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ABSTRACT

Causality is the fundamental principle in the Einstein’s theory of general relativ-
ity. We consider the theory of broken causality by the assumptions of stochastic
nature to causal process. We see that the causality breaking of stochastic prop-
erty brings the general relativity of broken causality, and this is equivalent to the
theory of quantum gravity. We investigate some properties of quantum gravity
in relation to the holographic principle. We calculate Shannon’s entropy. In
those investigations, we see the appearance of holographic principle at the first
order in expansion of perturbation theory. The result indicates that the theory
of stochastic causality, that we established, is the non-perturbative theory of
quantum gravity.



1 Introduction

Physics of 20th century has started with two greatest works: quantum theory

and general theory of relativity. Einstein established the theory of general rel-

ativity as the extension of Newtonian mechanics, which is described as curved

space-time.

The 21st century, we are living, is called as an era of information. Invention

of such a technology as AI is changing the circumstances of our life. Inspired by

the work of deep learning [1], the interaction between theoretical physicists and

the researchers of machine learning or information theory seems to be often [2, 3].

The theoretical physical works inspired by machine learning does exist [4, 5, 6, 7].

Causality is the fundamental principle in the Einstein’s theory of general

relativity. In recent fashion of data science, they are considering the Riemannian

manifold of data space. Therefore, what they are treating is merely data, and

there is no reason to follow physical causality. Thus, we consider the theory

of broken physical causality by the assumptions of stochastic nature to causal

process. We will see that the causality breaking of stochastic property brings

the general relativity of broken causality, and this is equivalent to the theory of

quantum gravity. We investigate some properties in relation to the holographic

principle. We see that holographic principle appears at the first order expansion

of perturbation theory. This means that the theory of stochastic causality is

the non-perturbative theory of quantum gravity.

This paper is organized as follows. In section 2, we review holographic

principle and entropy of black hole. Section 3 is devoted for the description of

stochastic causality and quantization of gravity. Section 4 is discussions.

2 Holographic Principle and Entropy of Black
Hole

The holographic principle is a principle of string theory and quantum gravity.

That states that the theory of bulk space can be inferred from a lower dimen-

sional boundary theory. It was proposed first by ’t Hooft [8]. Susskind gave an

interpretation from string theory [9]. Maldacena proposed the prime theory of

holographic principle called as the AdS/CFT correspondence [10].

Holographic principle was inspired by black hole thermodynamics. Black
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hole thermodynamics states that maximal entropy of black hole is proportional

to the area at event horizon. AdS/CFT correspondence gives the interpretation

to black hole entropy as a description of a microscopic states at the boundary.

This relationship has been derived by calculating the central charge c of Virasoro

algebra of boundary CFT, and saw the correspondence between area law of

black hole entropy and the entropy calculated from the degree of freedom at the

boundary using Cardy’s formula [11],

S = 2π

√
c∆

6
, (1)

here, ∆ is the eigenvalue of L0. Then, it was applied to de Sitter/CFT corre-

spondence [12], and entanglement entropy [13],

S =
c

3
log

(
β

πa
sinh

(
πl

β

))
, (2)

here, l is the length of subsystem, a is the lattice spacing, and β is related with

ultra violet cut off.

The bulk/boundary correspondence is applied in a wide range of fields in-

cluding condensed matter physics [14] not only in string theory. For the review

of AdS/CFT, see ref. [15, 16].

3 Stochastic Causality and Quantization of Grav-
ity

3.1 Stochastic Causality

In the theory of general relativity, they consider such process on light cone as

dx = cdt, (3)

here, c is the speed of light, and describe world line of the following form,

ds2 = −c2dt2 + dx2. (4)

We extend this process to include stochastic process,

dx = cdt+ σdZ. (5)

Here, dZ is a standard Brownian motion and σ is standard deviation. If we

write this equation in a world line form, the world line is represented as,
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ds2 = −c2dt2 + dx2 − σ2dZ2. (6)

Here, σ can be interpreted as a parameter of quantum fluctuation, that repre-

sents deviation around classical space-time. In another word, we are assuming

the last term in (6) is a perturbation to classical space-time.

3.2 Minkowski Space

Eq. (6) represents the fluctuation around the (n + 1)-dimensional Minkowski

space. We are considering Brownian motion on space-time, therefore the prob-

ability density function takes the following normal distribution form. It is given

by,

fx(x0; c, σ, t) =

(
1

2πσ2t

)n/2

exp

{
− (x− x0)

2

2σ2t

}
. (7)

The Shannon entropy is obtained as follows.

H = −
∫ ∞

−∞

(
1

2πσ2t

)n/2

e−

∑n

i=1
(xi−xi0)

2

2σ2t ln

{(
1

2πσ2t

)n/2

e−

∑n

i=1
(xi−xi0)

2

2σ2t

}
dx

=
n

2
ln(2πσ2t) +

(
1

2

)n

(2σ2t)(n−1) (8)

By expanding the order of σ2t,

H =
n

2
(ln(2π)− 1) + n

√
σ2t+ · · · (for n ≥ 2). (9)

The first term is a classical entropy and the second term is the contribution

in the first order of perturbative expansion. The entropy will be indifferent to

coordinate transformation. Therefore, the entropy of de Sitter space will be the

same. The interpretation of Shannon entropy is entropy of space-time fluctuat-

ing to external space. The form of eq. (9) reminds us Cardy’s formula [11] and

the variance is related with the central charge of boundary CFT, but we will

consider this relationship in later section.

3.3 Anti-de Sitter Space

If we use the convention of eq. (6), incorporating 3-dimensional anti-de Sitter

space with stochastic fluctuation gives world line of the following form,

ds2 =
−dt2 + dy2 + dx2

y2
− σ2dZ2. (10)
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As in the same way of the last section, we consider a probability density function.

Probability density function is obtained by solving the diffusion equation on

hyperbolic space in 3-dimension [17],

f(ρ, ρ0, ;σ, t) =
1

2π
√
4πσ2t

e−σ2t sinh( ρ0ρ
2σ2t )

sinh ρ0 sinh ρ
exp

(
−ρ2 + ρ20

4σ2t

)
. (11)

Here, ρ is the coordinate in radial direction (radial rapidity in [17]), and ρ0 is

the position at which boundary condition is given. The Shannon entropy is

H = −
∫ ∞

0

f(ρ, ρ0, ;σ, t) ln f(ρ, ρ0, ;σ, t)dρ. (12)

By expanding the order of σ2t,

H ≃ 1

4π

sinh ρ0ρ
2σ2t

ρ0ρ

(
3

2
+ ln(2π) +

1

2
ln(4π)− ln

(
sinh ρ0ρ

2σ2t

ρ0ρ

))
+

1

4π

sinh ρ0ρ
2σ2t

ρ0ρ

(
− ln(2π)− 1

2
ln(4π) + ln

sinh ρ0ρ
2σ2t

ρ0ρ

)
σ2t

+ · · · (13)

Here, we are assuming that σ2t is very small, σ2t ∼ ρ0ρ, and ρ is finite. Also,

we assumed ρ0 → 0. σ2t is playing a role of cutoff of quantum fluctuation.

By scaling of σ2 → aσ2, the entropy (13) is renormalizable at the first order

of perturbative expansion, i.e., constant terms inside parenthesis in the second

line of eq. (13) vanish. In this case, by setting a = (16π3)−1, constant terms

vanish.

4 Discussions

4.1 Relation to Boundary CFT

Eqs. (9) and (13) invoke the relationship between variance σ2 and central charge.

If there’s such a relationship, Cardy’s formula [11, 18] in de Sitter/CFT corre-

spondence [12] and in entanglement entropy [13] holds at the first order of

perturbative expansion. This means that black hole thermodynamics and the

holographic principle are phenomena of the first order of perturbative expansion

of quantum gravity.

However, what we did is the quantization with stochastic causality, there is

no reasoning to CFT, therefore the relationship between variance and central
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charge is obscure. In SLE/CFT correspondence [19], the variance is related

with the central charge of boundary CFT, but it does not satisfies the standard

connection between SLE parameter and central charge.

4.2 Relation to Noncommutative Geometry

Non-commutative geometry has gained attraction in the context of string the-

ory [20]. In ref. [21], the variance σ2 of eq. (5) is related with Θij of commutation

relation of position,

[xi, xj ] = Θij . (14)

In ref. [22], it is related as,

[x, dx] = Jσ2. (15)

Here, J is time shift operator. So, our formulation will be related to non-

commutativity of space.

4.3 Comments on Dimensionality

In former sections, we investigated with the standard Brownian motion. The

dimension of standard Brownian motion is dZ2 = ∆t, and the dimension of σ2 is

t−1 to let σ2t be dimensionless. Therefore, the last terms in eq. (6) and (10) are

dimensionless. This means that the quantum fluctuation, currently considering,

is dimensionless effect.

One of the future study is to introduce the fractional Brownian motion. By

Ito’s work [23], the integral of Brownian motion was related with the difference

of time. The fractional Brownian motion is an extension of this relationship.
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