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Abstract—Complexity in technical development increases
rapidly. Regular system are no longer able to fulfill all the
requirements. Organic computing systems are inspired by how
complexity is mastered in nature. This leads to a fundamental
change in software engineering for complex systems. Based on
machine learning techniques, a system develops self*-properties
which allows it to make decisions at runtime and to operate with
nearly no human interaction. Testing is a part of the software
engineering process to ensure the functionality and the quality
of a system. But when using self-organizing, adaptive systems
traditional testing approaches reach their limits. Therefore, new
methods for testing such systems have to be developed. There
exist already a lot of different testing approaches. Most of them
developed within a research group. Nevertheless, there is still
a need for further discussion and action on this topic. In this
paper the challenges for testing self-organizing, adaptive systems
are specified. Three different testing approaches are reviewed
in detail. Due to the ongoing fourth industrial revolution it is
discussed which of these approaches would fit best for testing
industrial manufacturing robots.

Index Terms—Organic Computing, Self-organizing systems,
Adaptive systems, Software Engineering, Software Testing, In-
dustry 4.0

I. INTRODUCTION

Over time an increasing complexity in different aspects
of technical development could be observed. This can be
explained by Glass’s Law. Glass states that if the functionality
and the requirements increase by 25% the complexity is
increased by 100% [1]. To master this complexity nature can
be taken into account. Therefore, Organic Computing (OC)
was proposed in [2].

OC systems consist of autonomous sub-systems and a
variety of control mechanisms (CMs). A sub-system is also
called system under observation and control (SuOC) and it
undertakes the productive task of the system. SuOCs possess
sensors and actuators which enable them to interact with
each other and their environment. CMs are split into an
observer and a controller which influence the SuOCs. The
architecture of such an autonomous sub-system with control
mechanism can be seen in Fig. 1. For a deeper insight into the
observer/controller design paradigm for OC systems see [3].

Fig. 1. A part of a OC system which displays the system architecture with
SuOC and CM.
Source: [4, p. 174]

Based on local knowledge1, OC systems have the ability
to modify their structure autonomously in response to certain
events during runtime, e.g. changes in the environment. They
are able to organize and adapt2 themselves autonomously to
previously unknown situations. OC systems gain experience
over time and learn which behavior fits best in a certain
situation. Because of that, OC systems are more flexible than
regular systems. This flexibility also leads to a more robust
system against disturbances which change their system state.
”These systems are able to survive in a world of change.”
[4, p. 6] Such a behavior of systems is possible because
OC systems often build upon machine learning models. Tom
Mitchell defined ”learning” for computer systems as follows:

”A computer program is said to learn from experi-
ence E with respect to some class of tasks T and
performance measure P, if its performance at tasks
in T, as measured by P, improves with experience
E.” [5]

The attributes wich can be evolved within an OC system are
typically referred to as so-called self*-properties. The * is a
placeholder for any property that evolves in the system itself.
Such porperties can be self-organizing, self-adaption, self-

1External control influences are limited to a minimum. There is nearly no
human interaction at runtime.

2It is called self-adaption if a system reconfigures itself without (or with
only minimal) human interaction. [4]



healing, self-protection or self-optimisation. More attributes
are listed and explained in detail in [6].

In [4] it is stated that OC causes a paradigm shift for
complex systems. ”[OC] means to move traditional design-
time decisions into runtime, and from the system engineer to
the systems themselves” [4, p. 6,7]. Because of that, testing
self-organizing, adaptive systems (SOAS) has also to be moved
from design-time into runtime.

Many initiatives deal with similar objectives and approaches
like OC to achieve the goal of mastering the increasing
complexity. Examples are Autonomic Computing (AC) [7],
which started evolving parallel to OC, or ProActive Computing
[8], which can be seen as a precursor for both AC and OC.

The remainder of this paper is structured as follows: In
Section II related work is discussed. Section III lists the
main-challenges for testing self-organizing systems. Current
approaches for testing such systems are provided in Section
IV. Section V adresses the case ’Smart Factory’ and the
application of the introduced testing approaches is discussed.
The paper is concluded in Section VI.

II. RELATED WORK

SOAS are applied in a lot of fields, and the usage of those
systems is increasing fast nowadays. These application areas
include more and more security-critical and safety-critical
fields like the organic control of traffic lights [9] or the
usage of so-called smart grits. Thus, the necessity of testing
such systems draws more and more attention. OC started to
establish itself in 2003 and a lot of people are conducting
research on testing SOAS since then.

In 2005 Schumann and Visser discussed the risks of using
autonomous systems in their paper with the title ”Autonomy
Software: V& V Challenges and Characteristics” [10]. The
paper is based on the result of a survey at the National
Aeronautics and Space Administration (NASA). Based on that,
they discussed different techniques for validating and verifying
SOAS and how to apply them.

Nguyen et al. provided a paper with the title ”Testing
in Multi-Agent Systems” [11]. Different approaches were
reviewed. They were not only listed but also classified in two
different dimensions. The first dimension refers to one of the
following testing levels: unit testing, agent testing, integration
testing, system testing, acceptance testing. These testing levels
were already introduced by Nguyen in his doctoral thesis
[12]. The second dimension refers to the testing techniques
(active or passive testing). For each class, some state-of-the-
art approaches were reviewed. Additionally, they were tagged
in term of their maturity level (usable, in progress, concept).

In 2016 Helle, Schamai and Strobel wrote the paper ”Testing
of autonomous systems - challenges and current state-of-
the-art” [13]. They have made an effort to summarize the
challenges in testing SOAS, and listed some of the different
testing approaches developed until then.

III. CHALLENGES FOR TESTING
SELF-ORGANIZING SYSTEMS

In this section it is discussed why it is important to test
SOAS and what the challenges are in testing those systems
compared to traditional systems.

Verification and validation (V&V) of software is important
to ensure that the software fulfills its intended purpose and to
ensure a high quality of the software. This is usually done by
testing the software. In traditional software development this
is realized by generating test cases. ”A test case is a triplet
[I,S,O], where ’I’ is data input to the system, ’S’ is the state of
the system at which the data is entered and ’O’ is the expected
output of the system.” [14, p.220] This means that for every
given input ’I’ we have a fixed output ’O’, and one can ensure
that the developed software delivers the according output.

Such a traditional V&V approach can not be used for SOAS.
Due to their self*-properties one can not predict at design-
time how the systems agents will react to a change in the
environment at runtime. For that reason, it is important to also
transfer the testing of SOAS from design-time to runtime.

Furthermore, not only the overall SOAS should be tested,
but all its sub-systems as well. The SOAS may remain in an
acceptable state, even if one or more of its sub-systems are
faulty.

Based on a survey at NASA, for which the results are pre-
sented in [10], three main issues have emerged which reason
the greater complexity in testing SOAS. Those issues have
been taken up in [13] as the terms ”complex environment”,
”complex software” and ”non-deterministic behaviour”:

• Complex environment: ”[T]he larger size and higher
complexity of the valid input space [...].” [10] This makes
traditional testing impossible. Because of the changing
environment, the input might be partially or completely
unknown. There is no fixed input for a possible test case
as mentioned above.

• Complex software: ”[T]he complexity of the program
logic [...] required to derive the answer in the autonomous
system [...].” [10] SOAS are often based on machine
learning algorithms which give the agents their self*-
properties.

• Non-deterministic behavior: ”[T]he size and complexity
of the domain model3 and description of the environ-
ment.” [10] Due to the self*-properties, the knowledge
of SOAS may change over time. Given the same input,
it might react differently. There is no fixed output for
traditional test case generation as mentioned above.

3The self-knowledge of a SOAS about its state, its goal, its environment
and much more at the beginning of its lifespan is often called a domain model.



IV. APPROACHES FOR TESTING
SELF-ORGANIZING SYSTEMS

There are many research projects which deal with the chal-
lenges of testing SOAS and thus a lot of different approaches
for testing such systems exist. In this section the following
three approaches are reviewed in more detail:

• Remote testing module
• The corridor enforcing infrastructure
• Black box validation

A. REMOTE TESTING MODULE

In [15] self-analysis is introduced as a new self*-property
for self-organizing systems. This property is realized by per-
forming self-tests. Therefore, each agent of a self-organizing
system possesses an integrated Remote Testing Module
(RTM). ”The task of an RTM is to test other agents in the
system.” [15] To fulfill this task, it either has access to the
sensors and actuators of the agent it is integrated in, or it
can possess its own sensors and actuators if necessary. The
following two types of tests can be performed:

• Passive tests: The information an agent collects and
distributes via its sensors and actuators are evaluated by
the RTM.

• Active tests: Test events are being generated by the RTM.
Then, the reaction of an agent is evaluated.

In both cases feedback is provided by the RTM which enables
the tested agent to immediately adapt its behavior.

To exclude the possibility of a malfunctioning RTM, more
RTMs can cooperate. If a single RTM identifies a faulty agent
one can not be sure that indeed the agent is faulty, or if a failure
has occured within the RTM itself. Therefore more RTMs can
test the same agent. Only if a predefined number (greater than
one) of RTMs confirm a malfunction of the same agent, one
can assume that the agent is actually faulty.

For further reading see [15]. There are also two use cases
included.

B. THE CORRIDOR ENFORCING INFRASTRUCTURE

Another approach for testing of SOAS is shown in [16].
The corridor enforcing infrastructure (CEI) is introduced for
enabling tests at runtime. ”The CEI is an architectural pattern
for SOAS, based on decentralized feedbackloops used to
monitor and control single agents or small groups of agents
in order to enforce that all system requirements are fulfilled
at all times.” [16] It ensures that the agents of SOAS detect
changes in the environment and adapt themselves accordingly
to fulfill their goals.

This approach is based on the corridor of correct behavior
(CCB). Such a CCB is illustrated in Fig. 2. The invariant
(INV) specifies and describes the acceptable states of a system
which form the CCB. It seperates the correct from the incorrect

behavior. Examples for acceptable states are indicated as S0

- S3 in Fig. 2. Once the CCB is violated the system should
be able to reorganize itself to go back into a safe state. The
red flash in Fig. 2 indicates the violation of the CCB. The
successfull reorganization process is marked with a green tick
in Fig. 2. If the system is not able to reorganize itself properly,
the system will remain in an unacceptable state and an error
would occur. This is marked with a red cross in Fig. 2. A CCB
is usually generated automatically or semi-automatically from
the system requirements. For further readings about the CCB
and the so called restore invariant approach (RIA) see [17].

Fig. 2. State-based corridor of correct behavior.
Source: Figure adapted from Fig.1 in [16]

According to [16] it is sufficient to only test the CEI. An
error-free CEI guarantees that all sub-systems of SOAS are in
an acceptable state. This leads to an enormous reduction of
test effort.

To test the CEI, automatically generated environmental
variation scenarios (EVS) are used. The EVS is built from
sequences which result in a violation of the CCB. The test
scenarios orient themselves on three traditional test processes:

• Unit testing: ”In unit testing, the units/modules of a
system are tested in isolation.” [14]

• Integration testing: In integration testing, the interac-
tions between the individual units/modules are tested.
Those units may interact with each other using simple
message/paramter passing. ”Testing is done to check that
there are no errors in the paramter passing.” [14]

• System testing: ”System testing is the testing of the
whole system based on its specification.” [14]

Thus, this approach covers all stages of traditional software
testing. Based on those test processes. the EVS are structured
as follows:

• First the EVS are built on single agent situations. The
functionality of single agents is validated by testing its
components (sensors and actuators). An agent should
detect changes in the environment and react accordingly
to further reach its goals. This can be done by simulating
the input for mock-up agents without setting up initial
states.

• The EVS are extended to be able to test the interaction
mechanisms between two or more agents. This interac-
tion can no longer be simulated because it is hard to



predict which agents are going to communicate and what
exactly they are communicating. The mock-up agents are
partially replaced by real, interacting agents.

• For testing a fully integrated system the EVS are further
extended. All mock-up agents are replaced by real agents.
Several test cases are combined and executed in sequence.

This approach ensures that the CEI detects violations of the
CCB and reacts accordingly to lead the system back into an
acceptable state within the CCB.

For further reading see [16].

C. BLACK BOX VALIDATION

In [18] an adaptive simulation model is used to validate
SOAS. Therefore, black box tests are performed on acceptance
level. Acceptance testing is a type of system testing (cf.
Section IV-B, [14, p. 242]). The internal structure of a system
to be tested via black box testing is not accessible while
testing. It is consideres as a ”black box” where one can not
see into. To validate the system input data is given to the black
box. If the output fulfills the system requirements the system
has been validated successfully [14, p. 220].

To deal with the challenges of testing SOAS (cf. Section III)
a model is provided which simulates all adaptive-related pro-
cesses. To ensure correct adaption processes, different aspects
have to be taken into account. It has to be simulated when
exactly a system has to initialize an adaption process and how
exactly this self-adaption has to be executed. Further, it has to
be simulated in what state the system should be after adaption.
To meet these requirements, the overall simulation model is
divided into collaborating models. A graphical representation
of the provided simulation model can be seen in Fig. 3.

Fig. 3. Graphical representation of the simulation model with a black box.
Source: [18]

”Parts of [the] model are enriched with assertions on the
System Under Tests (SUT) interface in order to define how a
simulation state has to be concretely validated.” [18]

The competences of the single components are partitioned
as follows:

• Structural Simulation Model: This model simulates the
current state of the real system. It reflects environmental
settings and it manages ”several assumptions on the real
system” [18] to be able to ”work with more detailed state-
defining information” [18].

• System Process Model: Within this model the systems
behavior based on its current state is simulated. It is
defined how requests and feedback should be processed.

• Environment Configuration Variability Model: The
Environment Configuration Variability Model contains all
environmental states. This way all possible initial states
can be simulated and validated. Every valid environment
state should be covered by this model. To deal with
the enormous amount of possible states, classification
can be used [18]. The Cambridge Dictionary4 defines
classification as ”the act or process of dividing things
into groups according to their type”. The environment
states ”[...] are split into equivalence classes and only
representatives are tested.” [18] It is assumed that each
member of a class produces the same output. This way
it is sufficient to test only representatives.

• Environment Reconfiguration Model: This component
of the simulation model defines all changes in the envi-
ronment which trigger the system to reconfigure itself.

• Adaption Model: This model simulates in what way the
system should adapt itself to remain in an acceptable
state. Environmental changes as well as reactions to
internal feedback are able to influence this model.

For further reading see [18].

V. CASE STUDY: INDUSTRIAL MANUFACTURING
ROBOTS

In this section the term ’Industry 4.0’ is outlined. Further-
more, it is discussed which of the above introduced testing
approaches would be best for testing industrial manufacturing
robots.

A. Industry 4.0

Paradigm shifts can also be observed in the industry. They
are better known as ”industrial revolutions”. Currently we
are going through the fourth industrial revolution, which is
commonly known under the term ”Industry 4.0”. The evolution
and improvement in the manufacturing industry is going to
lead to so-called smart factories [19]. Manufacturing robots
can be improved by using SOAS.

The economical rise in the 1950s involved a rapid techni-
cal development. This technical progress led from automatic
machine tools up to the automation of whole production
processes. An increasing automation in production was already
achieved within the third industrial revolution (1969). Human
interaction could be minimized using robots. Industrial robots
are self-moving automatons which are programmed to fulfill

4See http://dictionary.cambridge.org/ (last access 2019/15/01).



certain workflows. Robots increase productivity and perform
dangerous, hard and unpleasant work, so that no human has
to do them.

Since then, a lot of progress was made in the field of
computing systems. This progress and the progressive dig-
italization are significant for the ongoing industrial revolu-
tion. Equipped with sensors, actuators and self*-properties
the robots are able to communicate with each other and to
react autonomously to their environment. Human interaction
is decreasing towards zero.

There are many factors which justify the usage of SOAS in
the field of industrial/manufacturing robots. In [4] three major
reasons are listed for the increasing usage of OC systems in
industrial robots. These reasons are:

• Energy efficiency: The power consumption of factories
should be minimized not only to reduce costs, but also
to be more environmentally friendly.

• Reliability: Physical damage and total system failures
can be decreased by increasing the reliability of robots.

• Utility: Increasing the skills of a robot, e.g. its accuracy
or its agility.

All reasons aim at improving the manufacturing. Industry 4.0
covers multiple needs. Through their improved equipment the
robots are able to collect a lot more data than they were able
to until now. By analyzing this data the overall factory can be
improved. Costs can be decreased and a better, constant quality
can be ensured. Not only the costs for energy consumption can
be decreased, but also the costs for maintenance for example.
One reason for a higher quality is that the influence of the
human factor is decreased. Robots are able to perform the
same workflow with a high repetition accuracy over a long
period of time without any quality loss.

B. Testing industrial robots

Testing industrial robots is of particular significance. Stan-
dards for safety and security have also to be applied to such
machines. Especially if humans collaborate with manufactur-
ing robots in a shared workplace. To make sure a robot does
not cause any damage to its environment, safety is important.
Its environment includes humans as well as the product it is
working on. Security is needed to ensure that the environment
is not disturbing the robot during operation. Loss and theft
of data or hostile takeovers from external sources have to be
countered. For further reading about the importance of testing
robots see [20].

There are a lot of reasons why testing industrial robots
is important. But what testing approach is the best? There
is no general testing approach which fits all problems. The
best approach depends on the overall task, the input and the
implementation of a system. In the following, advantages and
disadvantages of the above introduced approaches (cf. IV) are
discussed. Further, it is discussed which of them would be best
for testing industrial robots.

• Remote Testing Module: The RTM can be realized
quickly and easily. The specifications of the system
have to be known in order to identify malfunctioning
agents within the system. In Subsection IV-A it is written
that a predefined number of RTMs have to confirm a
malfunction of the same agent to make sure that indeed
the agent is faulty and not the RTM itself. A problem that
can occur is that more RTMs are malfunctioning and the
predefined number of RTMs to identify a faulty agent
is not reached. This way a malfunctioning agent is not
identified and the complete system can behave in a wrong
way. Another disadvantage of an RTM is that no effective
countermeasures are initiated. This is a feature which is
going to be part of future work on RTMs [15].
Even though this is a cost-effectively approach for testing
SOAS, it does not seem to be developed further enough
at this point in time. There are still open security and
safety issues which have to be tackled.

• The Corridor Enforcing Infrastructure: An advantage
of the CEI is that it reduces the test effort a lot. It makes
an enormous difference if the CEI or the whole system
has to be tested. Furthermore, through the usage of EVS
all testing levels are covered by this approach. A problem
arises if the system requirements and specifications are
not completely known or if they are not detailed enough.
In this case the CCB, and thus the CEI, is going to be
inaccurate. As a result acceptable states may be identified
as unacceptable or vice-versa. In the first case it may lead
to unnecessary and unwanted adaption processes while
in the second case there will be no adaption at all. Both
cases are very bad.

• Black Box Validation: The simulation model compares
the simulated and thus expected output with the actual
output of the black box (the real system). The accuracy
of the comparison can be used as a quality measurement.
Undesirable behavior is detected if the outputs differ. But
a serious disadvantage of this validation method is that
with black box testing the precise source of error remains
unknown. It may be known which environmental state or
which process caused the error. But the malfunctioning
agent or sub-system can not be detected because it is not
possible to have a look into the real system. Again, the
specifications of the systems have to be well known to
generate accurate test cases. This is the only way that ev-
ery possible state can be simulated by the model. If not all
possible inputs are identified, there will remain untested
paths in the real system. Besides, the development of a
simulation model is expensive.

It can be seen that all three testing approaches have their
advantages and disadvantages. Because of that, it has to
be carefully considered which approach to use for testing
industrial manufacturing robots.

Overall, it can be said that the CEI would be the best
approach for testing industrial manufacturing robots after the
above-mentioned points have been taken into account. The



RTM is not yet developed enough to be successfully used in
this field. The realization of the simulation model is expensive
and the identification of all possible inputs and environmental
conditions is time consuming. There may remain untested
system components which is not preferred in such an safety
and security critical field. Furthermore, this validation method
does not change the systems behavior. If an error is detected,
the system has to be changed manually to be able to cope
with this error in the future. Using a CEI for testing SOAS
seems to be the most sophisticated approach for testing indus-
trial manufacturing robots. The most costly thing about this
approach is to elaborate all specifications of a certain type of
manufacturing robot. It is important to take the time for this
step. Only in this way it is possible to ensure that the CCB
is indeed correct. Once all this requirements are known and
recorded every further step will be done automatically by the
CEI approach. This test method is executed during runtime,
and is therefore able to change the behavior of the system.

VI. CONCLUSION AND FUTURE WORK

With the emerging usage of SOAS the need for testing
SOAS has also increased. New challenges for testing such
systems have been discovered. Previously used test methods,
which work for regular/traditional systems, are no longer
applicable for those complex OC systems.

A lot of research is conducted in this field. Various research
groups are trying to develop a sufficient testing method for
SOAS. The challenges which are encountered in developing
testing approaches for SOAS were presented in this paper.
Three of those testing approaches were discussed and reviewed
within this paper. To evaluate these approaches the use case
”Industry 4.0” is used. Therefore, the term ”Industry 4.0” is
explained and the advantages and disadvantages of applying
each approach on industrial manufacturing robots is discussed.

Future work could focus on comparing more testing ap-
proaches to get a better result. The case study could be more
specialized since there are a lot of different industrial robots in
use. Furthermore, the developed approaches could be applied
to different use cases. SOAS are spreading rapidly in a lot of
areas of application which all have to be tested extensively.
One example for another area are autonomous cars where
the safety aspect is again really important. A second example
would be the diving robot ”ABYSS” which is able to move
autonomously on the ground of the sea to fulfill a certain
purpose.

REFERENCES

[1] R. L. Glass, Facts and Fallacies of Software Engineering. Addison
Wesley, 2002.

[2] C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz, “Organic
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