Force of Quantum Gravity Between Two Bodies

Ravindra Sidramappa Mundase
23/11/2017

Consider two bodies A and B separated by distance r. Assume that body A is large solid sphere having radius R_{s}. Another body B is a point mass. Let M be the mass of Body A and m be the mass of body B. Consider a very thin a shell of A having radius R . Assume that thickness of shell is dR as shown in figure given below. Let σ be volume density of mass of a given shell shaped body A.

Figure : 1

Let dM be the mass of thin shell of A with thickness dR

$$
\mathrm{dM}=4 \pi \mathrm{R}^{2} \sigma \mathrm{dR}
$$

According to Shell theorem of quantum gravity, the quantum gravitational force dF_{q} of the thin shell of A on a point mass body B is given by ${ }^{1}$

$$
\begin{aligned}
\mathrm{dF}_{\mathrm{q}} & =\frac{\mathrm{G}_{\mathrm{s}} \mathrm{dMm}}{\mathrm{r}^{2}}+\mathrm{G}_{\mathrm{q}} \mathrm{dMm}\left(1-\frac{1}{3} \sin ^{2} \emptyset\right) \\
& =\frac{\mathrm{G}_{\mathrm{s}} 4 \pi \mathrm{R}^{2} \sigma m d R}{\mathrm{r}^{2}}+\mathrm{G}_{\mathrm{q}} 4 \pi \mathrm{R}^{2} \sigma m \mathrm{mR}\left(1-\frac{1}{3} \sin ^{2} \emptyset\right)
\end{aligned}
$$

The total quantum gravitational force of sphere A on body B can be calculated by integrating the above equation

$$
\begin{aligned}
& \int_{R=0}^{R=R s} d F_{q}=\int_{R=0}^{R=R s} \frac{G_{s} 4 \pi R^{2} \sigma m d R}{r^{2}}+\int_{R=0}^{R=R s} G_{q} 4 \pi R^{2} \sigma m d R\left(1-\frac{1}{3} \sin ^{2} \emptyset\right) \\
& \int_{R=0}^{R=R s} d F_{q}=\int_{R=0}^{R=R s} \frac{G_{s} 4 \pi R_{0}{ }^{2} \sigma m d R}{r^{2}}+\int_{R=0}^{R=R s} G_{q} 4 \pi R^{2} \sigma m d R-\int_{R=0}^{R=R s} \frac{1}{3} \sin ^{2} \emptyset G_{q} 4 \pi R^{2} \sigma m d R
\end{aligned}
$$

From figure 1 we know that

$$
\begin{gathered}
\tan ^{2} \emptyset=\frac{R^{2}}{r^{2}} \\
\int_{R=0}^{R=R s}{d F_{q}}^{R}=\int_{R=0}^{R=R s} \frac{G_{s} 4 \pi R^{2} \sigma m d R}{r^{2}}+\int_{R=0}^{R=R s} G_{q} 4 \pi R^{2} \sigma m d R-\int_{R=0}^{R=R s} \frac{1}{3}\left(\frac{R^{2}}{r^{2}}\right) G_{q} 4 \pi R^{2} \sigma m d R \\
\int_{R=0}^{R=R s} d_{q}=\int_{R=0}^{R=R s} \frac{G_{s} 4 \pi R^{2} \sigma m d R}{r^{2}}+\int_{R=0}^{R=R s} G_{q} 4 \pi R^{2} \sigma m d R-\int_{R=0}^{R=R s} \frac{1}{3 r^{2}} G_{q} 4 \pi R^{4} \sigma m d R \\
F_{q}=\frac{G_{s} 4 \pi R_{s}^{3} \sigma m}{3 r^{2}}+\frac{G_{q} 4 \pi R_{s}^{3} \sigma m}{3}-\frac{G_{q} 4 \pi \sigma m}{3 r^{2}}\left(\frac{R_{s}^{5}}{5}\right)
\end{gathered}
$$

We know that the mass M of solid sphere A is given by

$$
\mathrm{M}=\text { mass density of volume } \mathrm{x} \text { volume }
$$

$$
\begin{gathered}
M=\sigma \times \frac{4 \pi R_{s}^{3}}{3} \\
=\frac{4 \sigma \pi R^{3}}{3} \\
\mathrm{~F}_{\mathrm{q}}=\frac{\mathrm{G}_{\mathrm{s}} M m}{\mathrm{r}^{2}}+\frac{\mathrm{G}_{\mathrm{q}} M m}{1}-\frac{\mathrm{G}_{\mathrm{q}} M m}{1}\left(\frac{\mathrm{R}^{2}}{5 \mathrm{r}^{2}}\right) \\
\mathrm{F}_{\mathrm{q}}=\frac{\mathrm{G}_{\mathrm{s}} M m}{\mathrm{r}^{2}}+\mathrm{G}_{\mathrm{q}} \mathrm{Mm}\left(1-\frac{\mathrm{R}^{2}}{5 \mathrm{r}^{2}}\right)
\end{gathered}
$$

From figure 1 we know that

$$
\begin{gathered}
\sin ^{2} \emptyset=\frac{\mathrm{R}_{s}{ }^{2}}{\mathrm{r}^{2}} \\
\mathrm{~F}_{\mathrm{q}}=\frac{\mathrm{G}_{\mathrm{s}} \mathrm{Mm}}{\mathrm{r}^{2}}+\mathrm{G}_{\mathrm{q}} \mathrm{Mm}\left(1-\frac{1}{5} \sin ^{2} \emptyset\right)
\end{gathered}
$$

References:

1) Ravindra Sidramappa Mundase: - Theory of Quantum Gravity (zenodo.org, Publication date10/02/2019, DOI: 10.5281/zenodo2561161)
