COMPUTATION, COMPLEXITY, AND $P \neq NP$ PROOF

HUGH WANG¹
McGill University
Draft version February 11, 2019

ABSTRACT

If we refer to a string for Turing machines as a guess and a rejectable substring a flaw, then all algorithms reject similarly flawed guesses flaw by flaw until they chance on an unflawed guess, settle with a flawed guess, or return the unflawed guesses. Deterministic algorithms therefore must identify all flaws before guessing flawlessly in the worst case. Time complexity is then bounded below by the order of the product of the least number of flaws to cover all flawed guesses and the least time to identify a flaw. Since there exists 3-SAT problems with an exponential number of flaws, 3-SAT is not in \mathbf{P} , and therefore $\mathbf{P} \neq \mathbf{NP}$.

The radiating paths problem, illustrated in Figure 1, offers insight into the **P** versus **NP** problem. Given a natural number n, I lay 2^n paths of length n^2 radiating from where you stand. Then, I place a stone at the end of each path, and may or may not bury some avocados under half of the stones. At your luckiest, you need to walk only a polynomial n^2 to be fruitful. At your unluckiest, you need to walk an exponential $(2^{n-1}+1) \cdot n^2$ to leave no stone unturned. That is, overlooking walking back to square one. Therefore, deciding if some avocados are within reach is in **NP** but not in **P**, hinting that $\mathbf{P} \neq \mathbf{NP}$.

We later shape this problem into an emblem of classical computation by analogizing walking down one of the 2^n paths of length m to deciding a truth assignment of a 3-SAT problem with n variables and m clauses. Suppose the analogy holds, then if the length of a path or the number of clauses decreases from n^2 to 1, you need to remember only 1 clause but walk an exponential $(2^{n-1}+1)\cdot 1$ to leave no stone unturned, and auxiliary space complexity decreases from **PSPACE** to **REG**, but not the time complexity. We see that the exponential number of unfruitful paths alone excludes the radiating paths problem from **P**.

On the other hand, the radiating directions problem, shown in Figure 2, is in \mathbf{P} despite its exponential number of unfruitful paths. It differs from the previous problem in that, after I may or may not bury the avocados, I devise n^2 directions, not necessarily disjoint, that cover the unfruitful paths. Then, an unfruitful path implies that the paths in any of its directions are unfruitful, and at your unluckiest, you need to walk at most a polynomial $(n^2+1)\cdot n^2$ to leave no stone unturned. This problem is then in \mathbf{P} , hinting that the number of directions to cover the unfruitful paths matters to time complexity.

Suddenly, the length of a path matters to the time complexity. If the length of the paths or the number of clauses is 2^n , then you need to walk an exponential $(n^2 + 1) \cdot 2^n$ and remember at most 2^n clauses to leave no stone unturned, and this problem is beyond **P** and maybe **PSPACE** too. Since you can but leave no stone

unturned to decide these problems, the time complexity is the product of the least number of directions to cover all unfruitful paths and the time to decide a direction unfruitful, which is the length of the path. Is this the number of clauses and therefore the auxiliary space complexity if the analogy holds?

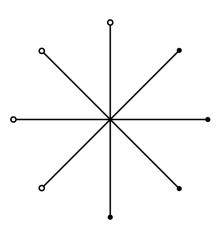


Figure 1. A radiating paths problem with n=3 and therefore 2^3 paths of length 3^2 .

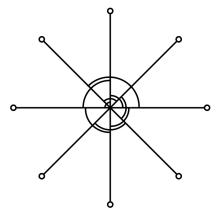


Figure 2. A radiating directions problem with n=3 and therefore 3^2 directions.

 $^{^1\,\}rm B.S.$ Joint Honours Mathematics and Computer Science, Interdisciplinary Life Sciences Minor, McGill University, Canada

We now support the analogy between walking down one of the 2^n paths of length m in a radiating directions problem and deciding one of the 2^n assignments of a 3-SAT problem with n variables and m clauses. Suppose you walk a unit length each time a classical computer transitions through the necessary states to decide a clause, the stone turning unfolds according to the decision of the final state, and the implications of an unfruitful path correspond to the implications of a false partial assignment. Then, deciding the radiating directions analogue of a 3-SAT problem is deciding the problem itself. This analogy holds because walking and classical computation both abide by physical laws. You cannot foresee what lies ahead of a path or be at two places at once, just as a classical computer cannot foresee what lies ahead of a computation or be in two states at once. Then at your unluckiest in 3-SAT, you must identify all false partial assignments before guessing flawlessly.

If we refer to the analogue of an assignment in a general problem as a guess, and that of a false partial assignment a flaw, then for Turing machines, a string is a guess, and a rejectable substring a flaw. Also, all algorithms reject similarly flawed guesses flaw by flaw until they chance on an unflawed guess, settle with a flawed guess, or return the unflawed guesses. More, deterministic algorithms in the worst case identify all flaws, and their time complexity is linearly bounded above and below by the order of the total length of the flaws, which is bounded below by the product of the least number of flaws to cover all flawed guesses and the least time to identify a flaw, and bounded above by the product of the least number of flaws to cover all flawed guesses and the most time to identify a flaw, which along with auxiliary space complexity is bounded above by the total length of the flaws.

In a 2-SAT problem with n variables and m clauses, we can convert the m clauses into at most 2m implications and further into at most 2m implication chains that are at most 2m+1 literals long. In an implication chain, once a literal is true, all that follow are true. A flaw is thus a break in the chain, and any deterministic algorithm in the worst case must identify at most $4m^2$ of such flaws, covering an exponential number of the flawed guesses. At most a polynomial number of flawed guesses are left as each of the 2m chains has at most 2m+1 of the flawed guesses. Since the least number of flaws to cover all flawed guesses is polynomial, and each flaw requires polynomial time to identify, 2-SAT is in $\bf P$.

We now consider an algorithm from each paradigm in $Algorithm\ Design^1$ as examples. In breadth-first search for connectivity, a guess is a path from s, a flaw an end not in t. In the cashier's algorithm, a guess is a sequence of coins, a flaw a coin not of largest value less than the

unpaid amount. In mergesort, a guess is a permutation, a flaw a value succeeded by one smaller. In weighted interval scheduling, a guess is a subset of the intervals, a flaw a wrong inclusion. In Ford-Fulkerson, a guess is a residual network, a flaw a path not augmented. In global min cut, a guess is a cut, a flaw an edge probably wrong to cut.

We do the same for Artificial Intelligence: A Modern Approach². In genetic programming, a guess is an individual, a flaw low fitness. In minimax, a guess is a move, a flaw trouble down the line. In backtracking, a guess is an assignment, a flaw an unsatisfied constraint. In forward chaining, a guess is a proof, a flaw a dead end. In bayesian inference, a guess is a probability, a flaw a wrong decimal. In supervised learning, a guess is a function, a flaw nonconformity to examples. In unsupervised learning, a guess is a set cover, a flaw an inclusion too different. In reinforcement learning, a guess is a strategy, a flaw bad experiences.

In a 3-SAT problem, the flaws in disjunctive normal form are equivalent to the flawed guesses in disjunctive normal form because they decide all guesses the same. A boolean circuit implementing the logic optimization of the flawed guesses along with a guessing circuit is then the smallest computer to solve the 3-SAT problem, thus defining space complexity. For time complexity, as an exponential number of directions alone excludes the radiating paths problem from ${\bf P}$ considering each path a direction, an exponential number of flaws alone excludes a 3-SAT problem from ${\bf P}$, and ${\bf P} \neq {\bf NP}$.

As an example, we convert $(a_n)_{n\in\mathbb{N}}=\sum_{i=2}^{n+1}i$ to binary and generate the nth flawed guess from a_n by assigning the jth variable the jth digit. Since almost all these flawed guess are flaws, the number of flaws is exponential with respect to that of variables and therefore that of possible clauses too, and 3-SAT is not in \mathbf{P} . In summary, computation in the worst case is identifying all flaws before guessing flawlessly, auxiliary space complexity a compression of all flawed guesses, time complexity approximately the product of the number of flaws and the auxiliary space complexity, and 3-SAT $\notin \mathbf{P}$ and so $\mathbf{P} \neq \mathbf{NP}$.

REFERENCES

Jon Kleinberg and Eva Tardos. 1982, Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.