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Abstract. This work explains how three dimensional quadrics can be defined by
the outer products of conformal geometric algebra points in higher dimensions.
These multivector expressions code all types of quadrics in arbitrary scale, loca-
tion and orientation. Furthermore, a newly modified (compared to [1]) approach
now allows not only the use of the standard intersection operations, but also of
versor operators (scaling, rotation, translation). The new algebraic form of the
theory will be explained in detail.
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1. Introduction
Three dimensional quadrics can be represented in extended conformal geometric al-
gebras (CGA) in several ways. Most recently double CGA (DCGA)[4] and quadric
CGA (QCGA)[1] have been proposed1 as an extension to three dimensions of the
outer product representation of conics, originally proposed by Perwass in Chapter
4.5 of [11]. Versors for rotation, translation and scaling have been proposed for con-
ics in a modified version of Perwass’ approach (a different definition of points being
introduced) in [9]. Reverting to the original point definition of Perwass, [7] recently
showed how the definition of versors for translation can be substantially simplified
(avoiding quadratic terms in the translation parameters in versor exponents).

The present work shows, how the approach of [7] can also be extended to
QCGA (with small modifications of the basis null vector definitions of QCGA) and
leads to a consistent set of versors for rotation, translation and scaling. The original

1For further literature see the references in [1].
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presentation of QCGA in [1] focused on ease of programming and computational ef-
ficiency, whereas we begin to present the elegant algebraic core structure of QCGA
is in some detail, before advancing to the definition of versors for geometric transfor-
mations. To make the model fit for using versor transformations, the description of
how round and flat conformal geometric algebra (CGA) objects are embedded also
undergoes small modifications, as well as how computations with quadrics should
be performed.

The paper is structured as follows. Section 2 introduces the basic definitions of
QCGA and states a collection of useful algebraic identities, including the necessary
modifications, needed later for the successful definition of geometric transformation
versors. Section 3 explains how points are defined in QCGA, and how round and flat
objects of CGA for three Euclidean dimensions, can be consistently embedded in
QCGA, in a form compatible with the later definition of transformation versors.
Section 4 shows the definition of quadrics by way of the outer product of nine con-
tact points. Section 5 is on the computation of intersections of quadrics. Section 6
addresses the consistent definition of versors for rotations, translations and scaling,
including the option of an alternative hybrid approach in combination with other ex-
tensions of CGA for the description of quadrics. The paper concludes with Section
7, followed by acknowledgments and references.

2. QCGA definition
This section introduces quadric conformal geometric algebra (QCGA) in slightly
modified form, compared to [1]. We specify its basis vectors and show important
blade computations. We keep the following notation: lower-case bold letters denote
basis blades and multivectors (multivector a). Italic lower-case letters refer to mul-
tivector components (a1,x,y2, · · · ). For example, ai is the ith coordinate of the mul-
tivector a. Constant scalars are denoted using lower-case default text font (constant
radius r) or simply r. The superscripts star used in x∗ represents the dualization of
the multivector x. Finally, subscript ε on xε refers to the Euclidean vector associated
to the vector x of QCGA.

Note that when used in the geometric algebra inner product, contractions and
the outer product have priority over the full geometric product. For instance, a∧bI=
(a∧b)I.

2.1. QCGA basis and metric
The algebraic equations in this section can be either computed by hand, expanding
all blades in terms of basis vectors, or they can be computed with software, like
The Clifford Toolbox for MATLAB[12]. The QCGA Cl(9,6) is defined over a real
15-dimensional vector space R9,6. The base vectors of the space are basically di-
vided into three groups: {e1,e2,e3} (corresponding to the Euclidean vectors of R3),
{eo1,eo2, eo3,eo4,eo5,eo6}, and {e∞1,e∞2,e∞3,e∞4,e∞5,e∞6}. The inner products be-
tween them are defined in Table 1.

For the efficient computation, a diagonal metric matrix may be useful. The
algebra Cl(9,6) generated by the Euclidean basis {e1,e2,e3}, and six basis vec-
tors {e+1,e+2,e+3,e+4,e+5,e+6} squaring to +1 along with six other basis vectors
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TABLE 1. Inner product between QCGA basis vectors.

e1 e2 e3 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6

e1 1 0 0 · · · · · · · · · · · ·
e2 0 1 0 · · · · · · · · · · · ·
e3 0 0 1 · · · · · · · · · · · ·

eo1 · · · 0 −1 · · · · · · · · · ·
e∞1 · · · −1 0 · · · · · · · · · ·
eo2 · · · · · 0 −1 · · · · · · · ·
e∞2 · · · · · −1 0 · · · · · · · ·
eo3 · · · · · · · 0 −1 · · · · · ·
e∞3 · · · · · · · −1 0 · · · · · ·
eo4 · · · · · · · · · 0 −1 · · · ·
e∞4 · · · · · · · · · −1 0 · · · ·
eo5 · · · · · · · · · · · 0 −1 · ·
e∞5 · · · · · · · · · · · −1 0 · ·
eo6 · · · · · · · · · · · · · 0 −1
e∞6 · · · · · · · · · · · · · −1 0

{e−1, e−2,e−1,e−4,e−5,e−6} squaring to−1 would correspond to a diagonal metric
matrix. The transformation from the diagonal metric basis to that of Table 1 can be
defined as follows2: for 1≤ i, j ≤ 6,

e∞i =
1√
2
(e+i + e−i), eoi =

1√
2
(e−i− e+i). (1)

We further define for later use another pair of null vectors

e∞ = 1
3 (e∞1 + e∞2 + e∞3), eo = eo1 + eo2 + eo3. (2)

Inner products lead to

e∞i · eoi =−1, e∞ · eo =−1, e2
o = e2

∞ = 0, (3)

e∞k · eo =−1 (k = 1,2,3), e∞l · eo = 0 (l = 4,5,6), e∞i · e∞ = 0, (4)

We further define the bivectors Ei, E, as

Ei = e∞i∧ eoi = e+ie−i, E = e∞∧ eo, (5)

and obtain the following products

E2
i = 1, EiE j = E jEi, (6)

eoiEi =−Eieoi =−eoi, e∞iEi =−Eie∞i = e∞i, (7)

eo jEi
i6=i
= Eieo j, e∞ jEi

i 6=i
= Eie∞ j, (8)

E2 = 1, eoE =−Eeo =−eo, e∞E =−Ee∞ = e∞. (9)

2Traditionally, null basis vectors e∞i = e+i + e−i, eoi =
1
2 (e−i − e+i), for 1 ≤ i ≤ 6 are chosen, as in

[1, 3, 8]. But in general any factor λi ∈ R \ {0}, 1 ≤ i ≤ 6, could be chosen to define e∞i =
1

λi
√

2
(e+i +

e−i), eoi =
λi√

2
(e−i− e+i), while preserving the scalar products of Table 1. This freedom to operate with

continuous parametrized sets of horospheres has e.g. been used advantageously by El Mir et al for elegant
algebraic view point change representation in [5].
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For clarity, we also define the following blades:

I∞a = e∞1e∞2e∞3, I∞b = e∞4e∞5e∞6, I∞ = I∞aI∞b, (10)
Ioa = eo1eo2eo3, Iob = eo4eo5eo6, Io = IoaIob, (11)
I∞o = I∞∧ Io =−E1E2E3E4E5E6, (12)

I�∞a = (e∞1− e∞2)∧ (e∞2− e∞3), I�∞ = I�∞aI∞b, (13)

I�oa = (eo1− eo2)∧ (eo2− eo3), I�o = I�oaIob, I� = I�∞ ∧ I�o . (14)

We note that3

I2
∞o = 1, IoI∞o = I∞oIo =−Io, I∞I∞o = I∞oI∞ =−I∞, (15)

I∞a∧ Ioa =−E1E2E3, I∞b∧ Iob =−E4E5E6, (16)

I� = I�∞a∧ I�oa I∞b∧ Iob =−I�∞a∧ I�oa E4E5E6, (17)

(I�)2 = (I�∞a∧ I�oa)
2 = 9, (I�)−1 = 1

9 I�, (I�∞a∧ I�oa)
−1 = 1

9 I�∞a∧ I�oa. (18)

I�∞ · I�o = I�o · I�∞ = I�∞ cI�o = I�∞ bI�o =−3. (19)

We have the following outer products

I∞a = e∞1∧ I�∞a = e∞2∧ I�∞a = e∞3∧ I�∞a = e∞∧ I�∞a

= e∞1 I�∞a = e∞2 I�∞a = e∞3 I�∞a = e∞ I�∞a, (20)

Ioa = eo1∧ I�oa = eo2∧ I�oa = eo3∧ I�oa =
1
3 eo∧ I�oa

= eo1 I�oa = eo2 I�oa = eo3 I�oa =
1
3 eo I�oa, (21)

I∞a∧ Ioa = E1∧ I�∞a∧ I�oa = E2∧ I�∞a∧ I�oa = E3∧ I�∞a∧ I�oa

= 1
3 E ∧ I�∞a∧ I�oa =

1
3 E I�∞a∧ I�oa. (22)

And we have the following inner products (1≤ i≤ 6)

I�oa =−3e∞ · Ioa, I�o =−3e∞ · Io, (23)

I�∞a =−eo · I∞a, I�∞ =−eo · I∞, (24)

(eoi · I∞) · Io =−eoi, (e∞i · Io) · I∞ =−e∞i, (25)

(eo · I∞) · Io =−eo, (e∞ · Io) · I∞ =−e∞ (26)

e∞ · I∞o =− 1
3 I∞∧ I�o , eo · I∞o =−I�∞ ∧ Io, (27)

e∞i · I�∞a = 0, e∞i · I�∞ = 0, e∞ · I�∞a = 0, e∞ · I�∞ = 0, (28)

eoi · I�oa = 0, eoi · I�o = 0, eo · I�oa = 0, eo · I�o = 0, (29)

e∞ · I�oa = 0, e∞ · I�o = 0, eo · I�∞a = 0, eo · I�∞ = 0, (30)

e∞ · I� = 0, eo · I� = 0, E · I� = 0. (31)

3Note, that the product symbols c and b express left- and right contraction, respectively.
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As consequence we obtain (1≤ i≤ 3)

I∞ = e∞i∧ I�∞ =−I�∞ ∧ e∞i = e∞i I�∞ =−I�∞ e∞i

= e∞∧ I�∞ =−I�∞ ∧ e∞ = e∞ I�∞ =−I�∞ e∞, (32)

I∞∧ I�o = e∞i∧ I� = I�∧ e∞i = e∞∧ I� = I�∧ e∞ = e∞ I� = I� e∞, (33)

Io = eoi∧ I�o =−I�o ∧ eoi = eoi I�o =−I�o eoi

= 1
3 eo∧ I�o =− 1

3 I�o ∧ eo =
1
3 eoI�o =− 1

3 I�o eo, (34)

−I�∞ ∧ Io = eoi∧ I� = I�∧ eoi =
1
3 eo∧ I� = 1

3 I�∧ eo =
1
3 eo I� = 1

3 I� eo, (35)

−3I∞o = E I� = E ∧ I� = I�E, I� =−3E I∞o =−3I∞o E. (36)

We can summarize the important set of relations

{1,eo,e∞,E}∧ I�∞ = {1,eo,e∞,E}I�∞ = I�∞ {1,−eo,−e∞,E}, (37)

{1,eo,e∞,E}∧ I�o = {1,eo,e∞,E}I�o = I�o {1,−eo,−e∞,E}, (38)

{1,eo,e∞,E}∧ I� = {1,eo,e∞,E}I� = I� {1,eo,e∞,E}. (39)

We define the pseudo-scalar Iε in R3:

Iε = e1e2e3, I2
ε =−1, I−1

ε =−Iε , (40)

and the conformal pseudo-scalar IC by

IC = e1e2e3 e∞∧ eo = Iε E, I2
C =−1, I−1

C =−IC. (41)

The full pseudo-scalar I and its inverse I−1 (used for dualization) are:

I = Iε I∞o =− 1
3 ICI� =− 1

3 Iε EI� =−Iε E1E2E3E4E5E6, (42)

I2 =−1, I−1 =−I. (43)

The dual of a multivector indicates division by the pseudo-scalar, e.g., a∗ = −aI,
a = a∗I. From eq. (1.19) in [8], we have the useful duality between outer and inner
products of non-scalar blades A,B in geometric algebra:

(A∧B)∗ = A ·B∗, A∧ (B∗) = (A ·B)∗ ⇔ A∧ (BI) = (A ·B)I, (44)

which indicates that

A∧B = 0 ⇔ A ·B∗ = 0, A ·B = 0 ⇔ A∧B∗ = 0. (45)

Useful duality relationships are

I∗∞o =−Iε , (I∞∧ I�o )∗ =−3Iε e∞,(
Iε(eoi · I∞)∧ Io

)∗
=−eoi,

(
Iε I∞∧ (e∞i · Io)

)∗
=−e∞i, (46)(

Iε(eo · I∞)∧ Io
)∗

=−eo,
(
Iε I∞∧ (e∞ · Io)

)∗
=−e∞.
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3. QCGA objects
QCGA is an extension of CGA; thus the objects defined in CGA are also defined in
QCGA. The following sections introduce the important definition of a general point
in QCGA, and show next how all round and flat geometric objects (point pairs, flat
points, circles, lines, spheres, planes) of CGA can straightforwardly be embedded
in QCGA.

3.1. Point in QCGA
The point x of QCGA corresponding to the Euclidean point xε = xe1 + ye2 + ze3 ∈
R3, is defined as

x = xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ xye∞4 + xze∞5 + yze∞6 + eo. (47)

Note that the null vectors eo4,eo5,eo6 are not present in the definition of the point.
This is merely to keep the convenient properties of the CGA points, namely, the
inner product between two points is identical with the squared distance between
them. Let x1 and x2 be two points, their inner product is

x1 ·x2

= (x1ε +
1
2 x2

1e∞1 +
1
2 y2

1e∞2 +
1
2 z2

1e∞3 + x1y1e∞4 + x1z1e∞5 + y1z1e∞6 + eo)

· (x2ε +
1
2 x2

2e∞1 +
1
2 y2

2e∞2 +
1
2 z2

2e∞3 + x2y2e∞4 + x2z2e∞5 + y2z2e∞6 + eo). (48)

from which together with Table 1, it follows that

x1 ·x2 = x1ε ·x2ε − 1
2 (x

2
1 + y2

1 + z2
1 + x2

2 + y2
2 + z2

2) =− 1
2 (x1ε −x2ε)

2. (49)

We see that the inner product is equivalent to the minus half of the squared Euclidean
distance between x1 and x2.

In the remainder of the paper the following result will be useful, because it
relates a point in QCGA to the representation it would have in CGA R4,1 with vector
basis {eo,e1,e2,e3,e∞}.

x∧ I�∞ =
(

xε +
1
2 (x

2e∞1 + y2e∞2 + z2e∞3)+ eo

)
∧ I�∞

= (xε + eo)∧ I�∞ + 1
2 (x

2e∞1 + y2e∞2 + z2e∞3)∧ I�∞
= (xε + eo)∧ I�∞ + 1

2 (x
2 + y2 + z2)e∞∧ I�∞ (50)

= (xε + eo)∧ I�∞ + 1
2 x2

ε e∞∧ I�∞
= (xε +

1
2 x2

ε e∞ + eo)∧ I�∞ = xC∧ I�∞ = xC I�∞ ,

where we have dropped in the first line the cross terms xye∞4 + xze∞5 + yze∞6, be-
cause wedging with I∞a, a factor in I�∞ , eliminates them. Therefore, if a point in
QCGA appears wedged with I�∞ , we can replace it by the form

xC = xε +
1
2 x2

ε e∞ + eo
(19)
= − 1

3 (x∧ I�∞ )bI�o . (51)

it would have in CGA. This in turn means, that we can embed in QCGA the known
CGA representations of round and flat objects, by taking the outer products of be-
tween one and five points with I�∞ , as shown in the following.



3D quadrics in extended CGA and RTS versor transformations 7

3.2. Round and flat objects in QCGA
With round objects, we mean points, point pairs, circles and spheres with uniform
curvature. Similar to CGA, these can be defined by the outer product of one to four
points with I�∞ . Their center cC, radius r and Euclidean carrier blade D can be easily
extracted. Alternatively, they can be directly constructed from their center cC, radius
r and Euclidean carrier D.

Wedging any round object with the point at infinity e∞, gives the correspond-
ing flat object multivector. From it the orthogonal distance to the origin cε⊥ and the
Euclidean carrier D can easily be extracted.

We now briefly review the CGA description of round and flat objects embed-
ded in QCGA. The round objects are point, point pair, circle and sphere,

P = x∧ I�∞ = xC I�∞ , (52)

Pp = x1∧x2∧ I�∞ = x1C∧x2C I�∞ , (53)

Circle = x1∧x2∧x3∧ I�∞ = x1C∧x2C∧x3C I�∞ , (54)

Sphere = x1∧x2∧x3∧x4∧ I�∞ = x1C∧x2C∧x3C∧x4C I�∞ . (55)

The corresponding flat objects are flat point, line, plane and the whole three-
dimensional space4,

Flat p =−P∧ e∞ = x∧ e∞∧ I�∞ = xC∧ e∞ I�∞ , (56)

Line =−Pp∧ e∞ = x1∧x2∧ e∞∧ I�∞ = x1C∧x2C∧ e∞ I�∞ , (57)

Plane =−Circle∧ e∞ = x1∧x2∧x3∧ e∞∧ I�∞ = x1C∧x2C∧x3C∧ e∞ I�∞ , (58)

Space =−Sphere∧ e∞ = x1∧x2∧x3∧x4∧ e∞∧ I�∞
= x1C∧x2C∧x3C∧x4C∧ e∞ I�∞ . (59)

The above embeddings by means of the outer product with I�∞ , allow to make
use of standard CGA results found in [8]. All embedded round entities of point,
point pair, circle and sphere have one common multivector form5

S =
(

D∧ cε +[ 1
2 (c

2
ε + r2)D− cε cεcD]e∞ +Deo +Dbcε E

)
I�∞ = SC I�∞ , (60)

SC =− 1
3 SbI�o .

The Euclidean carriers D are for each object

D =


1, point x

dε , point pair Pp
ic, circle Circle
Iε , sphere Sphere,

(61)

where the unit point pair connection direction vector is dε = (x1ε −x2ε)/2r and the
Euclidean circle plane bivector ic. The radius r of a round object and its center cC

4The leading minus sign comes from I�∞ ∧ e∞ =−e∞ ∧ I�∞ of (37).
5Note, that the left- and right contraction c and b, respectively, are needed essentially.
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are generally determined by

r2 =
SCS̃C

(SC∧ e∞)(SC∧ e∞)∼
, cC = SC e∞ SC. (62)

where S̃C indicates the reverse of SC.
All embedded flat entities of flat point, line, plane and space have one common

multivector form

F =−S∧ e∞ = (D∧ cε e∞−DE)I�∞ = (Dcε⊥e∞−DE)I�∞ = FC I�∞ , (63)

FC =−SC∧ e∞ = 1
3 FbI�o ,

where the orthogonal Euclidean distance of the flat object from the origin is

cε⊥ =


xε , finite-infinite point pair Flat p

cε⊥, line Line
cε⊥, plane Plane

0, 3D space Space.

(64)

The Euclidean carrier blade D, and the orthogonal Euclidean distance vector of F
from the origin, can both be directly determined from the flat object multivector as

D = FCbE , cε⊥ = D−1(FC∧ eo)bE . (65)

4. Quadric surfaces
This section describes how QCGA handles quadric surface. All embedded CGA
objects in QCGA defined in Section 3 are thus part of a more general framework.

A quadric in R3 is formulated as

F(x,y,z) = ax2 +by2 + cz2 +dxy+ exz+ fyz+gx+hy+ iz+ j = 0. (66)

A quadric surface is constructed by wedging nine points together as follows

q = x1∧x2∧·· ·∧x9. (67)

The multivector q corresponds to the primal form of a quadric in QCGA, with grade
9 and 12 components. Again three of these components have the same coefficient
and can be combined together in a form defined by only ten coefficients a, b, ..., j. If
we further wedge the 9-blade q with the simple 5-vector I�0 , we obtain a 14-blade
and its dual vector (q∧ I�0 )∗

(q∧ I�0 )∗ = Iε

(
(2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6) · I∞

)
∧ Io

+(ge1 +he2 + ie3)Iε I∞o + jIε I∞∧ (e∞ · Io)

=
(
− (2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6)

+ge1 +he2 + ie3− je∞

)
I

= (q∧ I�0 )∗ I, (68)
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where in the second equality we used the duality relationships of (46). The expres-
sion for the dual vector (q∧ I�0 )∗ is therefore

(q∧ I�0 )∗ =−(2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6)

+ge1 +he2 + ie3− je∞ . (69)

Proposition 4.1. A point x lies on the quadric surface q if and only x∧q∧ I�o = 0.

Proof.

x∧ (q∧ I�o ) = x∧ ((q∧ I�o )∗I) = x · (q∧ I�o )∗ I

= x ·
(
− (2aeo1 +2beo2 +2ceo3 +deo4 + eeo5 + feo6)

+ge1 +he2 + ie3− je∞

)
I

= (ax2 +by2 + cz2 +dxy+ exz+ fyz+gx+hy+ iz+ j)I. (70)

This corresponds to the formula representing a general quadric. �

The dualization of the primal quadric wedged with I�o leads to the 1-vector
dual form (q∧ I�o )∗ of (69).

Corollary 4.2. A point x lies on the quadric defined by q if and only if x ·(q∧I�0 )∗=
0.

The ten coefficients {a, . . . , j} of the quadric equation (66) can be easily ex-
tracted from the quadric 9-blade q of (67) by computing the following scalar prod-
ucts with vector (q∧ I�o )∗ as

a = 1
2 (q∧ I�o )∗ · e∞1, b = 1

2 (q∧ I�o )∗ · e∞2, c = 1
2 (q∧ I�o )∗ · e∞3,

d = (q∧ I�o )∗ · e∞4, e = (q∧ I�o )∗ · e∞5, f = (q∧ I�o )∗ · e∞6,

g = (q∧ I�o )∗ · e1, h = (q∧ I�o )∗ · e2, i = (q∧ I�o )∗ · e3,

j = (q∧ I�o )∗ · eo. (71)

5. Intersections
Any number of linearly independent round or flat embedded CGA objects in QCGA
and any number of quadrics {A,B, . . . ,Z}, after wedging with the simple 5-vector
I�o , can be intersected by computing the dual of the outer product of their duals

(intersect∧ I�o )∗ = (A∧ I�o )∗∧ (B∧ I�o )∗∧ . . .∧ (Z∧ I�o )∗. (72)

A criterion for a general point x to be on the intersection is

x · (intersect∧ I�o )∗ = 0, intersect =− 1
3

(
(intersect∧ I�o )∗I

)
bI�∞ . (73)

For cases that one object is wholly included in another object (like a line in a
plane), the proper meet operation has to be defined, taking into account the sub-
space spanned by the join of the two objects [10].
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6. Versors for rotation, translation and scaling
For the successful implementation of rotations together with a comparatively simple
form for the translation versors, we found it essential to define the null vector pairs
{e∞i,eoi}, i = 1, . . . ,6, in the symmetric fashion of (1)

e∞i =
1√
2
(e+i + e−i), eoi =

1√
2
(e−i− e+i).

Only with this definition6 for {e∞i,eoi}, i = 4,5,6, were we able to keep the number
of versor factors to a minimum for achieving translations, as seen below in equa-
tions (87) to (92), our approach thus has the advantage of completely eliminating
the quadratic terms in the translation vector coordinates from the exponents of the
factors in the translation operators, compared to [9], where these terms are already
needed to achieve translations by versors in two dimensions.

6.1. Versors for rotation of three dimensional quadrics
Rotations around the z-axis are generated by the following five bivectors

e12, Bz2 =
1
2 eo4e�

∞12, Bz3 = e∞4e�o12,

Bz4 =−eo5e∞6, Bz5 =−e∞5eo6, B2
zi = 0 (i = 2,3,4,5), (74)

in the rotor form of Rz = Rz1(Rz2∧Rz3)(Rz4∧Rz5), where

Rz1 = e
ϕ

2 e12 , Rzi = cosϕ + sinϕBzi (i = 2,3),

Rzi = cos ϕ

2 + sin ϕ

2 Bzi (i = 4,5). (75)

Applying the rotor Rz to a conformal point x leads to

x′ = R̃zxRz, x′ε = x′e1 + y′e2 + z′e3, (76)

x′ = cosϕx− sinϕy, y′ = sinϕx+ cosϕy, z′ = z. (77)

an anticlockwise (mathematically positive) rotation in the e12-plane, as seen from
the positive z-direction.

Rotations around the x-axis are generated by the following five bivectors

e23, Bx2 =
1
2 eo6(e∞2− e∞3), Bx3 = e∞6(eo2− eo3),

Bx4 =−eo4e∞5, Bx5 =−e∞4eo5, B2
xi = 0 (i = 2,3,4,5), (78)

in the rotor form of Rx = Rx1(Rx2∧Rx3)(Rx4∧Rx5), where

Rx1 = e
ϕ

2 e23 , Rxi = cosϕ + sinϕBxi (i = 2,3),

Rxi = cos ϕ

2 + sin ϕ

2 Bxi (i = 4,5). (79)

Applying the rotor Rx to a conformal point x leads to

x′ = R̃xxRx, x′ε = x′e1 + y′e2 + z′e3, (80)

x′ = x, y′ = cosϕy− sinϕz, z′ = sinϕy+ cosϕz. (81)

6For {e∞k,eok}, k = 1,2,3, we could also have chosen e∞i = e+i + e−i, eoi =
1
2 (e−i − e+i) as in [8],

without altering our form of the transformation versors given below. But for aesthetic reasons, we decided
in (1) to simply set all six coefficients symmetrically to 1/

√
2.
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an anticlockwise (mathematically positive) rotation in the e23-plane, as seen from
the positive x-direction.

Rotations around the y-axis are generated by the following five bivectors

e31, By2 =
1
2 eo5(e∞3− e∞1), By3 = e∞5(eo3− eo1),

By4 =−eo6e∞4, By5 =−e∞6eo4, B2
yi = 0 (i = 2,3,4,5), (82)

in the rotor form of Ry = Ry1(Ry2∧Ry3)(Ry4∧Ry5), where

Ry1 = e
ϕ

2 e31 , Ryi = cosϕ + sinϕByi (i = 2,3),

Ryi = cos ϕ

2 + sin ϕ

2 Byi (i = 4,5). (83)

Applying the rotor Ry to a conformal point x leads to

x′ = R̃yxRy, x′ε = x′e1 + y′e2 + z′e3, (84)

x′ = sinϕz+ cosϕx, y′ = y, z′ = cosϕz− sinϕx. (85)

an anticlockwise (mathematically positive) rotation in the e31-plane, as seen from
the positive y-direction.

We note the useful invariance relationships, that

R̃aR = a ∀a ∈ {1,eo,e∞,E,Iε ,IC,I�o ,Io,I�∞ ,I∞,I∞o,I�,I}. (86)

Because embedded flat and round CGA objects and all quadrics are constructed
from outer products of between one and nine points and I�∞ , these objects are natu-
rally covariant under rotations. Another consequence of this invariance is, that equa-
tions like (72), involving outer products with I�o , are also covariant under rotations.
Rotation covariance will certainly be of great value, when QCGA is employed, e.g.,
for the construction of feature multivectors. We further note, that in general the
vectors e∞i, i = 4,5,6, are not rotation invariant, which is natural for outer product
factors used to yield axis aligned quadrics, which being axis aligned, can not be
expected to be rotation covariant.

General rotations can be achieved by a sequence of Euler angle rotations
around the z-, the x′-, and again the z′′-axis, combining the above axis rotations.
In doing so, the factors Rz1Rx′1Rz′′1 will commute with all other factors, and form
a conventional three dimensional Euclidean geometric algebra rotor. This descrip-
tion of rotations in QCGA with versors is possible, but it may not yet be the most
elegant one. However, the aim of the current work is first of all to constructively
demonstrate, that the description of rotations in QCGA by applying suitable versors
is at all indeed possible.

6.2. Versors for translation of three dimensional quadrics
Translation by distance a ∈ R in the direction of e1 is achieved by the versor Tx =
Tx1Tx2Tx3, with

Tx1 = e
1
2 ae1e∞1 = 1+ 1

2 ae1e∞1,

Tx2 = e
1
2 ae2e∞4 = 1+ 1

2 ae2e∞4, Tx3 = e
1
2 ae3e∞5 = 1+ 1

2 ae3e∞5, (87)
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which leads to
x′ = T̃xxTx, x′ε = (x+a)e1 + ye2 + ze3. (88)

Note, that the products of any two null bivector generator blades from {e1e∞1,e2e∞4,
e3e∞5}, commute and form null quadvector blades (squaring to zero), and the prod-
uct of all three null bivectors forms a null 6-blade. Therefore, the versor factors
{Tx1,Tx2,Tx3} commute pairwise. Analogous relationships apply to the two sets of
three null bivectors each, generating the translations in the y- and z-directions, as
can be seen below.

Translation by distance b ∈ R in the direction of e2 is similarly achieved by
the versor Ty = Ty1Ty2Ty3, with

Ty1 = e
1
2 be2e∞2 = 1+ 1

2 be2e∞2,

Ty2 = e
1
2 be3e∞6 = 1+ 1

2 be3e∞6, Ty3 = e
1
2 be1e∞4 = 1+ 1

2 be1e∞4, (89)

which leads to
x′ = T̃yxTy, x′ε = xe1 +(y+b)e2 + ze3. (90)

Note, that the versor factors {Ty1,Ty2,Ty3} commute pairwise.
Translation by distance c ∈ R in the direction of e3 is similarly achieved by

the versor Tz = Tz1Tz2Tz3, with

Tz1 = e
1
2 be3e∞3 = 1+ 1

2 be3e∞3,

Tz2 = e
1
2 be1e∞5 = 1+ 1

2 be1e∞5, Tz3 = e
1
2 be2e∞6 = 1+ 1

2 be2e∞6, (91)

which leads to
x′ = T̃zxTz, x′ε = xe1 + ye2 +(z+ c)e3. (92)

Note, that the versor factors {Tz1,Tz2,Tz3} commute pairwise.
We point out, that the versors {Tx,Ty,Tz} do not commute pairwise.
In total we have for the application to quadric conformal points

x′ = T̃ xT, T = TxTyTz, x′ε = (x+a)e1 +(y+b)e2 +(z+ c)e3. (93)

It is interesting to remark, that in spite of the above noted lack of pairwise commu-
tation of {Tx,Ty,Tz}, we do have applied to any point x that

x′ = T̃ xT = T̃xTyTz xTxTyTz = T̃yTxTz xTyTxTz, etc. (94)

That is applied to a point x, the versor factors {Tx,Ty,Tz} in T = TxTyTz can be
freely commuted, without changing the result. We further note, that we have only
bivector terms linear in displacement distances a,b,c, in each of the nine elementary
versors Tx1, . . . ,Tz3. We expect this to be advantageous in application to optimization
problems.

We note the useful invariance relationships, that

T̃ aT = a ∀a ∈ {1,e∞1,e∞2,e∞3,e∞4,e∞5,e∞6,e∞,I�∞ ,I∞,I}. (95)

By construction therefore all flat and round CGA objects and all quadrics are trans-
lation covariant, this includes, because of T e∞iT̃ = e∞i, i = 4,5,6, axis aligned
quadrics as well, since translation has no effect on axis alignment.
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6.3. Versors for scaling of three dimensional quadrics
Scaling by positive scalar α ∈R is achieved with the help of the scaling operator or
scaling versor (scalor) S = S1S2S3S4S5S6, where

Sk =
1
2 (

α+1√
α
+ α−1√

α
Ek), S̃kSk = SkS̃k = 1, 1≤ k ≤ 6. (96)

Note that the three factors Sk, 1≤ k≤ 6, mutually commute. This leads to (isotropic)
scaling of points

x′ = α S̃xS, x′ε = α xε . (97)

Note that the overall factor α could be omitted in x′=α SxS̃, due to the homogeneity
of the point representation x, but we include it for convenience, such that x′ · e∞ =
x · e∞ =−1.

The following multivector elements are invariant under scaling (97)

eo,eo1,eo2,eo3,eo4,eo5,eo6,Ioa,I�oa,Iob,I�o ,Io. (98)

For bivectors this means

I�oa = α
2S̃ I�oaS, (99)

for trivectors

{Ioa,Iob}= α
3S̃{Ioa,Iob}S, (100)

for 5-vectors

I�o = α
5S̃ I�o S, (101)

and for the 6-vector

Io = α
6 S̃ Io S. (102)

Because quadrics (67) are constructed from outer products of points, the scaling
operators Sk, k = 1, . . . ,6, of (96) act (even individually) via outermorphisms co-
variantly on quadrics. And the expressions for intersections of quadrics (72), also
remain covariant under scaling (97), because scaling (97) maps I→ α9I to a scalar
multiple of itself, and because the representation of points and quadrics is homoge-
neous.

Furthermore, due to the relationships (7) and (8) one can show that the scalor
(97) maps the six infinity vectors {e∞i, i = 1, . . . ,6}→ α2{e∞i, i = 1, . . . ,6} to scalar
multiples of themselves. This together with (98), that means that scaling can be
covariantly applied to axis aligned quadrics, due to the homogeneity of the QCGA
representation. This also applies to intersection operations involving axis aligned
quadrics.

Isotropic scaling does apply to embedded CGA objects, because it simply
maps e∞ → α2e∞, I�∞a → α4I�∞a, I∞a → α6I∞a, I∞b → α6I∞b, I�∞ → α10I�∞ , and
I∞ → α12I∞, to scalar multiples of themselves, respectively, which is no problem
due to the homogeneity of the representation.
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6.4. Versor combinations and alternative hybrid approach
Translators permit rotations and scaling relative to arbitrary centers of rotation and
scaling, by first translating the respective center position to the origin, rotating or
scaling with the above versors R, S, followed by back translation to the center.

Alternatively, it is possible to combine quadric conformal geometric algebra
with double conformal geometric algebra (DCGA) [4]. For that the coefficients of
the quadric a,b,c,d,e, f ,g,h, i, j, can be extracted with (71) from q, and then used
to define the same quadric in DCGA. The rotors for reflection, rotation, translation
and scaling are substantially simpler in DCGA. So if preferred, versor operations
can be executed within DCGA, and the coefficients a′,b′,c′,d′,e′, f ′,g′,h′, i′, j′, of
the resulting new quadric can be extracted from its DCGA bivector representation
and transferred back to QCGA to define the same quadric in QCGA.

7. Conclusion
This paper introduced small modifications to quadric conformal geometric algebra
(QCGA), in order to enable the formulation of versor transformations for rotations,
translations and scaling of three-dimensional quadrics. To our knowledge this is the
first time a set of versors for achieving all three types of geometric transformations
for quadrics in a compatible way has been proposed. In principle now quadrics can
be defined in QCGA by outer products of points, or directly by their implicit equa-
tion parameters, they can be intersected and transformed with the help of versors
without leaving the QCGA algebra framework.

Implementation questions of QCGA have initially been discussed in [1]. The
early proceedings contribution to AGACSE 2018 by Breuils, Fuchs and Nozick [2]
shows further progress, regarding implementations.
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