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Abstract

The quest to unify the four fundamental forces has been sought af-
ter for decades but has remained elusive to all physicists. The first clues
to unification were given when information horizons were associated to
radiation by Unruh and Hawking. This was then extended to be a dis-
crete spectrum in nature by McCulloch. Here, it is suggested that the
limitation, or confinement, of an allowed spectrum is relevant in order to
compute all the fundamental forces. The maximum spectrum is defined by
the size of the cosmic particle horizon and the Planck length. Notably, all
fundamental forces can be computed by using the same core equation and
can be extended to reflect the different information horizons and particle
interaction scenarios. This result suggests that for unification, the radi-
ation spectrum provides momentum space alterations to generate energy
gradients. The force derivatives of the energy fields indicate numerical
convergence to the observed fundamental forces.

1 Introduction

Over the last several decades standard physics has been expanded with new
hypotheses that indicate information horizons are associated with radiation [2]
[15] [16] [7]. The initial theories by Hawking, Davies and Unruh dealt with the
emission of thermal radiation from information boundaries. More recently, this
has been complimented by McCulloch suggesting that only radiation between
horizons are allowed using nodes at horizon confinements [11] [10]. This discrete
spectrum of radiation is limited on a cosmic scale by the particle horizon, Θ,
for the longest allowed wavelengths and the Planck length for the smallest.
The energy and momentum of such a spectrum would be the superposition of
all energy and momentum eigenstates (frequency modes of the waves). This
superposition suggests a maximum allowed energy, however, a blockage might
occur which would provide a causal barrier affecting the symmetry. Therefore,
a modified inhomogeneity of the allowed momentum modes in the realm of the
virtual particles zones with different maximum allowed energy and momentum
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could be established. This breaking of symmetry in the zero point field (ZPF)
may lead to energy gradients which result in forces due to the law of conservation
of momentum. These forces are computed by the mathematical derivative of
the energy fields; an approach outlined by quantum field theories. All four
fundamental forces have been tested for conformity with available observations
in trend and value. This paper demonstrates that for all fundamental forces,
the core equation seems to be identical.

2 Method

2.1 Electromagnetic Force

Consider the wave energy of a virtual photon between two charges.

E =
hc

λ
(1)

Plug in for λ = (k+1)lp in order to count all the waves in the confinement region
up to N between the charges. Note all waves are counted up to the fundamental
wavelength where k = 1 and 2lp is the Schwarzschild radius for Planck length
energy [14].

N∑
k=1

Ed =
hc

2lp
+
hc

3lp
+ · · ·+ hc

Nlp
(2)

Plug in for λ = (k + 1)lp in order to count all the waves in the observable uni-
verse M .

N∑
k=1

ER =
hc

2lp
+
hc

3lp
+ · · ·+ hc

Mlp
(3)

Now take the ratio of of the following.

ER − Ed
ER

=

∑M
k=1

1
k −

∑N
k=1

1
k∑M

k=1
1
k

(4)

Use the closed form approximation for a harmonic series formula namely
∑J
k=1

1
k =

ln(Jeγ) where Euler–Mascheroni’s constant is denoted as γ. This approxima-
tion becomes an equality when M and N are large as the higher order terms
will drop out.

K =
ln(Meγ)− ln(Neγ)

ln(Meγ)
(5)

Notice the numerator can be seen as a subtraction of action elements. These el-
ements represent the integral under the energy/momentum accumulation curve.
The momentum of a virtual photon can be defined as p = h/λ and this factor
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is then multiplied by the logarithmic division ratio which represents an integral
over the superposition of momentum eigenstates from the lower to upper limit of
the involved spectrum distance. The logarithmic portions of the formulas could
be considered a measure of the involved momentum. Notice the eγ cancel out
due to logarithmic properties. This cancelation is typically accurate for larger
distances but is kept for x ≤ 1 where x is the distance between the two objects
under force consideration. For computational simplicity, larger distances will be
considered.

K =
ln(M)− ln(N)

ln(Meγ)
(6)

Simplify by combining the logarithms to have a more succint form.

K =
ln(M/N)

ln(Meγ)
(7)

Now plug in for M = Θ
2lp

and N= x
2lp

where Θ = 8.8 · 1026 m.

K =
ln(Θ

x )

ln( Θ
2lp

)
(8)

Follow the same procedure as above but divide the waves in between the two
elements over the total waves of the observable universe. This physically is the
effective pressure between the objects that works in the opposite direction of the
push, K, from the outside. This effective action ratio, used for each fundamental
force, will be the following.

Sr =
ln (xe

γ

2lp
)

ln (Θeγ

2lp
)

(9)

Now compute the fundamental energy around the two unitary charges at a dis-
tance x. This is done by multiplying the fractional waves by αhc

x where λ = x.
Multiply by 4

2π as the discovered constant factor in front. This constant could
come from using a two body model. It could be suggested that the factor of 4
might come from using the reduced mass factor concept. This concept can be
extended to charges as well. The reduced charge will result in a factor of 4 out
front by holding one charge in place and moving the other. Without loss of infor-
mation it can be denoted that the reduced mass factor can assume both charges
are equal in total Planck charges. Therefore the reduced charged factor will
become 1/2 and this item becomes squared to obtain 1/4. This constant will be
located in the denominator resulting in a factor of 4. The 2π in the denominator
might come from some oscillation of virtual particles. Finally multiply by K ·Sr.

Eem0 =
4αhc

2πx

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(10)
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Now assume the two objects are composed of a certain amount of charges namely
q1 and q2.

Eem =

q1∑
i=1

q2∑
j=1

Eem0 (11)

This reduces down to the following.

Eem = q1q2Eem0 =
4αhcq1q2

2πx

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(12)

An aside begins where an alternate version of the energy can be rewritten
in terms of Planck charge particles. Replace q1 = Np1α

√
4ε0~c and q2 =

Np2α
√

4ε0~c where Np1 and Np2 are number of Planck charges and substitute
in for Eem0.

Eem =
4αhcNp1

√
4πε0~cNp2

√
4πε0~cα

2πx

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(13)

Another option is to rewrite using Planck charges to potentially show where the
factor of 4

2π might come from.

Eem =
α2hcNp1Np2

√
8ε0~c

√
8ε0~c

x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(14)

Now that the variations of energy forms have been addressed, continue from
(12) and take the derivative. The definition of the derivative of the following
type of equation is the following.

d

dx

(
A ln(B/x) ln(Cx)

x

)
= A

(
ln(B/x)(ln(Cx)− 1) + ln(Cx)

x2

)
(15)

Take the derivative of the energy equation and take the absolute value to find
the force magnitude.

Fem = A

∣∣∣∣ ln(B/x)(ln(Cx)− 1) + ln(Cx)

x2

∣∣∣∣ (16)

Where, A = 4α~cq1q2
ln2 ( Θeγ

2lp
)
, B = Θ, C = eγ

2lp
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2.2 Weak force

The unification between the electromagnetic force and weak force have been
accomplished under Electroweak theory. In order to unite the two forces use
the revised EM formula from section 2.1 and simply add the exponential decay

factor as noted by the Yukawa potential namely, Y = Eeme
−mwxc

~ , where mw is
the mass of the W-Boson particle, x is the distance and Eem comes from (10)
[17] [3]. Note the coefficient in front of 4

2π is not be added. The 2π is not present
perhaps due to a different behavior of the virtual particles. Additionally, there
is a one-directional emission of the boson and the factor of 4 seems to not be
needed suggesting this is not a typical two body problem.

Ew =
αhc

x

(
ln(Θ

x )

ln( Θ
2lp

)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

)
e

−mwxc
~ (17)

Finally compute the derivative of the energy equation to find the force.

d

dx

(
A ln(B/x) ln(Cx)eDx

x

)
= AeDx

(
ln(B/x)((Dx− 1) ln(Cx) + 1)− ln(Cx)

x2

)
(18)

Finally take the derivative of the energy equation to obtain the force equation.
The sign of the equation will be a negative value indicating an attraction.

Fw = A

(
ln(B/x)(ln(Cx)− 1) + ln(Cx)

x2

)
(19)

Where, A = αhc
ln2 ( Θeγ

2lp
)
, B = Θ, C = eγ

2lp
D = e

−mwxc
~

2.3 Strong Force

For the strong force there is an overlap of the two nucleons so the electromagnetic
effect becomes negligible. Take the ratio of all the waves right when the strong
force begins. This typically occurs around some x. This is slightly more than the
diameter of a proton. Recall that the reduced Compton wavelength of a proton
is λrc = 1.3214 · 10−15 [m] so this seems to fit the experimental data where
double this value is where the force begins. Also the non-reduced Compton
wavelength associated to the radius of the proton is λc = 2.1031 · 10−16 so we
assume this is a key point where no more waves are allowed. Start with the
action ratio form below.

K =
ln(Meγ)− ln(Neγ)

ln(Jeγ)− ln(Neγ)
(20)

Now compute the total amount of waves in the confinement region. First com-
pute the total distance that will be traveled in the overlap region denoted by
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x and divide by the Compton wavelength, λc. For the numerator we subtract
the hardcore region which is about double λc and divide by λc to obtain x−2λc

λc
.

Finally compute K.

K =
ln
(
x−2λc
λc

)
ln
(
x
λc

) (21)

The effective action ratio for each fundamental force will be the following as
seen previously.

Sr =
ln (xe

γ

2lp
)

ln (Θeγ

2lp
)

(22)

Finally compute the Yukawa potential. Here, mπ is the neutral pion mass as it
is the mediating particle. Notice the range is r0 = ~

2mc .

Y = e
−2mπxc

~ (23)

Multiply all three components, KSrY to the fundamental energy 2hc
x to find

the total energy in the region. Notice the factor of 2 in the numerator may
suggest a two way linear exchange of pions. Additionally, no 2π seems to be
needed similar to that of the weak force.

Es =
2hc

x

ln
(
x−2λc
λc

)
ln
(
x
λc

) ln (xe
γ

2lp
)

ln (Θeγ

2lp
)
e

−2mπxc
~ (24)

Finally compute the force by taking the derivative of the energy equation. The
sign of the equation will be a negative value indicating an attraction.

Fs =
AeEx

x2(x− C) ln2(Bx)

(
ln(Bx)(ln(Dx)(x− (C−x)(Ex−1) ln(B(x−C)))+

(x− C) ln(B(x− C))) + (C − x) ln(Dx) ln(B(x− C))
)

(25)

Where the constants are the following.

A = 2hc
x ln (Θeγ

2lp
), B = 1

λc
, C = 2λc, D = ln ( e

γ

2lp
), E = e

−2mπxc
~
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Figure 1: Strong Force versus Distance [8]

2.4 Gravitational Force

First compute the fundamental energy around the two Planck masses at a dis-
tance x. This is done by multiplying the fractional waves by hc

x where λ = x.
Multiply by 4

2π . The gravitational force can also be described as a reduced two
body problem. A similar explanation as in Section 2.1 can be applied. Finally
multiply and by K · Sr.

EG0 =
4hc

2πx

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(26)

Now assume the two objects are composed of a certain amount of Planck masses
namely N1 and N2. Each Planck mass number is associated with a virtual par-
ticle and their combinations of interactions of pairs of masses will result in a
double summation [9].

EG =

N1∑
i=1

N2∑
j=1

Eem0 (27)

Compute both summations and simplify to obtain the following.

EG =
4~cN1N2

x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(28)
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Here an aside begins to look for some more physical represetnation.

Rewrite the number of Planck masses as N1 = m1/mp and N2 = m2/mp.

EG =
4~cm1m2

m2
px

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(29)

Next substutite in for m2
p = ~c/G to obtain the following.

EG =
4Gm1m2

x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(30)

Next replace G where G =
l2pc

3

~ [12] [6].

EG =
4l2pc

3m1m2

~x
ln(Θ

x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(31)

Notice that the minimum distance being used is the Schwarzschild radius so it
also possible the factor of 4 comes from the numerator where (2lp)

2 = 4l2p. This
could give an alternate physical description to the value of the 4.

EG =
(2lp)

2c3m1m2

~x
ln(Θ

x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(32)

Using (29) one can also write the energy equation using the fundamental neu-

trino mass where Gcmb = ~c
m2
cmb
· βπ

2lp
4Θ and mcmb = 2.0792 · 10−39 kg [1] [4]

.

EG =
4m1m2

x

~c
m2
cmb

· βπ
2lp

4Θ

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(33)

Additionally using (30) the energy equation can be written in term of the re-
duced Compton wavelength where m = ~

λcc
.

EG =
4l2pc

3~2

c2λc1λc2~x
ln(Θ

x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(34)

This reduces down to the following.

EG =
4l2p~c
λc1λc2x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(35)
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If the normal Compton wavelength is used instead of the reduced Compton
wavelength namely λ1 = 2πλc1 the energy equation will look like the following.

EG =
8πl2phc

λ1λ2x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(36)

This can also be written as the following replacing h with ~ indicating the
circumference of a Schwarzschild circle.

EG =
(4πlp)

2~c
λ1λ2x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(37)

Writing the energy equation in terms of Einstein’s constant can also be done.
Multiply the denominator and numerator by c4.

EG =
8πl2phc

5

c4λ1λ2x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(38)

Multiply numerator and denominator by ~. Replace terms with G =
l2pc

3

~ .

EG =
8π

c4
G~chc
λ1λ2x

ln(Θ
x )

ln(Θeγ

2lp
)

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(39)

Finally rewrite in terms of Einstein’s constant namely κ = 8πG
c4 .

EG = κ
1

λ1λ2x
hc

ln(Θ
x )

ln(Θeγ

2lp
)
~c

ln (xe
γ

2lp
)

ln (Θeγ

2lp
)

(40)

Now that the aside has concluded with different variations of energy, simply
follow the same procedure in section 2.1 and apply the derivative to (29). The
sign of the equation will be a negative value indicating an attraction.

Fg = A

(
ln(B/x)(ln(Cx)− 1) + ln(Cx)

x2

)
(41)

Where, A = 4~cN1N2

ln2 ( Θeγ

2lp
)
, B = Θ, C = eγ

2lp

3 Discussion

One general source of error could arise from using either the Schwarzschild
radius or the Planck length as the fundamental distance. Another source of
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error could come from the summation estimation using eγ and its usage for
the closed form approximation. When x distance values are 1 [m] or less an
inclusion of eγ for the first numerator logarithmic term can be used for a better
fit for Euler’s approximation. This is used in Table 1. Additionally, it could be
possible that one or both action ratios have a lower limit of a Schwarzschild circle
circumference. Also, the exact topology of all the different fundamental forces
are not firmly known and this would have a minor change to the convergence as
well. For both the electromagnetic and gravitational forces, the overall deviation
from Newton’s Gravity Law and Coulomb’s Law is within a few percent for each.
The weak force is in the same range as Coulomb’s Law at 10−18 [m] and falls off
to approximately 10,000 times weaker at about 3 · 10−17 [m] [5]. Finally, for the
strong force, the overall shape is very similar to Reid’s force [13]. Certain items
like the exponential fall off are slighty different but this could be due to the
pion range in the Yukawa exponential term being slightly longer which would
provide almost full convergence.

Table 1: The Four Fundamental Forces

Force Type Force Equation - magnitude Error % at 1 meter

Electromagnetic Fem = d
dx

(
4α~cq1q2

x

ln( Θeγ

x )

ln( Θeγ

2lp
)

ln ( xe
γ

2lp
)

ln ( Θeγ

2lp
)

)
0.5357

Weak Fw = d
dx

(
αhc
x

ln( Θeγ

x )

ln( Θ
2lp

)

ln ( xe
γ

2lp
)

ln ( Θeγ

2lp
)
e

−mwxc
~

)
−

Strong Fs = d
dx

(
2hc
x

ln( x−2λc
λc

eγ)
ln( x

λc
eγ)

ln ( xe
γ

2lp
)

ln ( Θeγ

2lp
)
e

−2mπxc
~

)
−

Gravitational Fg = d
dx

(
4~cN1N2

x

ln( Θeγ

x )

ln( Θeγ

2lp
)

ln ( xe
γ

2lp
)

ln ( Θeγ

2lp
)

)
0.3375

4 Conclusion

All four fundamental forces seem to use the same core equations. These forces
use energy gradients based off their relative information horizons. Additionally,
all forces use the Yukawa potential however the mediating particles for both
the electromagnetic and gravitational force have a mass of zero therefore the
exponential term tends to unity as previously discovered. The only varying
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parameters for each force depend on the topology of the configuration. The
gravitational and electromagnetic force both use a constant of 4/(2π). This
factor could occur from using the reduced charge/mass for a two body problem
along with the orbting nature of one object around the other. The weak and
strong force use a constant of 1 and 2 respectively; the bosons go in one direction
while the pions go in two. The strong force has a slightly different form from
the other three forces because its range has a fixed beginning and end due to
overlap of the nucleons. Overall, this suggests that all four fundamental forces
of the universe might have a similar structure and their unification could be
likely.
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