Constant $e \cdot c/2\pi \alpha$ determines magnetic flux quantum in charged leptons

U. Kayser-Herold

February 20, 2019

Abstract

The constant $e \cdot c/2\pi \alpha$ is a common characteristic of charged leptons (e, μ, τ) resulting from their identical fraction \hat{m}/λ_C of magnetons \hat{m} to Compton-wavelengths λ_C , in spite of their largely differing \hat{m} and λ_C . However the physical interpretation of this constant remained uncertain, but now clarified: It is proven that $e \cdot c/2\pi \alpha$ is an alternative and equivalent definition of the magnetic flux quantum h/2 e which makes up the dipole-fields of charged leptons.

1 Introduction, problem and goal

Comprehensive consideration and incorporation of magnetic flux quantization in theories of charged leptons like e, μ, τ has not yet been established. [1] On the one hand, the magnetic dipole-moments \hat{m} (magnetons) assignable to e, μ and τ belong to the theoretically and experimentally most precisely determined constants. (CODATA) On the other hand, only rough estimates exist for the magnetic flux included in their dipole-fields. However the existence of a presumably constant magnetic flux in the dipole-fields of leptons is reasonable. Moreover, consideration of flux quantization would support the conjecture of magnetic flux conservation in the dipole-fields of charged leptons. Nonetheless current electron-models like the "mathematical" or "dressed" electron don't take into account the magnetic flux included in its dipole-field.

If the principle of magnetic flux quantization was applied to charged leptons the ab-initio postulate that each of their dipole-fields comprises identical magnetic flux amounting at least one magnetic flux quantum $\Phi_0 = h/2e$ would have to be proven. This initial assumption is supported by the finding that the constant $e \cdot c/2\pi \alpha$ - being assigned to charged leptons - is an implicit definition of the magnetic flux quantum presumably located in charged leptons. The approach will essentially consist of an analysis of the dipole-fields of charged leptons - focusing on their magnetic flux Φ_l - with the aim to clarify the physical interpretation of the constant $e \cdot c/2\pi \alpha$. It can be anticipated that there exists a fundamental relationship among $e \cdot c/2\pi \alpha$, the dipole-field of charged leptons,

the "classical-" or "Compton-" radius of leptons and flux quantization. [2]

2 Modeling of the dipole-field of charged leptons

2.1 Frame of reference

For modeling and analysis of the dipole-field of charged leptons the choice of an adequate frame and plane of reference is crucial. Thus a spherical r, Θ, φ and a cartesian x - y - z - frame will be used. Their polar axis coincide with the dipole-axis.

2.2 Equatorial plane of reference p_e

The most convenient plane of reference for determination of the magnetic flux Φ penetrating this plane is the equatorial (azimuthal) x - y plane p_e of the dipole. Let \vec{n} designate the normal unit-vector of p_e . Among the specific advantages of p_e is that it is a symmetry-plane and that the angle of incidence of the induction \vec{B} field into p_e always is perpendicular to p_e , i.e. $\vec{B} \perp p_e$ or $\vec{B} \parallel \vec{n}$.

2.3 Induction-field of a point-like dipole

The induction- or \vec{B} - field of a point-like dipole \hat{m} can most conveniently be represented by the \vec{B} - field generated by a microscopic circular current-loop of radius r_x located in p_e , where its axis is centered with the z-axis. [3]

Generally, any dipole-field traversing the equatorial plane p_e comprises mutually opposed internal and an external \vec{B} - field sections designated \vec{B}_{int} and \vec{B}_{ext} , corresponding to magnetic fluxes Φ_{int} and Φ_{ext} . Φ_{int} and Φ_{ext} are delimited by their generating circular current-loop in p_e . The equatorial plane p_e will serve as a reference plane for determination of Φ_{int} and Φ_{ext} .

According to Maxwell's equation $\nabla \cdot \vec{B} = 0 \longrightarrow \Phi_{int} = -\Phi_{ext}$. Hence it will suffice to determine Φ_{ext} so there is no need to dwell with Φ_{int} . Φ_{ext} will be identified with total magnetic flux of a dipole-field.

3 External magnetic flux Φ_{ext} of a dipole-field

The external induction field of a dipole is

$$\vec{B}_{ext} \approx \frac{\mu_0 \, \hat{m}}{4\pi \, r^3} \Big(2 \cos \Theta + \sin \Theta \Big) \tag{1}$$

where $\mu_0 = 1/\epsilon_0 c^2$ is vacuum permeability, \hat{m} the dipole-moment or magneton, Θ the polar angle and $r > r_c$ the radial distance of a point from the origin.

Generally, the magnetic flux Φ of an induction field \vec{B} penetrating a given surface A of arbitrary orientation \vec{n} is

$$\Phi = \int_{\mathcal{A}} d\Phi = \int_{\mathcal{A}} \vec{B} \, \vec{n} \, da \tag{2}$$

3

where da is a surface element differential.

In p_e , the following applies: $\vec{n} \parallel \vec{B}$ or $\vec{n} \cdot \vec{B} = |\vec{B}|$.

For all points in p_e with $r > r_c$: $\Theta = \pi/2 \rightarrow \cos \Theta = 0, \sin \Theta = 1, \vec{B}(\vec{r}) \parallel z \text{ and } \vec{B}(\vec{r}) \perp p_e.$

Thus the first term in brackets in (1) vanishes and (1) is reduced to

$$B_{ext} = \frac{\mu_0 \, \hat{m}_e}{4 \, \pi \, r^3} \tag{3}$$

Total external magnetic flux Φ_{ext} through p_e results from integration of (3) over p_e from r_c to ∞ .

$$\Phi_{ext} = \int_{r_c}^{\infty} \vec{B}_r da = 2\pi \int_{r_c}^{\infty} \vec{B}_r r dr$$
(4)

where

$$da = 2\pi r dr \tag{5}$$

After substitution with (5) and integration of (4)

$$\Phi_{ext} = \frac{\mu_0 \hat{m}_e}{2r_c} \tag{6}$$

It should be pointed out that (6) reveals how Φ_{ext} is determined by a singular variable r_e (classical electron- or Compton-radius). However r_e should not be misinterpreted as the radius of a classical sphere thus more of a self-determined length-unit allocable to the electron without any geometrical meaning.

3.1 Delimiting "critical" radius r_e

The radius r_c in (4) and (6) is a lower or "critical" integration limit in the dipole-field being identical with the radius of a.m. circular current-loop. As r_c delimits the mutually opposed internal flux Φ_{int} from the external flux Φ_{ext} , r_c is the key variable to be determined. For the electron the author already proved in [4] that r_c is identical with the "classical" or "charge" radius r_e .

 r_e can also be expressed as a function of the Compton-wavelength λ_{Ce} thus being a self-defined length-unit of the electron:

$$r_c = r_e = \frac{\alpha \lambda_{Ce}}{2\pi} = \alpha \frac{\hbar}{m_e c} \tag{7}$$

where α = fine-structure constant, m_e = electron-mass and λ_{Ce} = electron Compton-wavelength.

Substitution with (7) in (6):

$$\Phi_{ext} = \frac{\mu_0}{2\,\alpha} \cdot \frac{\hat{m}_e}{\lambda_{Ce}} = \frac{\hat{m}_e}{2\,\alpha \cdot \epsilon_0 \,c^2 \,\lambda_{Ce}} \tag{8}$$

To facilitate interpretation of (8) it can be split into more meaningful factors:

$$\lambda_{C_e} = \frac{h}{m_e c} \tag{8 a}$$

$$\alpha = \frac{e^2}{4\pi\,\epsilon_0\,\hbar\,c}\tag{8 b}$$

$$\hat{m}_e = \frac{e\,\hbar}{2\,m_c} = \frac{e\,\hbar}{4\,\pi\,m_c} \tag{8 c}$$

By substitution of (8a), (8b) and (8c) in (8) the result reveals

$$\Phi_{ext} = \frac{h}{2 e} = \Phi_0 \tag{9}$$

where Φ_0 is the magnetic flux quantum!

Remarkably in (8), Φ_{ext} is exclusively determined by the constants ϵ_0 , c, α , \hat{m}_e , λ_{Ce} .

Let

$$C_{\Phi} = \frac{\hat{m}_e}{\alpha \,\lambda_{Ce}} = \frac{e \cdot c}{2\pi \,\alpha} \tag{10}$$

Substitution with (10) in (8) yields

$$\Phi_{ext} = \frac{\mu_0}{2} \cdot C_{\Phi} = \mu_0 \cdot \frac{e \cdot c}{4\pi \, \alpha} = \Phi_0 \tag{11}$$

where Φ_0 is the magnetic flux quantum.

Note that $\Phi_0 = \Phi_{ext} = -\Phi_{int}$.

In p_e , Φ_{ext} is delimited from Φ_{int} by a circle of Compton-radius $\alpha \lambda_C / 2\pi$ (7).

3.2 Critical radius of Myons and Tauons

It is evident from (8) that above approach for the electron would also apply for myons and tauons if their individual masses m_l , magnetons \hat{m}_l and Compton-wavelengths λ_{Cl} were used.

Substitution in (8c) with a generalized lepton-mass m_l (instead of m_e) and a general lepton-magneton \hat{m}_l (instead of \hat{m}_e) yields

$$\hat{m}_l = \frac{e\,h}{4\pi\,m_l}\tag{12}$$

as well as a generalized Compton-wavelength λ_{C_l}

$$\lambda_{Cl} = \frac{h}{m_l c} \tag{13}$$

5

The ratio (12) to (13) $\times \alpha^{-1}$ delivers a constant C_{Φ} for all charged leptons:

$$C_{\Phi} = \frac{\hat{m}_l}{\alpha \,\lambda_{Cl}} = \frac{e \cdot c}{2 \,\pi \,\alpha} \,\left[\frac{A}{m} \,m^2\right] \tag{14}$$

As (14) is identical with (10) constant magnetic flux Φ_l of all charged leptons can be inferred.

The dimensionality of C_{Φ} corresponds to a total flux of a magnetic field-strength vector-field \vec{H} through p_e being in proportion to total flux of the induction-field $\vec{B} = \mu_0 \vec{H}$ through p_e .

Substitution in (8) with (10) and (12) yields

$$\Phi_l = \frac{\mu_0}{2} C_{\Phi} = \frac{h}{2e} = \Phi_0 \tag{15}$$

In conclusion (14) and (15) prove that all charged Leptons carry one magnetic flux quantum Φ_0 .

4 Summary and Comment

A new commonality among charged leptons e, μ, τ is revealed: Each of their dipole-fields coincides with one magnetic flux quantum being determined by their common constant $e \cdot c/2\pi\alpha$ being given by the fraction \hat{m}_l/λ_{Cl} of their individual magnetons \hat{m}_l and Compton-wavelengths λ_{Cl} .

This conclusion is based on analysis of their magnetic dipole-fields which unravels that the constant $e \cdot c/2\pi \alpha$ is an equivalent (hidden) definition of the magnetic flux-quantum h/2 e. It denotes identical flux of the leptons dipole fields through their equatorial planes - outside of their Compton-radii - being equivalent to one magnetic flux quantum h/2 e.

The mathematical procedure includes breaking of the fine-structure constant α into its factors (8 b). The analysis further reveals a remarkable and unexpected role of the "classical" or "Compton" electron radius r_e (and its equivalents for myons and tauons), being intimately related to the magnetic flux quantum, Josephson's constant, spin-angular momentum $\hbar/2$ and the constant $e \cdot c/2\pi$, even if r_e is regarded as a fictitious length. [5]

The task could also be inverted by asking for a critical radius r_c which delimits one fluxon Φ_0 in p_e following a transformation of (6): $r_c = \mu_0 \hat{m}_l/2 \Phi_0$.

It deserves a final remark that (14), (15) would also apply for protons.

References

[1]] F. Gömöry: Superconductor Dynamics (2015)

[2]] R. Heyrovska, S. Narayan: Fine-structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius.

[3] Blinder, S M: Singularity-free electrodynamics for point charges and dipoles: A classical model for electron self-energy and spin. Eur. J. of Phys. 24 (2003) 271-275;

[4] Kayser-Herold, U: Radius of single fluxon electron model identical with classical electron radius.

[5] Kayser-Herold, U: Electron spin 1/2 is "hidden" electromagnetic field angular momentum