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Abstract—In the field of machine learning and artificial intelli-
gence, meta-learning describes how previous learning experiences
can be used to increase the performance on a new task. For this
purpose, it can be investigated how prior (similar) tasks have been
approached and improved, and knowledge can be obtained about
achieving the same goal for the new task. This paper outlines
the basic meta-learning process which consists of learning meta-
models from meta-data of tasks, algorithms and how these
algorithms perform on the respective tasks. Further, a focus is
set on how this approach can be applied and is already used in
the context of deep learning. Here, meta-learning is concerned
with the respective machine learning models themselves, for
example how their parameters are initialised or adapted during
training. Also, meta-learning is assessed from the viewpoint
of Organic Computing (OC) where finding effective learning
techniques that are able to handle sparse and unseen data is of
importance. An alternative perspective on meta-learning coming
from this domain that focuses on how an OC system can improve
its behaviour with the help of external knowledge sources, is
highlighted. To bridge the gap between those two perspectives,
a model is proposed that integrates a deep, meta-learned traffic
flow predictor into an organic traffic control (OTC) system that
dynamically exploits knowledge sources during runtime.

Index Terms—meta-learning, organic computing, autonomous
learning, deep learning

I. INTRODUCTION

In the field of artificial intelligence, it is a natural move to
look at the way humans deal with issues of learning in order
to find ways of improving machine learning approaches. For
instance, considering the act of learning a new language, one
can observe that we improve the process of learning how to
learn a new language with each language. Hence, when one
has already learned, for example, french and italian, another
roman language such as spanish, can be learned a lot faster.
This is the case as the vocabulary and the grammar are similar
and our brain is pre-trained to deal with new tasks that are
similar to previously learned ones. Further, when regarding
musical instruments, if a person can read and play by notes, it
is not only easy for them to play a certain piece of music but
it is also possible for them to play any other piece. Further,
when they can play the violin, they will learn the cello with
less effort than they would have without their prior knowledge.
On the other hand, when a person exclusively learned to play
the piano, learning to play the drums will need more exercise.
Accordingly, machine learning algorithms would improve and

get faster if they could apply this human approach in order
to achieve learning to learn a new task out of knowledge of
previous, similar tasks, generally known as meta-learning [1].

This is also of significant importance to the field of deep
learning, where the human neuron system was a role model
to create multi-layered neural network architectures [2]. To
achieve the best results with deep learning, traditionally a lot
of data is needed as input as the underlying architectures are
quite complex.

In contrast to this, in the field of OC not as much data is
available because its basic concept is to let the organic sys-
tem learn, adapt, organise and configure itself autonomously
and dynamically to specific conditions [3]. Again, nature is
employed as inspiration, as, for instance, the behaviour of
ants can be seen as such an organic system. When looking
at the way worker ants search for and transport food, it can be
observed that they naturally find the best route for doing so.
This does not happen in a manner humans may fully perceive
but it just works itself out in the best possible way and when
obstructions hit the path, the system adapts itself automatically
without coming to a stop. With real-life examples like this in
mind, it is desired to create a system where its autonomous
sub-systems are interacting with each other and overall system
decisions are based on local knowledge. By being able to work
on problems while the system is running, it is possible to over-
come decisions at design-time and shift them to runtime [4].

Learning based on prior knowledge, or meta-learning, in
connection with deep learning methods could be a good
asset in work relating to OC as data for these systems is
often not available before runtime. Hence, to address this
issue, concepts and state-of-the-art research of meta-learning
and deep learning are reviewed and linked to a specific OC
environment — an OTC system.

This paper presents both the traditional notion of meta-
learning as well as an alternative perspective from the field
of OC that deals with exploiting external knowledge sources
and bridges the gap between the two by investigating how they
could be combined in an OTC system.

The paper is laid out as follows: First, a general overview
of the field of meta-learning is given in Section II. Afterwards,
two current research perspectives in the field are reviewed in
Section III and Section IV. The first perspective describes how



meta-learning is related to the popular research field of deep
learning while the second provides an alternative model for
use in OC systems that focuses on ways in which different
knowledge sources can help the system’s self-adaptation and
self-organising properties. Addressing this paper’s research
question, an idea of how both of these perspectives could be
integrated into an OTC system is given in Section V. Finally,
the paper is concluded in Section VI, outlining open issues
and possible future research.

II. AN OVERVIEW OF META-LEARNING

In conventional machine learning, data from a single task is
used to train and evaluate a learner. E.g., in supervised learning
a model is trained on data instances that are gathered in a
training set and afterwards this learner is tested on instances
of a test set, cf. Figure 1. In contrast to this, in meta-learning
we consider not instances but entire tasks [1]. So when we talk
about Meta-Learning, or Learning to Learn, we mean that prior
tasks are observed and knowledge obtained from this is used to
learn a similar task. Each of those tasks consists of a training
and test set including some instances. When training the meta-
model, each of those tasks is considered and the emerging
meta-model is then used to form a learner that is handling the
new task, which is depicted in the lower part of Figure 1.

A. Meta-Data

The first step to meta-learning is to exactly look at possible
information that can be obtained from previous tasks. Those
meta-data include knowledge received directly from the tasks,
but also entail the configurations of the algorithm, its param-
eters and the evaluations of the applied model containing all
measurable contents [1].

The characterisations of a specific task are defined as a
set of meta-features [1]. Some of the most commonly used,
simple meta-features are the numbers of instances, classes
and outliers. The number of instances can indicate how fast
and scalable a model is, the number of classes may reveal
how complex the set is and the number of outliers suggests
the noisiness of the data [1], [5]. In a similar way, the
configurations of different machine learning algorithms are
of importance in the meta-learning process. Here, parameters
range from general types of methods, e. g. Support Vector
Machines or neural networks, to their specific, exact param-
eterisations, e. g. the type of kernel and values of associated
parameters for Support Vector Machines or the weights stored
in a neural network. Lastly, for each combination of consid-
ered task and configuration of machine learning technique,
observations about the performance — measured by metrics
like classification accuracy or regression errors in supervised
settings, or received rewards in reinforcement learning — and
the training process, e. g. training time or learning curves, are
taken into account.

From these collected meta-data, a meta-model is then tasked
with producing an appropriate model for a new, unseen task.

B. Transfer Learning

Transfer learning examines a domain containing a lot of
data and transfers the procured insight of this field into a
domain with less data [6]. Hence, a model trained on tasks of
the former domain can be used as initialisation for constructing
a model from the tasks of the latter field. The effectiveness
of this process is depending on how profoundly the contents
of both domains are related, i.e. in our case how similar one
task is to the other. This can be achieved by choosing the
new model to be as similar to the old models as possible, in
terms of content, context, structure or in a other way. Transfer
learning is very well applicable on neural networks, as such a
model can easily be used as a pre-trained initialisation model
that can be fine-tuned employing data from the new task [1].
Thus, fine-tuning is often used as transfer learning for deep
learning [7], but to avert over- or under-fitting manual choices
regarding learning rate and which layers to train have to be
made, like Zhou et al. have suggested in their work [8].
In contrast to this, a meta-learner, such as those described
in Section II-C, automates this process for multiple tasks at
once. Moreover, the meta-learner should be proficient enough
to rapidly learn from old tasks and automatically adapt to new,
similar ones [1].

C. Meta-Learners for Neural Networks

In the context of neural networks, meta-learning approaches
can be found that learn how to influence the initialisation and
learning behaviour of base learners over a range of tasks,
in order to quickly generalise to a new task. Two recent
approaches are outlined below.

1) Model-Agnostic Meta-Learning (MAML): This algo-
rithm for meta-learning introduced by Finn et al. [9] can be
applied to any machine learning model that is trained with
gradient descent and tackles the problem from a different per-
spective. The proposed algorithm effectively trains a machine
learning model on a distribution of training tasks to be easy
to fine-tune to new, unseen tasks. Specifically, this means that
the algorithm learns to adjust the initial parameters of the
underlying machine learning model in a way such that only a
small number of gradient steps and training data are needed
to achieve good performance on a task.

2) Meta-SGD: The Meta-SGD algorithm as introduced
by Zhou et al. [10] can be seen as a continuation of the
philosophy behind MAML. Compared to the former, Meta-
SGD not only learns the model’s initialisation parameters but
also the update direction and learning rates. As is the case
with MAML, Meta-SGD can be applied to both supervised
learning tasks as well as reinforcement learning.

D. Few-Shot Learning

Few-shot learning describes the problem of training a ma-
chine learning model for a task that does not contain many
examples [1]. Humans have an innate ability to do this —
consider for example the following scenario of learning about
unfamiliar, foreign, unknown types of fruit: Assuming a person
does not know what a mangosteen, for instance, looks like, a
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Fig. 1. In conventional machine learning (here supervised learning), instances of a so-called training set are used to train a Learner. This Learner is then
tested on instances of a test set. In meta-learning, we inspect different, similar tasks, each composed of a training set containing (few) instances and a test
set with other instances. Based on knowledge it attains from these tasks, the meta-learning process then aims to produce a machine learning method that
performs well on a new, unseen task.

handful of pictures of this fruit will be shown to this person
and afterwards they have to choose the mangosteen from a
variety of images of different fruits. With this information,
a person will easily be able to decide which fruit is the
mangosteen. The underlying problem of few-shot learning
is to recreate this instinctive learning process of humans
by machine learning operations. The described task of few-
shot image recognition is challenging — even for state-of-
the-art machine learning models that achieve super-human
performance on large-scale image recognition tasks as their
deep architectures require large amounts of training data, cf.
[2] and Section III. In this context, meta-learning tries to learn
how to effectively train deep learning models on small amounts
of training data, e. g. by learning effective representations
over a set of training tasks and changing parameters of the
underlying model accordingly to decrease training effort on a
new task [1].

III. DEEP LEARNING IN META-LEARNING AND TRAFFIC
CONTROL

In the following, the field of deep learning is described in the
context of meta-learning. Also, two deep learning approaches
relevant to traffic control are described.

A. Deep Learning

Deep learning describes a popular sub-area of machine
learning that uses large amounts of data to train various
neural network architectures, often on raw sensory input
data, like images, audio or video content. In this context,

“deep” describes neural networks with a large number of
layers [2]. Deep learning provides state-of-the-art results in
fields like visual recognition [11]–[13] or speech and sound
processing [14]–[16], to name a few. An important property
of deep learning is its ability to derive useful abstracted
representations of the raw input data during training. In the
context of meta-learning, representations learned on a specific
task can often be transferred to learning new, related tasks. For
example, the feature representations learned by convolutional
neural networks (CNNs) on the large-scale visual recognition
corpus ImageNet [17] can serve as effective input features for
other visual recognition tasks, often outperforming handcrafted
features [18].

B. Deep Meta-Learning

In their work, Zhou et al. [8] integrate the representational
power of deep learning with meta-learning. Normally, meta-
learning is performed on the input space, e. g. for image
recognition tasks this can mean the raw pixel values of
pictures, but, as described above, deep neural networks are
able to learn higher-level, conceptual representations in a
data-driven way. The authors describe a framework for the
task of few-shot image recognition that exploits this property:
Instead of training a meta-learner on the raw image input data,
they instead employ a concept generator, e. g. a CNN, that
is trained jointly with the meta-learner on a large external
image recognition database to learn useful representations
of the input data. This transfers the meta-learning problem
from the complex, high-dimensional input space to a lower-



dimensional, easier to grasp concept space. In their framework,
both the concept generator and the meta-learning component
are replaceable by arbitrary deep representation learners and
meta-learners, respectively. They specifically also name the
meta-learners described in Section II-C. Finally, they point out,
that their framework could be applied in a lifelong learning
scenario, as the concept generator will continue to evolve given
new data and tasks.

C. Traffic Flow Prediction

The problem of traffic flow prediction can be effectively
addressed with deep learning methods. Lv et al. [19] describe
a deep stacked autoencoder architecture that learns useful,
generic representations for predicting traffic flow while inher-
ently considering the spatio-temporal aspects of the problem.
They train their autoencoder in a greedy, layer-wise fashion to
make short-term traffic flow predictions for different freeways
from a specific number of past traffic flow observations. They
prove the effectiveness of the learned feature representation
by showing that their approach performs better than traditional
methods without deep representational learning on the Caltrans
Performance Measurement System database.

For the similar task of network transportation speed pre-
diction, Ma et al. [20] use an image based representation
of spatio-temporal traffic dynamics that is then used to train
a CNN to predict network-wide traffic speeds with high
accuracy. A transportation network’s traffic speeds are repre-
sented by a two dimensional time-space matrix. The network
is first decomposed into individual sections respecting their
spatial relations, and average travelling speeds are measured
in specific time intervals for each. The speed of a section i at
time interval j is then considered as the intensity of the pixel
pi,j . Over a specific period of time, e. g. a day, this results
in an image used for training a CNN to predict travelling
speeds on specific sections. They compare their method to
a number of other machine learning approaches, including
stacked autoencoders, and report that it outperforms those
algorithms. Finally, they argue that the CNN approach is also
scalable to large transportation networks.

IV. DYNAMIC RUNTIME EXPLOITATION OF KNOWLEDGE
SOURCES

Calma et al. [21] provide a perspective on meta-learning
that is more closely related to the field of OC and puts a focus
on how a self-adapting and self-learning system can exploit a
diversity of knowledge sources during runtime. They extend
the Observer/Controller approach from the OC domain [22]
with another higher-level control loop, the meta-learning layer.
In the basic Observer/Controller model, a System under Ob-
servation and Control (SuOC) represents the productive part
of a system which perceives its environment with sensors
and interacts with it with actuators. In the adaptation layer,
an observer analyses the current status of the SuOC and
uses experience and predictions to form a description of the
situation that is then used by the controller to decide which
adaptations are needed to improve the performance of the

SuOC. The meta-learning layer now sits on top of the adap-
tation layer and should serve as a means for the behaviour of
the adaptation layer to self-improve. This layer again consists
of an Observer and a Controller component. The goal of the
Observer component is to gain a broader understanding of
the environmental setting through reflection on the behaviour
of the adaptation layer and external knowledge sources. It
then sends useful information to the controller component,
which controls the adaptation layer based on learned models
of external knowledge sources. It not only has to decide
on how and which source model to query for information,
but also when new information should be gathered from the
knowledge sources. This decision process is guided by a
learning mechanism.

Example knowledge sources the authors describe in their
paper include humans (e. g. domain experts), other similar
productive systems and free and open data, e. g. news broad-
casts or social media. How efficiently these sources can be
queried for information differs: The research field of active
learning deals with how machine learning algorithms can and
should request help from expert humans in order to improve
their performance [23]. The online and self-adapting nature
of OC systems can be problematic as human interaction is
often only sparsely available. Exchanging knowledge between
productive systems can either help those systems achieve their
individual or a common goal. Querying free and open data
can range from accessing information stored in a structured
way in data bases to extracting useful information from large,
unstructured data sources like the internet or social media in
an intelligent way. Furthermore, these knowledge sources can
also be queried and analysed with hybrid methods, combining
sources or acquired results.

The authors also give two potential application scenarios
of their proposed meta-learning concept: Urban traffic man-
agement and industry automation. The former is part of this
paper’s research question and therefore outlined in Section V.

V. PROPOSED FRAMEWORK

In the following section, a general model for traffic control
is described that integrates the concept of deep meta-learning
with the alternative meta-learning perspective described in
Section IV. The model makes use of those two paradigms
at different levels and explains how they could be employed
together for improving an OTC system.

A. Organic Traffic Control Model

The overall model is derived from the meta-learning model
for OC systems described in Section IV and visualised in
Figure 2.

The SuOC is now an intersection based, urban traffic control
system. This approach is taken in the OTC system where traffic
lights are optimised on-line at the intersection level to improve
traffic flow [24]. Neighbouring intersection controllers learn
to form progressive signal systems, coordinating their green
phases. As this organic, distributed approach can only react
to measured local traffic flow, ways to improve the system’s
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Fig. 2. A variant of the extended Observer/Controller model adapted from [21]
for an urban traffic control system. Considered external knowledge sources are
neighbouring traffic systems, large amounts of data about traffic flow stored
in external databases, and social media channels.

behaviour on a broader scale and in special cases have
been proposed. Tomforde et al. [25] extend the model by
the introduction of a regional manager component which is
a higher-level observer/controller layer that aggregates local
knowledge to help with improving coordination on a more
global level. For dealing with congested or blocked roads,
a dynamic route guidance (DRG) system based on the Dis-
tance Vector Routing protocol [26] is applied by [27], [28].
Intersection level routing tables are maintained and updated
with recommended routes to prominent destinations, like train
stations. In a simulated scenario with blocked roads caused
by a traffic incident, DRG shows to be especially beneficial in
the immediate aftermath of the incident where the intersection
controllers have not yet sufficiently adapted their signal plans.

Compared to the approaches above, the method described in
Section IV does not solely rely on data available in the OTC
system, but has access to external knowledge. Specifically
for the use case of traffic control, the meta-learning layer is
tasked with optimising the behaviour of the adaptation layer
by a higher-level understanding of the traffic environment.
In addition to observing the behaviour of the system on
a larger time scale, it learns to dynamically exploit exter-
nal knowledge sources. Relevant sources can be databases
containing information about traffic flow in the area, social
media channels or the traffic control systems of neighbouring
cities. These sources have different associated costs for access,
storage and processing [21]: A traffic flow database containing
observations over a long period of time requires a large

amount of storage space, for example on external servers,
while the exploitation of freely accessible social media streams
is difficult due to their unstructured nature. When dealing
with neighbouring traffic systems, the meta-learning layer is
also tasked with finding effective methods for identifying and
transferring helpful information. Combining these knowledge
sources can also be of help, e. g. detecting large incidents
in neighbouring cities through social media channels could
indicate that a closer cooperation with the traffic control
system of this city might be needed in the immediate future.

B. Traffic Flow Predictor Driven by Deep Meta-Learning

This paper extends the overall model described above by
the introduction of a traffic flow prediction component, placed
in the meta-learning layer. This predictor can be seen as a
source model for the knowledge of predicting network-wide
travelling speeds. A broader and more holistic analysis of the
traffic flow in the whole environment of the OTC system may
be a useful component in guiding the adaptation layer towards
more effective learning behaviour. From the viewpoint of
dynamically exploiting this knowledge source during runtime,
the predictor should also be fast to adapt to new, more specific
tasks with few samples of training data. Possible scenarios
might be to predict the traffic flow in a specific area after an
unpredictable incident has happened, e. g. a car crash that is
now blocking specific roads, or evaluating chosen rerouting
strategies. In this way, the flow predictor could also be used
for the purposes of cooperating with traffic control systems
of neighbouring cities and be dynamically employed when
certain events are detected from analysis of social media, e. g.
protests or large sports events.

To fulfil these properties, the concept of deep meta-learning
could be used in learning and updating this component. The
predictor component jointly trains a concept generator on large
amounts of historic traffic flow data, e. g. found in external
databases or collected over the lifespan of the system, while
a meta-learner learns to train effective prediction models from
tasks of small amounts of specific traffic flow observations
that may arise in extraordinary settings. The general structure
of the component is visualised in Figure 3. In this model, the
concept generator could, for example, be part of one of the two
deep learning systems for traffic flow prediction outlined in
Section III-C while the meta-learner might be replaced by one
described in Section II-C. The meta-learner further does not
act on the raw input of the traffic flow observations, but uses
the feature representations produced by the concept generator.

The usage of deep representations for the traffic flow data
could have two major advantages for the component and the
system as a whole: For one, the task of the meta-learner might
be made easier (see Section III-B), leading to more accurate
prediction models trained on only small data sets. Secondly,
the trained representations can be seen as capturing historical
and conceptual information about the overall traffic flow and
also about specific incidents, acting as a sort of memory
component for the overall system.
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VI. CONCLUSION AND FUTURE WORK

This paper gave a short overview of the broad field of meta-
learning and further inspected two different approaches in the
field. One is concerned with improving deep learning models,
e. g. for performing difficult few-shot learning tasks, and the
other perspective embeds meta-learning into the framework of
OC systems to exploit external knowledge sources in order
to improve a system’s performance. An idea of how both
approaches could be combined was presented in the form
of a deep, meta-learned traffic predictor integrated into an
urban traffic control system that also makes use of external
knowledge sources, like neighbouring traffic control systems
and social media channels. While general ideas of how the
interaction in the system might take place were outlined in this
paper, a detailed modelling is left to future work. Furthermore,
finding a representation of traffic flow that can be used as
input across multiple tasks in a deep learning setting could be
challenging. Here, the image-based representation mentioned
in Section III-C could serve as a starting point.
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