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I. Abstract 

The Interval Sieve Algorithm is a method for generating a list of real numbers on any closed interval 

of real numbers [ri, rj] where ri < rj. This may seem strange in light of Georg Cantor’s 1891 paper 

wherein he demonstrated a constructive proof that the real numbers are uncountable. Cantor 

developed a method for showing how a particular objective cannot be accomplished; in this case, 

establishing a one to one correspondence between the natural numbers and the real numbers, using 

his diagonal argument.  

What Cantor didn’t show is that there are no ways of demonstrating a one to one correspondence 

between the natural numbers and the real numbers. This is important because if one can 

demonstrate a million ways that something cannot be done, it is only necessary to develop one way 

that shows how it can be done to trump the million ways that show it cannot. 

The interval sieve algorithm partitions a closed interval of real numbers [ri, rj] where ri < rj to create a 

complete list, L, of numbers in the interval. We will prove that the list L is complete, and lastly 

derive the bijective function  f : ℕ ↔ [r1, r2]. 

II. Definitions 

1. The lower bound of an interval is the leftmost member of the interval. In the interval [r1, r2], r1 is 

the lower bound of the interval. 

2. The upper bound of an interval is the rightmost member of the interval. In the interval [r1, r2], r2 

is the upper bound of the interval. 

3. Given the set, S = {1, 2, 3}. We define a closed interval of the set as IS = [1, 3] where both 

upper and lower bounds are included in the interval.  

4. Given the set, S = {1, 2, 3}. We define an open interval of the set as IS = (1, 3) where the upper 

and lower bounds are excluded from the interval. 

5. Given the set, S = {1, 2, 3}. We define a lower open interval of the set as IS = (1, 3] where the 

lower bound is excluded from the interval and the upper bound is included in the interval. 

6. Given the set, S = {1, 2, 3}. We define an upper open interval of the set as IS = [1, 2) where the 

lower bound is included in the interval and the upper bound is excluded from the interval. 

7. A conjoined interval pair is a pair of intervals where the upper bound of one and the lower 

bound of the other are the same member. [ri, [rk,] rj] is an example of a conjoined interval pair where 

rk is both the upper bound of [ri, rk], the lower bound of [rk, rj] and ri < rk < rj. 



8. A relative bound is the member that is common to both intervals in a conjoined interval pair. In 

the conjoined interval pair [r1, [r3,] r2], r3 is the relative bound in both intervals [r1, r3] and [r3, r2].  

9. An interval of a set may be partitioned by creating a conjoined interval pair per definition 7 and 

then splitting the conjoined interval pair into sub-intervals with the relative bound being the upper 

bound of one sub-interval and the lower bound of the other sub-interval. 

Example:  

S = {1, 2, 3} 

IS = [1, 3]    (IS         the interval I on set S) 

Partition IS as follows - 

IS = [1, 3] 

    = [1, [2], 3] 

    = [1, 2], [2, 3] 

10. When no sub-intervals can be further subdivided then the interval is called fully partitioned. 

11. The immediate predecessor of a number λ is a number β such that there exists no number δ 

where β < δ < λ. 

12. The immediate successor of a number λ is a number β such that there exists no number δ 

where λ < δ < β. 

13. For any 2 real numbers λ and β in [r1, r2], we can always find another real number, δ, such that if 

λ > β then β < δ < λ and if λ < β  then λ < δ < β. Therefore from definitions 11 and 12 we know 

that there are no immediate predecessors or successors of any of the elements of [r1, r2]; that is,  

[r1, r2] is a continuum.  

III. The Interval Sieve Algorithm 

 

 

 

 

 

 

 

 

 

 



Procedure: 

0. We begin the procedure given the interval [r1, r2] where r1 < r2 and r1, r2 are real numbers and the 

list L = (r1, r2). 

1. If there are intervals that can be sub-divided next step else stop.. 

2. Sub-divide each interval [ri, rj] by selecting a number rk such that ri < rk < rj to get a conjoined 
interval pair [ri, [rk,] rj] 

3. Insert the relative bound number, rk,  into the list L to get L = (ri, rk, rj). 

4. Form new sub-intervals [ri, rk], [rk, rj]. 

4. Return to step 1. 

IV. Partitioning Intervals Using the Algorithm 

We will use the partitioning of a set interval according to the algorithm as a method for creating a 

list of the elements of the interval. Partitioning allows us to construct a list whereby all the elements 

of the interval will be included in the list. 

Below are two examples of partitioning set intervals. 

Example 1 - 

Let: 

S = {1, 2, 3, 4, 5}  

IS = [1, 5] 

First we note that in defining the interval [1, 5] we have specified the first two elements of our list L. 

That is L = (1, 5). To continue populating L we will partition [1, 5], adding each relative bound to L 

as it is created, and continue the process until no intervals are left that can be partitioned. 

IS = [1, 5]     L = (1, 5) 

    = [1, [3], 5]     L = (1, 3, 5) 

    = [1, 3], [3, 5] 

    = [1, [2], 3], [3, [4], 5]   L = (1, 2, 3, 4, 5) 

    = [1, 2], [2, 3], [3, 4], [4, 5] 

Since no interval in IS can be further subdivided the interval is fully partitioned and L is complete. 

Example 2 - 

Let: 

S = {1, 2, 3, … ω}  where ω is the first infinite ordinal number. 



IS = [1, ω) 

Partition the interval [1, ω) to create a list L of natural numbers. 

IS = [1, ω)     L = (1) 

    = [1, [2], ω)     L = (1, 2) 

    = [1, 2], [2, ω) 

    = [1, 2], [2, [3], ω)     L = (1, 2, 3) 

    = [1, 2], [2, 3], [3, ω) 

                  …                                                          … 

Taking the procedure to its limit will create a list of all the natural numbers,  

L = (1, 2, 3, …). Since IS is defined as an upper open interval, ω is not included in L. 

V. Creating L over [r1, r2] where r1, r2 are Real Numbers 

Let: 

S = {ℝ} 

IS = [r1, r2], r1 < r2 

Partition IS to create the list L of real numbers between r1 and r2. 

IS = [r1, r2]       L = (r1, r2) 

    = [r1, [r3], r2]       L = (r1, r3, r2) 

    = [r1, r3], [r3, r2] 

    =[r1, [r4], r3], [r3, [r5], r2]     L = (r1, r4, r3, r5, r2) 

    = [r1, r4], [r4, r3], [r3, r5], [r5, r2] 

    = [r1, [r6], r4], [r4, [r7], r3], [r3, [r8], r5], [r5, [r9], r2]  L = (r1, r6, r4, r7, r3, r8, r5, r9, r2) 

    = [r1, r6], [r6, r4], [r4, r7], [r7, r3], [r3, r8], [r8, r5], [r5, r9], [r9, r2] 

                      …                                                            … 

At the limit of the process L will appear as follows: L = (r1,…r6,…r4,…r7,…r3,…r8,…r5,…r9,…r2). 

By definition 13 there are no immediate predecessors or successors in the set of real numbers. It 

follows that the partitioning of sub-intervals of real numbers can go on indefinitely. Also, except for 

r1 and r2, every number in the original interval must, at some point during the process, become a 

relative bound and only then added to L. And because no number will be a relative bound more 

than once, there will be no duplicates in L. 

As can be seen in the examples above, each relative bound becomes the lower bound of one sub-

interval and the upper bound of another sub-interval. This means that every number in the each 



sub-interval will be approached from both below and above its value and the interval lengths will 

become infinitesimally small.  

Example 3, using numbers: 

Let: 

S∞ = {ℝ} 

IS = [1, 4] 

Partition IS to create the list L of real numbers between 1 and 4. 

IS = [1, 4]       L = (1, 4) 

    = [1, [π], 4]       L = (1, π, 4) 

    = [1, π], [π, 4] 

    = [1, [e], π], [π, [3.2], 4]     L = (1, e, π, 3.2, 4) 

    = [1, e], [e, π], [π, 3.2], [3.2, 4] 

    = [1, [√2], e], [e, [3], π], [π, [3.15], 3.2], [3.2, [3.3], 4]  L = (1, √2, e, 3, π, 3.15, 3.2, 3.3, 4) 

    = [1, √2], [√2, e], [e, 3], [3, π], [π, 3.15], [3.15, 3.2], [3.2, 3.3], [3.3, 4] 

                                                       … 

At the limit of the process L = (1,…√2,…e,…3,…π,…3.15,…3.2,…3.3,…4). 

VI. Proving the List L is Complete 
 
The question remains as to whether or not the list L will contain all real numbers in [r1, r2]. We will 
prove that: All the real numbers in [r1, r2] are contained in the list L.  

Proof: Assume that there exists a number X such that r1 < X < r2 and that X ∉ L. 

1. Since X is an element of [r1, r2] then it must be an element of a sub-interval [ri, rj]  

contained in [r1, r2]. 

2. If  X is an element of a sub-interval of [r1, r2] then at some finite point before the limit it will 

become a relative bound of a conjoined interval pair [ri, [X], rj]. 

The following argument justifies statement 2: 

Let  

S = {ℝ} 

IS = [r1, r2], r1 < r2 

r1 < X < r2 

Partition IS at r1 < r3 < X 

[r1, … [r3], … X, … r2] 

Form new intervals 

[r1, r3], [r3, … X, … r2]  



We know that |r3 – r2| < |r1 – r2|therefore the interval [r3, … X, … r2] starts to narrow in on X. 

Continue partitioning (we will ignore [r1, r3] since we’re only interested in the interval containing X). 

Partition [r3, … X, … r2] at r3 < r4, r4 > X 

[r3, … X, … [r4], … r2] 

Form new intervals 

[r3, … X, … r4], [r4, r2] 

Now, |r3 – r4| < | r3 – r2| and we continue to close in on X. 

Partition [r3, … X, … r4] at r3 < r5 < X 

[r3, … [r5], … X, … r4] 

Form new intervals 

[r3, r5], [r5, … X, … r4] 

Now,  |r5 – r4| < | r3 – r4| and we draw still closer to X. 

As the process continues, |ri – rj| of the interval containing X gets closer and closer to 0 and before 

the transition to the limit, X must be identified as a relative bound, that is  

3. Once X becomes a relative bound of the conjoined interval pair, [ri, [X], rj] it will be inserted into 

L. 

4. Since at the limit of the process, X must be an element of L then the original assertion that X ∉ L 

leads to a contradiction and must be false. 

5. We can then assert that at the limit, L will be complete and this ends the proof. 

VII. Derivation of  f : ℕ ↔ [r1, r2] 

We have constructed the list L from [r1, r2] and have shown that the list is complete, containing all 

the real numbers in [r1, r2].  

We will now demonstrate that there exists a bijective function from ℕ to [r1, r2], f : ℕ ↔ [r1, r2]. 

We have used the Interval Sieve Algorithm to create: L = (r1,…r6,…r4,…r7,…r3,…r8,…r5,…r9,…r2) 

and have proved L is complete. It is readily apparent that for every r in the list there is an associated 

natural number subscript. Since L is complete, containing all numbers in [r1, r2] and each number in 

[r1, r2] is associated with a single unique natural number we can assert that f : ℕ ↔ [r1, r2] exists. 

The existence of  f : ℕ ↔ [r1, r2] confirms a one to one correspondence between the natural numbers 

and any closed interval of real numbers. 

VIII. Final Thoughts 

1. The upper and lower bounds of [r1, r2] are limits that are approached from above and below 

respectively. Since they have neither direct successors or direct predecessors they can be reached 

only at the limit. 

2. All other numbers generated by repeatedly partitioning [r1, r2] become limits in their own right and 

are approached both from above and below. Since they have neither direct successors or direct 

predecessors they can be reached only at the limit. 



3. The partitioning of [r1, r2] is akin to finding the area under a curve of a graphed continuous 

function. It’s not an exact analog of integration; but the process of creating sub-intervals within  

[r1, r2] such that |r1 – r2|becomes infinitesimally small bears a resemblance to creating infinitesimally 

narrow rectangles and summing their areas in order to determine the area under the curve. 

4. The fact that we have shown the existence of f : ℕ ↔ [r1, r2] implies that Cantor’s continuum 

hypothesis is true for closed intervals of real numbers. Interestingly, it’s not that there are no infinite 

sets with cardinality between      and     , rather ℕ and [r1, r2] turn out to be the same size. 

 


