the study of the Chandrasekhar
limit, and in the more technical front, if thermal relativity theory can accom-
modate the thermodynamics of black holes with modified dispersion relations
and Perelman entropies for Finsler-Lagrange-Hamilton Spaces [20].

Acknowledgements
We thank M. Bowers for very kind assistance.

References

[1] C. Castro Perelman, “Thermal Relativity, Corrections to Black-Hole En-
tropy, Born’s Reciprocal Relativity Theory and Quantum Gravity”, Cana-
dian Journal of Physics, published online (2019).

9



[2] R. C. Tolman, “On the Weight of Heat and Thermal Equilibrium in Gen-
eral Relativity”, Phys. Rev. 35, (1930) 904.

[3] F. Weinhold, “Metric Geometry of Equilibrium Thermodynamics” I, II,
III, IV, V, J. Chem. Phys. 63 (1975) 2479; 2484; 2488; 2496; 65 (1976)
558.

[4] G. Ruppeiner, Phys. Rev. A 20 (1979) 1608.

G. Ruppeiner, Rev. Mod. Phys. 67 (1995) 605; Erratum 68 (1996) 313.

[5] H. Quevedo, J. Math. Phys. 48 (2007) 013506

H. Quevedo, A. Sanchez, and A.Vazquez, “Invariant Geometry of the Ideal
Gas” , arXiv: math-ph/0811.0222.

[6] S. Vacaru, “Stochastic processes and thermodynamics on curved spaces”,
Ann. Phys. (Leipzig) 9 (Special Issue), 175176 (2000).

[7] S. I. Vacaru, “On axiomatic formulation of gravity and matter field theo-
ries with MDRs and Finsler-Lagrange-Hamilton geometry on (co)tangent
Lorentz bundles” arXiv : 1801.06444.

L. Bubuianu and Sergiu I. Vacaru, “ Axiomatic formulations of modified
gravity theories with nonlinear dispersion relations and Finsler-Lagrange-
Hamilton geometry” Eur. Phys. J. C 78 (2018) 969.

[8] L. Zhao Communications in Theoretical Physics, Vo 56, Issue 6, (2011)
1052-1056.

[9] R. Wald, “Black Hole Entropy is the Noether charge”, Phys. Rev D 48
(1993) R3427.

[10] D. Amati, M. Ciafaloni and G. Veneziano, “Can Spacetime be Probed
Below the String Size?”, Phys. Lett. B 216 (1989) 41.

D. Gross and P. Mende, “String Theory Beyond the Planck Scale”, Nucl.
Phys. B 303 (1988) 407.

[11] L. Buonoinfante, G. G. Luciano, and L. Petruzziello, “Generalized Uncer-
tianty Principle and Corspuscular Gravity” arXiv : 1903.01382.

[12] Y. Ong, “Generalized Uncertainty Principle, Black Holes, and White
Dwarfs : A Tale of Two Infinities”, JCAP 09 (2018) 015,

[13] Y. C. Ong, and Y. Yao, “Generalized Uncertainty Principle and White
Dwarfs Redux: How Cosmological Constant Protects Chandrasekhar
Limit”, Phys. Rev. D 98, 126018 (2018).

[14] P. Chen, “Planck-size black hole remnants as dark matter”, Mod. Phys.
Lett. A 19 (2004) 1047.

B. Carr, F. Kuhnel, and M. Sandstad, “Primordial Black Holes as Dark
Matter”, Phys. Rev. D 94 (2016) 083504.

10



J. Georg, B. Melcher, and Scott Watson, “Primordial Black Holes and
Co-Decaying Dark Matter”, arXiv : 1902.04082.

[15] Y. Aharonov, A. Casher and S. Nussinov, “The unitarity puzzle and
Planck mass stable particles”, Phys. Lett. B 191 (1987) 51.

[16] G. Dvali and C. Gomez, “Black Holes’ Quantum N-Portrait” Forstschritte
der Physik, 61, issue 7-8 (2013) 742.

G. Dvali and C. Gomez, “Black holes as critical point of quantum phase
transition” The European Physical Journal C 2014, 74:2752.

[17] G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. Santiago “Quantum
Phase Transitions and the Breakdown of Classical General Relativity” Int.
J . Mod.Phys. A18 (2003) 3587-3590

[18] L. Nottale, Scale Relativity And Fractal Space-Time: A New Approach
to Unifying Relativity and Quantum Mechanics (World Scientific 2011)

L. Nottale, Fractal Space-Time and Micro-physics (World Scientific 1993).

[19] G. Amelino-Camelia, “Testable scenario for relativity with minimum
length”, Phys. Lett. B510 (2001) 255;

J. Magueijo and L. Smolin, “Lorentz Invariance with an Invariant Energy
Scale”, Phys. Rev. Lett. 88, (2002) 190403.

J. Lukierski, H. Ruegg, A. Novicki and V.N. Tolstoi, “q-deformation of
Poincare algebra”, Phys. Lett. B264 (1991) 331.

[20] L. Bubuianu and S. Vacaru, “ Black Holes with MDRs and Bekenstein-
Hawking and Perelman Entropies for Finsler-Lagrange-Hamilton Spaces”
arXiv: 1903.04920.

11


