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Abstract

We investigate the Friedmann equations and the Wheeler-DeWitt equations in three
dimensional pure gravity under the Generalized Uncertainty Principle (GUP) effects.
In addition we study the wave functions near the Big-Bang singularity as the solutions
of the deformed Wheeler-DeWitt equation in momentum space. The resulting wave
functions are represented as the Mathieu functions. The GUP is considered in the
context of the Snyder non-commutative space.
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1 Introduction

Quantum Gravity is the most fascinating and mysterious theory which our human beings
have never seen yet. The Big-Bang singularity is expected to be well described by quantum
gravity. In our previous report[1] we investigated the wave function of the universe near
the Big-Bang singularity in three dimensional pure gravity.
On the other hand, the existence of a minimal observable length has long been suggested in
quantum gravity as well as string theory[6][7]. The quantum effects of gravity at the scale
of this minimal length become as important and essential as the electroweak and strong
interactions. In addition the standard Heisenberg commutation relation in the quantum
mechanics is deformed by the existence of a minimal length, since according to the usual
uncertainty principle, the length can be measured to an arbitrary precision if momen-
tum is not measured. Several approaches of the GUP(Generalized Uncertainty Principle)
have been studied by many researchers[9][11][17]. In one dimensional case, the simplest
form of the GUP is represented in the context of the Snyder non-commutative space[2].
Non-commutative geometries are widely considered as plausible candidates for describing
physics at the Planck scale [19] and have natural connections with string theory [20] and
the three dimensionally extended object.[24]
In this report we consider the deformed Friedmann equations and the deformed Wheeler-
DeWitt equations in the context of the Snyder non-commutative space. The Snyder
approach is relevant since it can be related to some of DSR (doubly special relativity)
models[3][16] and has some motivations from loop quantum gravity [4] as well as two-time
physics [5]. If the GUP is considered in FRW universe, the cosmological bounce is reported
to be allowed in an isotropic flat model[14] . The GUP is related to quantum gravity fun-
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damentally , since the uncertainty principle is essential in quantum mechanics. The wave
function near the Big-Bang singularity is deformed by including the GUP effects , some
information of which may be observed by the gravitational wave projects. Recently it is
reported that the gravitational wave originated from the Big-bang quantum fluctuation of
space-time may be detected experimentally (LiteBIRD)[23]

Our SET-UP as a toy model:

• We deal with three dimensional gravity with no matter

• FRW model

• We consider the Friedmann equation as the Einstein equation in homogeneous and
isotropic case.

• The quantized equation of the Friedman equation is looked at as the Wheeler-DeWitt
equation.

• We consider the Wheeler-DeWitt equation as the quantum equation of the Einstein
equation.

The purpose of this report is that the deformed Friedmann equations and the deformed
Wheeler DeWitt equations under the GUP effects are calculated and the wave functions
as the solutions of the deformed Wheeler-DeWitt equations near the big-bang singularity
are obtained.

The structure of this report is as follows. In the next section we review briefly the
GUP in the context of the Snyder non-commutative geometry. In section 3 we recall
the derivation of the non-deformed Friedmann equations and the non-deformed Wheeler-
DeWitt equations in three dimensional space-time.[1] In section 4 we derive the deformed
Friedmann equations and the deformed Wheeler-DeWitt equations and the wave functions
as the solutions of the deformed Wheeler DeWitt equations are studied near the Big Bang
singularity. In section 5 we end the report with a brief conclusion. In Appendix the
Mathieu Functions are explained in brief.

2 The Generalized Uncertainty Principle

We review the GUP in the context of the Snyder non-commutative space briefly[14][15]
The existence of a minimal length requires the deformation of the Heisenberg ’s uncertainty
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principle, since if such a length exists, the ordinary Heisenberg’s Uncertainty principle no
longer valids. Various approaches to the deformation of the Heisenberg ’s Uncertainty
Principle have been studied[9][11] .We will concentrate on the case of the Snyder non-
commutative space.

This uncertainty principle might be generalized in such a way that a fundamental
uncertainty on position is increased by new momentum- dependent terms.

2.1 Snyder deformed Heisenberg algebras

We review following[14].
We consider a n-dimensional non-commutative (deformed)Euclidean space such that the
commutator between the coordinates has the non-trivial structure

[q̃i, q̃j ] = αMij (1)

{i, j} ∈ {1..n} (2)

where q̃i are the non-commutative coordinates and α is the deformation parameter with
dimension of a squared length, and [A,B] ≡ AB − BA. We demand that the rotation
generators Mij satisfy the ordinary SO(n) algebra and that the translation group is not
deformed.

Mij = −Mji = i(qipj − qjpi) (3)

[Mij ,Mkl] = δjkMil − δikMjl − δjlMik + δilMjk
(4)

[pi, pj ] = 0 (5)

In order to preserve the rotational symmetry the commutators between the rotation generatorsMij

and the coordinates q̃k, as well as between Mij and the momentum pk, have to be unde-
formed. We assume the relations

[Mij , q̃k] = δjkq̃i − δikq̃j (6)

[Mij , pk] = δjkpi − δikpj (7)

This way the (Euclidean) Snyder space [8]is dealt with . The above relations do not uniquely
fix the commutators between q̃i and pj . The most general SO(n) covariant realization for
q̃i is given by

q̃i = qiφ1(αp
2) + α(qjpj)piφ2(αp

2) (8)

where the convention aibi =
∑

i aibi is adopted and φ1 and φ2 are finite functions. In
order to recover the ordinary Heisenberg algebra as α = 0, the boundary condition reads
φ1(0) = 1 The commutator between q̃i and pj arises from the realizaion (8) and reads

[q̃i, pj ] = i(δijφ1 + αpipjφ2) (9)
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From the above relation we obtain the generalized uncertainty principle (GUP) underlying
the Snyder non-commutative space as

∆q̃i∆pj ⩾
1

2
|δij⟨φ1⟩+ α⟨pipjφ2⟩| (10)

In the above equation the ordinary Heisenberg framework is recovered in the α→ 0 limit.
The deformation of the only commutator between the spatial coordinates leads to infinitely
many realizations of the algebra. We should note that , if φ ̸= 0 , compatible observables
no longer exist.

Interestingly , for one-dimensional systems, this picture is almost uniquely fixed. The
most general realization is given by

q̃ = qφ(αp2) = q
√

1− αp2 (11)

The commutation relation is given by inserting (11) into (9) :

[q̃, p] = [q
√

1− αp2, p] = (qp− pq)
√

1− αp2 = [q, p]
√

1− αp2 = i
√

1− αp2 (12)

where we used the ordinary quantum mechanical commutation relation:

[q, p] = i, [q, q] = [p, p] = 0 (13)

In one dimension, the simplest form of GUP in the context of the Snyder non-commutative
space can be written as

∆q∆p ≥ 1

2
| <

√
1− αp2 > | (14)

The above relation has three cases:

α < 0, α = 0, α > 0 (15)

1)α < 0, minimal uncertainty relation : At the first order in α the string theory result is
recovered

∆q ≳ (
1

∆p
+ l2s∆p) (16)

where ls is the string length.

ls = (−α/2)1/2 (17)
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2)α = 0, Standard Heisenberg uncerainty principle
3)α > 0, A vanishing uncertainty principle in the non-commutative coordinate is allowed
and appears as soon as ∆p reaches the critical value :

(∆p)∗ =
√
(1− α) < p >)/α (18)

Thus the deformed quantum mechanical commutation relation can be written as

[q, p] = i
√

1− αp2 (19)

where we wrote q̃ as q. The above deformation parameter α has the freedom of the signa-
ture.
We can conclude that a minimum length(α < 0) or a maximal momentum(α > 0) is pre-
dicted by the Snyder-deformed relation. The effects of the modified Heisenberg uncertainty
relations including the Snyder-deformed relation has been studied . Among them the im-
plications of a deformed Heisenberg algebra on the Friedmann cosmological model and
the Wheeler-DeWitt equations after the investigation of non-deformed cases in the next
section.

3 The non-deformed FRW equation and the non-deformed
Wheeler-DeWitt equation

First we recall the ordinary non-deformed FRW cosmological model in three dimensional
space-time following the previous report[1] The action of pure gravity with no matter in
three dimensions

S =
1

16πG

∫
d3x

√
−g(R− 2Λ) (20)

where R is the scalar carvature and Λ is the cosmological constant. We first consider
the equations governing homogeneous and isotropic universe in minisuperspace model. In
terms of the (2+1) dimensional Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2

)
(21)

= −dt2 + a2(t)dσ2

= gµνdx
µdxν

where k is a constant , the value of which equals +1, 0 or -1 with appropriate choice of
units for r. For k = −1, 0 the space is infinite (open) , and for k = +1 the space is finite
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(closed). The above FRW metric has to be satisfied with the Einstein equations (pure
Gravity case)

Rµν −
1

2
gµν(R− 2Λ) = 0 (22)

We calculate the scalar carvature R and substitute it into the action:

S =
1

16πG

∫
d3x

√
−g(R− 2Λ)

=
1

16πG

∫
d3x

√
−g

[
2

((
ȧ

a

)2

+
k

a2
+ 2

ä

a

)
− 2Λ

]
(23)

Integrating the ä term in the resulting expression by parts with respect to t [3], we
obtain the Lagrangian:

L(a, ȧ) =
1

2
a(ȧ2 − k + Λa2) (24)

We find the conjugated momentum

p =
∂L

∂ȧ
= aȧ (25)

Then we obtain the Hamiltonian as follows:

H = pȧ− L =
1

2a
(p2 + ka2 − Λa4) (26)

Here we can check the value of Hamiltonian is equal to zero.

H =
1

2a
(p2 + ka2 − Λa4)

=
1

2a
(a2ȧ2 + ka2 − Λa4)

=
1

2a5

((
ȧ

a

)2

+
k

a2
− Λ

)
= 0 (27)

Now we define the Poisson Bracket:

{A,B}p ≡
∂A

∂a

∂B

∂p
− ∂A

∂p

∂B

∂a
(28)
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Of course

{a, p}p =
∂a

∂a

∂p

∂p
− ∂a

∂p

∂p

∂a
= 1 (29)

The time evolution of a and p is known as the canonical equations of Hamilton

ȧ = {a,H} =
∂H

∂p
=
p

a
(30)

ṗ = {p,H} = −∂H
∂a

=
p2

2a2
− k

2
+

3

2
Λa2 (31)

where ȧ = da
dt and t is the proper time. The initial condition is set as follows

lim
t→0

a(t) = 0 (32)

We can obtain the Friedmann equation from the equations ((12)(16)(17)):(
ȧ

a

)2

= Λ− k

a2
(33)

Next we derive the Wheeler-DeWitt equation by the conventional canonical quantization
procedure as follows :
In the Hamiltonian, p is replaced by ℏ

i
∂
∂a and the wave function ψ(a) is operated to H.(

−ℏ2
d2

da2
+ U(a)

)
ψ(a) = 0 (34)

U(a) = −Λa4 + ka2 (35)

Next we obtain the Wheeler-DeWitt equation in the momentum representation. Quan-
tum mechanics in momentum space is treated[12] In the Hamiltonian , a is replaced by
−ℏ

i
∂
∂p(minus signature is derived from [a, p] = iℏ )and it is obtained

Hψ(p) = 0 (36)

namely

(p2 + ka2 − Λa4)ψ(p) = 0 (37)

After calculation by a→ −ℏ
i

∂
∂p we obtain

ℏ4Λ
∂4ψ(p)

∂p4
+ ℏ2k

∂2ψ(p)

∂p2
− p2ψ(p) = 0 (38)
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Here we treat the expansion of the potential near a = 0.

U(a) = −|Λ|a4 + ka2 (39)

= U(0) + U (́0)a+
1

2!
U (2)(0)a2 +

1

3!
U (3)(0)a3 +

1

4!
U (4)(0)a4 +

= ka2 − |Λ|a4 +
≈ ka2

In this case the Wheeler-DeWitt equations are in position space(
−ℏ2

d2

da2
+ ka2

)
ψ(a) = 0 (40)

This equation means the wave function does not depend on Λ near a = 0 , though it is
natural. Namely around the big bang singularity the wave function of the universe does
not depend on the space time geometry ( AdS, dS or Minkowski). More speculated, near
the big-bang singularity the wave function may be represented as

ψ ∼ AψAdS +BψdS + Cψflat (41)

If we set

a ≡
√

ℏ
2
x

we obtain

d2ψ(x)

dx2
− k

4
x2ψ(x) = 0 (42)

This is the Weber equation and the solutions are represented by the Weber functions.
Similarly in momentum space

(p2 + ka2)ψ(p) = 0 (43)

After calculation by a→ −ℏ
i

∂
∂p we obtain

ℏ2k
∂2ψ(p)

∂p2
− p2ψ(p) = 0 (44)

If we set

p ≡
√

ℏ
2
y

We obtain

d2ψ(y)

dx2
− 1

4k
y2ψ(y) = 0 (45)

This is the Weber equation too, and the solutions are given by the Weber functions. For
details see [1]
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4 The deformed FRW equation and the deformed Wheeler-
DeWitt equation

In this section we derive the deformed FRW equation and the deformed Wheeler-deWitt
equation under the GUP.

4.1 The deformed FRW equation

At first we have to check the deformed Poisson Bracket resulted from the deformed quantum
mechanical commutation relation.

1

iℏ
[a, p] = 1 ⇐⇒ 1

iℏ
[a, p]D =

√
1− αp2 (46)

⇕ ⇕

{A,B}p =
∂A

∂a

∂B

∂p
− ∂A

∂p

∂B

∂a
⇐⇒ {A,B}Dp =

(
∂A

∂a

∂B

∂p
− ∂A

∂p

∂B

∂a

)√
1− αp2

At first we derive the deformed FRW equation. After that we find the deformed Wheeler-
deWitt equation. The deformed Poisson Bracket has to be antisymmmetric, bilinear, and
satisfy the Leibniz rules as well as the Jacobi identity.
The deformed Poisson bracket in the two-dimensional phase space is

{A,B}Dp =

(
∂A

∂a

∂B

∂p
− ∂A

∂p

∂B

∂a

)√
1− αp2 (47)

The time evolution of scale factor a and its conjugate momentum pa , namely the Heisen-
berg’s equation of motion, is modified via the relation (21).

ȧ = {a,H}Dp =
∂H

∂pa

√
1− αp2a =

pa
a

√
1− αp2a (48)

ṗ = {pa,H}Dp = −∂H
∂a

√
1− αpa2 =

(
p2a
2a2

− k

2
− 3

2
Λa2

)√
1− αp2a (49)

Thus we can obtain the deformed FRW equation from the above equations of motion.(
ȧ

a

)2

=

(
Λ− k

a2

)(
1− α(Λa4 − ka2)

)
(50)

The above deformed FRW equation leads to the standard FRW equation (32) as α→ 0.

4.2 The deformed Wheeler-DeWitt equation

Next we derive the deformed Wheeler-DeWitt equation.
The Hilbert space representation of the deformed Heisenberg algebra (12) is constructed.
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Such a relation is represented in the momentum space , where the a ( a corresponds to q̃)
and p operators act on the wave function in momentum representation ;

ψ(p) =< p|ψ > (51)

as

pψ(p) = pψ(p), aψ(p) = iℏ
√

1− αp2∂pψ(p) (52)

on a dense domain D of smooth functions. The Wheeler-DeWitt equation is defined as

Hψ(p) = 0 (53)

where the Hamiltonian H is:

H =
1

2a
(p2 + ka2 − Λa4) (54)

Thus the Wheeler-DeWitt equation is

(p2 + ka2 − Λa4)ψ(p) = 0 (55)

where we set

U(a) = ka2 − Λa4 (56)

Then the Wheeler-DeWitt equation is

(p2 + U(a))ψ(p) = 0 (57)

The above equation can be calculated by use of (44), for example,

a2ψ(p) = aaψ(p) = aiℏ
√

1− αp2∂pψ(p) (58)

= iℏ
√

1− αp2∂p(iℏ
√

1− αp2∂pψ(p))

= −ℏ2
√

1− αp2{∂p(
√

1− αp2)∂pψ(p) +
√

1− αp2∂2pψ(p)}
= ℏ2αp∂pψ(p)− ℏ2(1− αp2)∂2pψ(p)

Similarly,

a4ψ(p) = ℏ4α2p∂pψ(p) + ℏ4(7α2p2 − 4α)∂2pψ(p)− 6ℏ4αp(1− αp2)∂3pψ(p) (59)

+ ℏ4(1− αp2)2∂4pψ(p)
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Then we can obtain

ℏ4Λ
∂4ψ(p)

∂4p
− 6ℏ4Λαp

(1− αp2)

∂3ψ(p)

∂3p
+

ℏ4k(1− αp2)Λ(7α2p2 − 4α)

(1− αp2)2
∂2ψ(p)

∂2p
(60)

+
ℏ4(Λα2p− kαp)

(1− αp2)2
∂ψ

∂p
+

p2

(1− αp2)2
ψ(p) = 0

The above deformed Wheeler-DeWitt equation leads to the standard Wheeler-DeWitt
equation as α→ 0.
By the way we are interested in the wave function near the Big-Bang singularity, so we
expand U(a) around a = 0 as follows

U(a) = −|Λ|a4 + ka2 (61)

= U(0) + U (́0)a+
1

2!
U (2)(0)a2 +

1

3!
U (3)(0)a3 +

1

4!
U (4)(0)a4 +

= ka2 − |Λ|a4 +
≈ ka2

where we assume |Λ| is very smal, |Λ| ≪ 1.
Near the singularity the Wheeler-DeWitt equation does not depend on Λ, that is not
surprising , since around the birth of space-time the topology of space-time may not be
shaped geometrically. Then the Wheeler-DeWitt equation is

(p2 + ka2)ψ(p) = 0 (62)

So the equation is made very simple like a harmonic oscillator. It should be noticed that
around a = 0 the Wheeler-DeWitt equation does not depend on Λ, namely it dose not
depend on the shape of the space-time (AdS, dS, flat).
By use of (50), namely the canonical quantization procedure ( a → iℏ

√
1− αp2 ∂

∂p ), we
obtain the final deformed Wheeler-DeWitt equation near the Big-Bang singularity

ℏ2k
∂2ψ(p)

∂p2
− ℏ2k

αp

1− αp2
∂ψ

∂p
− p2

1− αp2
ψ(p) = 0 (63)

The above equation is the well known differential equation called the Mathieu equation or
the modified Mathieu equation in the algebraic form[13][21].
(1) : When k = 1, the equation is

ℏ2
∂2ψ(p)

∂p2
− ℏ2

αp

1− αp2
∂ψ

∂p
− p2

1− αp2
ψ(p) = 0 (64)

Here we set √
αp = t (65)
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We obtain

d2ψ

dt2
− t

1− t2
dψ

dt
−

1
(ℏα)2 t

2

1− t2
ψ = 0 (66)

The original Mathieu equation is procedured by

t = cos z (67)

Then we obtain

d2ψ

dz2
− 1

2(ℏα)2
(1 + cos 2z)ψ = 0 (68)

Its solutions can be explicitly written in terms of the Mathieu Function: even periodic and
odd periodic respectively cen(z, q), sen(z, q)[18] as

ψ(z) = Acen(z,
1

2

1

2(ℏα)2
) +Bsen(z,

1

2

1

2(ℏα)2
) (69)

where A and B are integration constants .
(2) : When k = −1, the equation is obtained similarly

d2ψ

dt2
− t

1− t2
dψ

dt
+

1
(ℏα)2 t

2

1− t2
ψ = 0 (70)

The original Mathieu equation is

d2ψ

dz2
+

1

2(ℏα)2
(1 + cos 2z)ψ = 0 (71)

Its solutions are similarly written as

ψ(z) = Acen(z,−
1

2

1

2(ℏα)2
) +Bsen(z,−

1

2

1

2(ℏα)2
) (72)

5 Conclusion

We studied the application of the GUP to the FRW cosmology in the context of the Sny-
der non-commutative space. We calculated the deformed FRW equations and deformed
Wheeler-DeWitt equations in three dimensional pure gravity. The resulting equations
include the effects of the GUP. The wave functions of the universe near the Big-Bang
singularity were also obtained in momentum space. The uncertainty principle is the fun-
damental property of quantum theory even in the quantum gravity. The extension of the
Heisenberg’s Uncertainty Principle is essential to quantum gravity from the standpoint of
the existence of the minimal length. On the other hand the existence of the Big-Bang
singularity means that the emergence of the space-time is very strange and mysterious.
We obtained the wave functions satisfying the deformed Wheeler-DeWitt equations near
the singularity which were reduced to the Mathieu equations.
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Appendix

We summarize the Mathieu functions and the modified Mathieu functions briefly.[13][22]

Mathieu Function

Canonical form of the Mathieu Equation

d2y

dz2
+ (a− 2q cos 2z)y = 0 (73)

If we set
t = cos z (74)

We obtain an Algebraic Form of the Mathieu equation

d2ψ

dt2
− t

1− t2
dψ

dt
− a+ 2q − 4qt2

1− t2
ψ = 0 (75)

Requiring the solutions of the original Mathieu equation to be periodic leads to characteris-
tic values for a. Periodic solutions that are even with respect to z have characteristic values
an, whereas those that are odd have characteristic values bn. If q = 0, then an = bn = n2

and the even and odd solutions are the cosine and sine functions respectively. The even
and odd periodic Mathieu functions are respectively

cen(z, q) =

+∞∑
k=−∞

cn,k(q) cos[(n+ 2k)z], n = 0, 1, 2, , , (76)

sen(z, q) =
+∞∑

k=−∞
c̃n,k(q) sin[(n+ 2k)z], n = 1, 2, 3, , (77)

They are normalized such that∫ 2π

0
dz|cen(z, q)|2 =

∫ 2π

0
dz|sen(z, q)|2 = π (78)
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The normalized coefficients can be expanded in formal power series.
For n ≧ 2, the even coefficients are

cn,0(q) = 1 +O(q2) (79)

cn,±1(q) = ∓ 1

4(n± 1)
q +O(q2) (80)

For n = 1, we obtain

c1,0(q) = 1 +O(q2) (81)

c1,+1 = −1

8
q +O(q2) (82)

For n = 0,

c0,0(q) =
1√
2
+O(q2) (83)

c0,+1(q) = − 1

2
√
2
q +O(q2) (84)

All other coefficients are O(q2) or higher. The odd coefficients are not the same as the
even but they agree up to O(q2) with one exception:

c̃2,−1(q) = O(q2) (85)

Modified Mathieu Equation

In Mathieu equation, if we set
z → iz (86)

we will obtain the Modified Mathieu Equation

d2y

dz2
− (a− 2q cosh 2z)y = 0 (87)

If we set
t = cosh z (88)

We obtain an Algbraic form of the Modified Mathieu equation

d2ψ

dt2
− t

1− t2
dψ

dt
− a+ 2q − 4qt2

1− t2
ψ = 0 (89)

Namely the Algebraic form of the Modified Mathieu equation is the same as that of
the Mathieu equation.
If we set ζ = 2

√
q cosh z, then the modified Mathieu equation is changed as

(ζ2 − 4q)
d2y

dζ2
+ ζ

dy

dζ
− (a+ 2q − ζ2)y = 0 (90)
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When q = 0, then a = an = n2(even case), b = bn = n2(odd case) and the above equation
(83) reduces the Bessel differential equation. The even and odd modified Mathieu functions
of the first kind are, respectively

Mc(1)n (z, q) =

∞∑
−∞

dn,k(q)Jn+2k(2
√
q cosh z), n = 0, 1, 2, .., (91)

Ms(1)n (z, q) = tanh z

∞∑
−∞

d̃n,k(q)Jn+2k(2
√
q cosh z), n = 1, 2, 3, .., (92)

The coefficients are related to those in Mathieu functions:

dn,k(q) = ρ(q)(−1)kcn,k(q) (93)

d̃n,k(q) = ρ̃(q)(−1)k(n+ 2k)c̃n,k(q) (94)

where ρ(q) and ρ̃(q) are normalization factors. The modified Mathieu functions of the first
kind are normalized to have the same asymptotic form as the Bessel functions, namely

Mc(1)n (z, q) ∼ Jn(z), as z → ∞ (95)

Ms(1)n (z, q) ∼ Jn(z), as z → ∞ (96)

the normalization factors are

ρ(q) =
1∑∞

−∞ cn,k(q)
(97)

ρ̃ =
1∑∞

−∞(n+ 2k)c̃n,k(q)
(98)

The modified Mathieu functions in (84) and (85) are absolutely convergent for | cosh z| > 1,
[22] Using the results from the Mathieu functions the coefficients can be expanded in formal
power series. The even coefficients for n ≥ 2 are

dn,0(q) = 1− 1

2(n2 − 1)
q +O(q2) (99)

dn,±1(q) = ± 1

4(n± 1)
q +O(q2) (100)

For n = 1

d1,0(q) = 1 +
1

8
q +O(q2) (101)

d1,+1(q) =
1

8
q +O(q2) (102)
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for n = 0

d0,0(q) =! +
1

2
q +O(q2) (103)

d0,+1(q) =
1

2
q +O(q2) (104)

All the other even coefficients are O(q2) or higher.
The odd coefficients :
For n ≥ 2

d̃n,0(q) = 1 +
1

2(n2 − 1)
q +O(q2) (105)

d̃n,±1(q) = ± n± 2

4n(n± 1)
q +O(q2) (106)

For n = 1

d̃1,0(q) = 1 +
3

8
q +O(q2) (107)

d̃1,+1(q) =
3

8
q +O(q2) (108)

All the other odd coefficients are O(q2) or higher.

Here we check the asymptotic form of the modified Mathieu functions when z → ∞, since
the limitation means p →very large and a → very small. Namely, near the Big Bang
singularity we could deal with the wave function.

Now we define Me
(1)
2m(z), Me

(2)
2m(z) such that[25]

Me
(1)
2m(z) =

2(−1)m

πce2m(0)

∫ π
2
−i∞

0
e2iℏ cosh z cos źce2m(ź)dź (109)

Me
(2)
2m(z) =

2(−1)m

πce2m(0)

∫ π

π
2
−i∞

e2iℏ cosh z cos źce2m(ź)dź (110)

The above both satisfy the modified Mathieu equation in some eigen values and relate with
Ce2m(z)

Ce2m = (−1)m
ce2m(0)ce2m(π2 )

2A2m
0

[Me
(1)
2m(z) +Me

(2)
2m(z)] (111)

We can do some procedure of the saddle point method in order to calculate the asymptotic
form of z → ∞
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The asymptotic form:

Me
(1)
2m(z) ∼ 2

π
e2iℏ cosh z−π

4
i

∫ ∞

0
e−ℏs2 cosh zds (112)

=

√
1

πh cosh z
e2ih cosh z−mπi−π

4
i (113)

Similarly

Me
(2)
2m(z) ∼

√
1

πh cosh z
e−2ih cosh z+mπi+π

4
i (114)

We obtain the asymptotic form of Ce2m(z)

Ce2m ∼
ce2m(0)ce2m(π2 )

2A2m
0

√
1

πh cosh z
cos
(
2h cosh z − π

4

)
(115)
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