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Abstract—Deep Q-Networks first introduced a combination of
Reinforcement Learning and Deep Neural Networks at a large
scale. These Networks are capable of learning their interactions
within an environment in a self-sufficient manor for a wide range
of applications. Over the following years, several extensions and
improvements have been developed for Deep Q-Networks. In the
following paper, we present the most notable developments for
Deep Q-Networks, since the initial proposed algorithm in 2013.

I. INTRODUCTION

Reinforcement Learning (RL) and especially Deep Reinforce-
ment Learning (DRL) have experienced steadily increasing
media attention over the last recent years. New methods and
continuous improvements of existing models helped to develop
powerful algorithms which are capable of learning highly
complex tasks autonomously.
DRL has several practical uses in different domains like object
localization [1], visual navigation [2], resource management
[3], and traffic signal timing [4]. The ability to even outperform
humans in complex tasks could explain the growing interest in
this field of research. DeepMinds AlphaGo surprised the world
in 2016 after beating one of the best players in one of the most
computationally complex games, Go [5]. Mid 2018, OpenAI
Five defeated a professional team in the popular multiplayer
game Dota 2 [6]. In both cases the algorithms were trained in
an RL setting by playing games against themselves.
It is no surprise that many existing RL studies and benchmarks
are closely tied to video games. They offer a closed environ-
ment and the encountered settings often resemble problems
also faced in real-world applications.

Deep Q-Networks (DQN) [7], [8] can be considered to be one
of the most important milestones in DRL, outperforming even
human players in complex Atari 2600 games. The success of
DQN and their utilization of Neural Networks (NN) inspired
similar DRL methods like Deep DPG [9] or A3C [10].
Additionally, various extensions for DQN were introduced
like Double DQN [11] or Dueling Networks [12] to further
increase the performance.

A large part of the recent success in DRL settings can be
credited to NN. Advancements such as improved GPUs and
increased availability of large data sets largely explain the rise
of deep learning over the last decade, although often using
only slightly modified algorithms originally dating back to
over two decades. Long short-time memory units [13], for
example, used in Recurrent Neural Networks (RNN), produced
recent state-of-the-art results in tasks like speech recognition
[14] or natural language processing [15].

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) is considered to be one of
three categorical tasks of machine learning, besides supervised
learning and unsupervised learning. The conceptual framework
involves an agent, which interacts with its environment and
incrementally learns new behavior. The agent starts in an
initial state St and takes an action At for each time step t

depending on observations extracted from the environment. In
the subsequent time step t+1 a reward Rt+1 is received based
on the previous action taken and the state of the agent changes,
resulting in new observations St+1 [16]. A conceptual model
of RL is depicted in Figure 1.

Fig. 1. Interaction between an agent and its environment.

The experience an RL agent acquires can either be learned in
an offline setting, where all knowledge about the environment
is collected before the actual learning process or in an online
setting, where the gathered experience is gradually learned
and influences the decision-making of the agent. The resulting



predicament of resorting to learned behavior or exploring
the environment is also known as exploration-exploitation
trade-off/dilemma [17]. The RL agent has to decide whether
the environment should be explored to gain new knowledge
(exploration) or the existing experience is used to maximize
the returned reward (exploitation), based on the extracted
observations. The difficulty arises from balancing these two
mutually exclusive tasks, since both are important to achieve
the goal.

B. Q-learning

Q-learning can be considered as a type of model-free rein-
forcement learning [18]. The goal of the Q-learning algorithm
is to learn the value of each state-action combination within
a finite Markov Decision Process (FMDP). These values are
called Q-values and estimate the received reward by taking
a specific action. Intuitively, higher Q-values imply increased
chances of getting higher rewards. The Q-value of a state-
action pair for a certain time step (St, At) can be calculated
as follows:

Qnew(St, At)←

(1− α) ·Q(St, At) + α ·
(
Rt + γ ·max

A
Q(St+1, A)

) (1)

where α is the learning rate (0 < α ≤ 1) and γ the discount
factor for future rewards (0 ≤ γ ≤ 1).

C. Deep Learning

One of the advantages of NN over traditional machine learning
algorithms is the ability to classify data points which are
not linearly separable . This can be achieved by applying
a nonlinear activation function to the linear combination of
inputs in a neuron and by using at least one hidden layer
between the input and output [19]. A stack of these layers,
which perform nonlinear input-output mappings would be
commonly referred to as deep-learning architecture. [20].
Especially two classes of NN, Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN), emerged as
particularly successful in complex tasks such as image and
speech recognition.

1) Convolutional Neural Networks: CNN were first recog-
nized by a broader audience, after achieving impressive results
on image recognition while using only limited image prepro-
cessing. A convolutional layer consists of multiple trainable
filters or kernels, which stride over the input data like an
image or word embeddings. The filters convolve along the
input and extract low level features like edges or patterns in
case of an image. A pooling layer then allows down sampling
of the resulting feature map. A stack of multiple convolutional

and pooling layers enables the NN to detect higher level
features like parts of objects or shapes. Figure 2 shows the
ImageNet architecture as proposed Krizhevsky et al. [21] for
image classification. After a series of convolutions and max
pooling operations, the output is flattened and fed forward to
a fully-connected layer.

Fig. 2. Architecture of a Convolutional Neural Network.

2) Recurrent Neural Networks: RNN are another class of NN,
which are especially suited for sequentially dependent data. An
example would be the task to determine whether the sentiment
of a product review can be considered as positive or negative.
In this setting the semantic information of a word is dependent
on all other words in its sentence (”The movie was good”
- ”The movie was not good”) [22]. In a recurrent layer the
output is dependent on the current input as well as the previous
inputs of a sequence. Figure 3 depicts the concept of such an
RNN.

Fig. 3. Architecture of a Recurrent Neural Network.

Long short-term memory (LSTM) units were first described by
Hochreiter and Schmidhuber to overcome the vanishing and
exploding gradient problem of RNN and enable the ability to
encode information from long sequences [13].

III. DEEP Q-NETWORKS

One of the main challenges of Q-learning is the convergence
of the algorithm if the amount of possible environment states
is too large. Although the algorithm converges for a finite set
of states, given that every state action pair is updated often
enough, the computation of every state-action value would be
infeasible for many real word applications.
In the case of autonomously driving cars, for example, the



algorithm needs to work with different sensors and images to
determine the current state of a car in its environment, inflating
the computational costs for all possible action-values beyond
reasonable. Therefore, it is often common to approximate
the action-value function instead of calculating its real value
to reduce complexity. NN qualify for this task as nonlinear
function approximators.

Video games are often used as RL benchmarks, since they can
be considered as representative of settings that might be faced
in practice [23]. Mnih et al. [7] introduced Deep Q-Networks
(DQN) to overcome the problem of high-dimensional obser-
vation spaces in Atari 2600 games.

The proposed algorithm utilizes a CNN Q as value approxima-
tor and to extract features of RGB images from the Atari envi-
ronment. A separate target network is used during training to
generate the target Y . At every fixed time step C, the weights
and biases θ of Q are cloned to obtain the parameters θ− of
the target network. This technique improves the stability of
the algorithm and it reduces the risk of divergence [8].

Another problem arises in the setting of online learning,
since the gathered samples would be drawn subsequently from
the environment. They would be close to each other, which
means the training batch of the NN would not be i.i.d. To
compensate this, the algorithm uses a memory buffer (or
replay memory) to transform an online learning setting into
an offline learning setting. The replay memory D stores the
last N observations as tuple of states, actions, rewards, and
next states (St, At, Rt, St+1) from the environment, which are
uniformly random sampled (S,A,R, S′) ∼ U(D) and used as
minibatch update for the NN [24, Chapter 6]. The loss function
for episode i of the algorithm is calculated as follows:

Li(θi) =

E(S,A,R,S′)

[(
R+ γ ·max

A′
Q(S′, A′; θ−i )−Q(S,A; θi

)2]
(2)

Furthermore, the described method clipped all positive rewards
to 1 and all negative rewards to −1, which constrains the error
derivatives and normalizes the rewards for all games.

The algorithm is run with an ε-greedy policy, where ε = 1

decreases linearly over a fixed amount of frames until a small
enough value is reached (e.g. ε = 0.05). Actions are then taken
either randomly with the probability of ε or as predicted from
the target network with the probability 1 − ε. This promotes
exploration at the beginning of the training, which gradually
turns towards exploitation of the predicted action values (while
still leaving room for exploration).

After the success of DQN to surpass human players in several
Atari games, several improvements where proposed to improve
the performance of the algorithm.

A. Deep Recurrent Q-Networks

A major challenge RL faces is the issue that single obser-
vations taken from the environment may not be sufficient
to determine its current state. In the Atari game Pong, for
example, a single frame encloses not all relevant information
to infer the current state of the game, because it is unclear in
which direction the ball is traveling. DQN address this issue
in the preprocessing phase, where the last m frames (typically
3 to 5) are stacked to generate an image which encapsulates
the missing information.

A problem arises if the agent requires more knowledge than
the last m frames to detect the current state of the environment.
Hausknecht et al. [25] suggest that most real-world applica-
tions of RL can be described as Partially Observable Markov
Decision Processes (POMDP), where the agent can only
partially recognize the underlying system state. An example
of this problem can be seen in figure 4, which shows the
Atari game Pong. The given information of a single frame is
not sufficient to determine the direction in which the ball is
traveling.

Fig. 4. Pong as an example for a POMDP. Here, the current state of the
environment cannot be determined using only a single frame. It is impossible
to infer the movement of the ball (white) without the context of previous
frames.

Their work suggests a modification of the original DQN al-
gorithm, which enables training on single frames by replacing
the first fully-connected layer with a recurrent LSTM layer.
The samples for training of the NN are selected by randomly
choosing a sequence of experiences from the replay memory
within an episode. Despite producing similar results as the
DQN, the DRQN is able to generalize its policies better than
DQN.



B. Double Deep Q-Networks

Hasselt et al. [11] demonstrate that DQN have a tendency to
overestimate Q values, which diminishes the training perfor-
mance and may lead to suboptimal policies [24, Chapter 7].
This is caused by the max operator in Q-learning and DQN,
as the same values are used to select and to evaluate an
action. Hasselt [26] introduced Double Q-learning, where two
estimates are used to determine the greedy policy and its value
separately to improve the performance of Q-learning. Based
on this idea, actions for the next state are chosen using the
trained network but values of Q are selected from the target
net.

By changing the DQN target function

Y DQN
i = R+ γ ·max

A′
Q(S′, A′; θ−i ) (3)

to the proposed Double DQN target function

Y DDQN
i = R+ γ ·Q(S′, argmax

A′
Q(S′, A′; θi); θ

−
i ) (4)

the algorithm leads to less overestimation of the Q values and
improved stability.

C. Prioritized Experience Replay

Another concept for further improvements was introduced
by Schaul et al. [27] in the form of Prioritized Experience
Replay (PER). While the NN in the original DQN is trained
with uniformly sampled observations from the replay mem-
ory, PER liberates agents from regarding transitions with the
same frequency as they are experienced. The main idea is
to increase the probability of selecting observations from
the memory buffer that are more important for the learning
progress.

Two different models for PER are suggested, prioritization
with the temporal-difference (TD) error, where the prior-
ity is calculated using the loss function of the NN and a
stochastic prioritization, where a stochastic sampling method
interpolates between TD prioritization and uniform random
sampling.

A combination of the DDQN architecture and PER further
increases the performance and outperforms the improved
DDQN.

D. Dueling Networks

Dueling Networks, as introduced by Wang et al. [12], optimize
the architecture of the utilized NN. The initial concept is
composed of the idea to separate the representation of state
values and action advantages. The convolutional layers of
the DQN remain unchanged, while the first fully-connected

layer is split into two streams of fully-connected layers.
These streams represent the value scalar Ṽ (S; θ;β) and the
advantage |A|-dimensional vector Ã(S,A; θ;α) respectively.
An aggregation layer connects both streams to estimate the
state-action value function Q(S,A). In this case describes θ
the weights and biases of the convolutional layer, while α and
β are the parameters of the two streams of fully-connected
layers. The complete Q-value function estimation is given
by

Q(S,A; θ, α, β) =

Ṽ (S; θ, β) +

(
Ã(S,A; θ, α)− 1

|A|
∑
A′

Ã(S,A′; θ, α)

)
(5)

Weight updates of both streams are computed only using back-
propagation and without any algorithmic modifications of the
DQN.

The intuition behind the segregation of value and advantage
function is that the extended architecture enables the agent
to learn which states are valuable and allows the agent to
disregard unimportant action-state pairs. Figure 5 shows the
difference between the original DQN architecture and the
proposed Dueling Network architecture.

Fig. 5. The Network architecture of the classic DQN (top) in comparison
to a Dueling Network architecture (bottom), which separates the first fully-
connected layer into two streams that represent the value and advantage
functions.

E. Noisy Networks

Exploration in DQN is implemented by choosing actions
randomly depending on a hyperparameter ε. The parameter
decreases slowly over time to a small fixed value. This
strategy is suitable for many basic environments, but even
in simple cases, it requires adjustments to ensure efficient
training.



Fortunato et al. [28] propose to add noise to the weights of
fully-connected layers of the NN and to adjust the parameters
of this noise during training. Two different methods of adding
this noise are suggested [24, Chapter 7]:

• Independent Gaussian noise: For every weight in a fully-
connected layer, a random value is drawn from a normal
distribution. The parameters of the noise, µ and σ, are
stored inside the layer and get updated through back-
propagation.

• Factorized Gaussian noise: Two random vectors are used,
respectively with the input and output size of the layer,
to minimize the sampled amount of random variables.

F. Rainbow

All these recent improvements for DQN naturally raise the
question whether these techniques can be combined to a type
of ensemble agent. The proposed Rainbow model from Hessel
et al. [29] merges several of the most important advancements,
which results in the current state-of-the-art architecture for
value-based learning methods in the Q-learning family.

Besides the already presented designs for DDQN, PER, Duel-
ing Networks, and Noisy Nets two more extensions are used
for Rainbow, namely Multi-step learning and Distributional
RL.

Multi-step learning refers to the idea of R. Sutton [30] to
unroll the recursive equation of the Bellman update used in Q-
learning. Assuming that the action at step t + 1 was roughly
optimal, the max operator can be disregarded. This n-times
unrolled equation can be used in the weights update of the
NN to speed up training.

The Distributional RL extension as suggested by Bellemare et
al. [31] addresses the issue which is caused by the expected
values in the Bellman update. By trying to predict the expected
value for an action, the underlying distribution is disregarded,
which can lead to uncertainty for a reliable prediction. This
problem can be overcome by further adjustment of the loss
function.

Merging all these extensions into one architecture, produces
an agent which achieves high score results in many Atari
environments.

IV. LIMITATIONS OF DEEP Q-NETWORKS

Despite exceeding in tasks with large observation spaces,
all DQN architectures fall short when confronted with large
and/or continuous action spaces. This can be attributed to the
nature of Q-learning, because it requires finding the action,
which maximizes the action-value function. In a continuous

setting, actions would need to be discretized to calculate the Q-
values. This would be infeasible in most real-world continuous
control applications like motion control in robots, where a high
degree of freedom combined with a fine discretization of all
possible actions would lead to a rapid inflation of the action
space.

Policy Gradient (PG) methods like an actor-critic (A2C) agent
would be more suitable for this kind of setting. It can be
seen as a hybrid between policy based and value based
methods, where the agent includes two different component:
An actor and a critic. The actor observes the current state and
determines the best possible action to take. The critic is used
for evaluation by predicting a score which represents the error
of the actor [24, Chapter 10].

V. CONCLUSION

Despite the drawbacks of DQN in large and/or continuous
action spaces and better available solutions for such tasks like
A2C, DQN continue to prevail in applications with limited
action spaces such as or news recommendation [32] or traffic
light timing [4]. Due to various extensions, the performance of
DQN were further improved, resulting in the Rainbow model
which combines several approaches to yield state-of-the-art
results for many applications.
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