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Abstract 
Objective: Objective scientific knowledge for many authors more valuable than true subjective belief is 
determined by research on primary data but a renewed analysis of already recorded or published data is common 
too. Ever since, an appropriate experimental or study design is an important and often a seriously underappreciated 
aspect of the informativeness and the scientific value of any (medical) study. The significance of study design for 
the reliability of the conclusions drawn and the ability to generalize the results from the sample investigated for 
the whole population cannot be underestimated. In contrast to an inappropriate statistical evaluation of a medical 
study, it is difficult to correct errors in study design after the study has been completed. Various mathematical 
aspects of study design are discussed in this article. 
Methods: In assessing the significance of a fair study design of a medical study, important measures of publication 
bias are introduced. Methods of data or publication bias analysis in different types of studies are illustrated through 
examples with fictive data. Formal mathematical requirements of a fair study design which can and should be 
fulfilled carefully with regard to the planning or evaluation of medical research are developed.  
Results. 
Various especially mathematical aspects of a fair study design are discussed in this article in detail. Depending on 
the particular question being asked, mathematical methods are developed which allow us to recognize data which 
are self-contradictory and to exclude these data from systematic literature reviews and meta-analyses. As a result, 
different individual studies can be summed up and evaluated with a higher degree of certainty. 
Conclusions 
This article is intended to give the reader guidance in evaluating the design of studies in medical research even ex 
post which should enable the reader to categorize medical studies better and to assess their scientific quality more 
accurately. 
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1. Introduction 
Biostatistics or statistical analysis is based on the key idea that the observation of a sample of subjects which is 
drawn from a certain population can be used to arrive at meaningful conclusions or inferences about the population 
with high degree of accuracy. In biomedical research, the various aspects of clinical research and the credibility of 
the data from the study substantially depend on the study design (Grimes and Schulz, 2002) which is more 
important than analyzing its results. The study design should ensure that a null hypothesis is either rejected or 
accepted and the conclusions drawn reflect only the truth. In particular, a poorly analyzed study can be reanalyzed 
but a poorly designed study can recover only poorly. Especially a mal-designed study (inclusion and exclusion 
criteria and other factors) can have an impact on the quality of the study sample with the consequence that the 
same is not an appropriate representative of the population. Under such circumstances, other studies may fail to 
successfully replicate the results of this original study and the inferences drawn can be misleading and the statistical 
procedures used cannot help any more. The widespread and documented lack of completeness and transparency 
in the reporting of statistical methods used endangers the possibility that a new study carried out again can 
successfully reproduce sufficiently similar or the same results as the original study. In point of fact, more than half 
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(52%) of scientists surveyed believe that studies do not successfully reproduce sufficiently similar or the same 
results as the original studies (Baker, 2016). A careful re-evaluation of the statistical methods and other scientific 
means which underpin scientific inquiry and research goals appears to be necessary. While it is important to 
recognize the shortcoming of today’s science, one issue which has shaped debates over studies published is the 
question: has the study measured what it set out to? Even if studies carried out can vary greatly in detail the data 
from the studies itself provide information about the credibility of the data. 
 
 
2. Material and Methods 
Systematic observation and experimentation, inductive and deductive reasoning are essential for any formation 
and testing of hypotheses and theories about the natural world. In one way or another, logically and mathematically 
sound scientific methods and concepts are crucial constituents of any scientific progress. When all goes well, 
different scientists at different times and places using the same scientific methodology should be able to generate 
the same scientific knowledge. 
 
2.1 Definitions 
 
2.1.1 Definition. The Sample Space 
Let the sample space denote a set or a collection of all different possible outcomes of an experiment. Each possible 
single outcome xt of the experiment is said to be a member of the sample space, or to belong to the space S(X). A 
single outcome xt of an experiment S(X) is a member of S(X) and denoted symbolically by the relation xt ∈ S(X). 
A set Y is contained in another set X if every element of the set Y also belongs to the set X. This relation is 
expressed symbolically by the expression Y ⊂ X, which is the set-theoretic expression for saying that Y is a subset 
of X. A subset of X that contains no elements is called an empty set, or null set, and it is denoted by the symbol ∅. 
 
Example 
The sample space of a six-sided die can be regarded as a set containing the six numbers 1, 2, 3, 4, 5, 6 each number 
representing a possible side of a die which occurs after a roll. Symbolically, the sample space S(X) of a six-sided 
die can be written as 
 

 𝑆(𝑋) = {1, 2, 3, 4, 5, 6} (1) 
Let  Y(S(X)) denote the wave function of the sample space S(X). Let  Y*(S(X)) denote the complex conjugate of 
the wave function of the sample space S(X). If nothing contrary is stated, it is 
 

 Ψ(𝑆(𝑋)) × Ψ (𝑆(𝑋))∗ ≡ 1 (2) 
 
2.1.2 Definition. The Absolute Frequency 
Let f(xt) denote the absolute frequency of the event xt (t = 1, …, n), a subset of the sample space S(X). Then 
 

 𝑓(𝑥8) + 𝑓(𝑥:) +⋯+ 𝑓(𝑥<) = 𝑆(𝑋) (3) 
 
For our present purpose it is important to note that  
 

 𝑓(𝑥8)
𝑆(𝑋) +

𝑓(𝑥:)
𝑆(𝑋) +⋯+

𝑓(𝑥<)
𝑆(𝑋) =

𝑆(𝑋)
𝑆(𝑋) = 1 (4) 

 



http://vixra.org/author/ilija_barukcic  

  © Ilija Barukčić, Jever, Germany, 2019. All rights reserved. 
 

 
2.1.3 Definition. The Relative Frequency 
Let f(xt) denote a subset of the sample space S(X). Let p(X=xt) denote the relative frequency or probability of an 
event xt. Then 
 

 
𝑝(𝑋 = 𝑥>) =

𝑓(𝑥>)
𝑆(𝑋)  (5) 

Scholium. 
Broadly speaking, there are numerous questions to be asked about the correct understanding of probability. Some 
authors will insist that a frequentist approach to the concept of probability is not intelligible enough. There are 
circumstances where the concept of the degree of confidence or other probability concepts are of use too. Be that 
as it may, for our purposes, the frequentist approach is very useful since the same enable us to relate facts and 
hypotheses of a particular kind with real word situations. 
 
2.1.3 Definition. The Random Variables and Distributions 
Let X denote a real-valued function defined on a sample space, a random variable, with a finite number of finite 
outcomes x1 occurring with probability p(X = x1), x2 occurring with probability p(X = x2), …, xn occurring with 
probability p(X = xn). The collection of all of these probabilities denotes the distribution of the discrete or 
continuous random variable X. A discrete distribution is characterized by its probability mass function (p. m. f.). 
A continuous distribution is characterized by its probability density function (p. d. f.). Let E(xt) denote the 
expectation value of a single event xt. Let E(xt2) denote the second moment expectation value of a single event xt. 
In general, it is  
 

 𝐸@𝑥> A ≡ 𝑥> × 𝑝@𝑋 = 𝑥> A

𝐸@𝑥> A
:

≡ B𝑥> × 𝑝@𝑋 = 𝑥> AC
:

𝐸(𝑥>:) ≡ 𝑥> × 𝑥> × 𝑝@𝑋 = 𝑥> A

 (6) 

 
Let s(xt)2 denote the variance of a single event. Then 
 

 
𝜎@𝑥> A

:
≡ 𝐸(𝑥>:) − 𝐸@𝑥> A

:

≡ B𝑥> × 𝑥> × 𝑝@𝑋 = 𝑥> AC − B𝑥> × 𝑝@𝑋 = 𝑥> AC
:

≡ @𝑥> × 𝑥> A × F𝑝@𝑋 = 𝑥> A − B𝑝@𝑋 = 𝑥> A
:
CG

≡ @𝑥> × 𝑥> A × 𝑝@𝑋 = 𝑥> A × B1 − 𝑝@𝑋 = 𝑥> AC

 (7) 

 
Let E(X) denote the expectation value of the random variable X. It is then 
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 𝐸@𝑋 A ≡ B𝑥8 × 𝑝@𝑋 = 𝑥8 AC + B𝑥: × 𝑝@𝑋 = 𝑥: AC +⋯+ B𝑥< × 𝑝@𝑋 = 𝑥< AC

≡ 𝐸@𝑥8 A + 𝐸@𝑥: A +⋯+ 𝐸@𝑥< A

≡ H B𝑥> 𝑝@𝑋 = 𝑥> AC
>IJ<

>IJ8

≡ Ψ@𝑋 A × 𝑋 ×Ψ∗ @𝑋 A

 (8) 

 
and 

 
𝐸@𝑋: A ≡ B𝑥8: × 𝑝@𝑋 = 𝑥8 AC + B𝑥:: × 𝑝@𝑋 = 𝑥: AC +⋯+ B𝑥<: × 𝑝@𝑋 = 𝑥< AC

≡ 𝐸(𝑥8:) + 𝐸(𝑥::) +⋯+ 𝐸(𝑥<:)

≡ H B𝑥>: × 𝑝@𝑋 = 𝑥> AC
>IJ<

>IJ8

≡ Ψ@𝑋 A × 𝑋: × Ψ∗ @𝑋 A

 (9) 

 
while  Y(X) denotes the wave function of the random variable X and  Y*(X) denotes the complex conjugate of 
the wave function. Under conditions, where X´Y*(X)= 1 (Barukčić, 2016) it is 
 

 𝐸@𝑋 A ≡ Ψ@𝑋 A (10) 

 
but not in general. Let E(X2) denote the expectation value of the second moment of a random variable X. Let 
s(x)2 denote the variance of the random variable X. Then 
 

 𝜎(𝑋): ≡ 𝐸(𝑋: ) − 𝐸(𝑋):  (11) 

 
 
2.1.4 Definition. Independence 
Let At denote random variable at a Bernoulli trial (period of time) t. Let Bt denote another random variable at the 
same Bernoulli trial (period of time) t. Let p(At) denote the probability of At. Let p(Bt) denote the probability of 
Bt. Let p(At Ç Bt) denote the joint probability of At and Bt. In the case of independence (de Moivre, 1718; 
Kolmogoroff, 1933) of At and Bt it is generally valid that 
 

 𝑝@𝐴> ∩ 𝐵> A ≡ 𝑝@𝐴> A × 𝑝@𝐵> A (12) 
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2.1.5 Definition. The 2x2 Table 
Let At denote random variable at a Bernoulli trial (period of time) t. Let Bt denote another random variable at the 
same Bernoulli trial (period of time) t. Let p(At) denote the probability of At. Let p(Bt) denote the probability of 
Bt. Let p(At Ç Bt) denote the joint probability of At and Bt. In general it is (at+bt) = At, (ct+dt) = At, (at+ct) = Bt, 
(bt+dt) = Bt and at+bt+ct+dt=Nt. Equally, it is Bt+Bt = At + At = Nt. In this context, it is p(at)=p(At ÇBt) and in the 
same respect p(At) = p(at)+p(bt) or p(At)= p(At ÇBt)+ p(bt) =p(At ÇBt)+p(At ÇBt) while p(At) is not defined as 
p(at). In the same context, it is p(Bt) = p(at)+p(ct) = p(At ÇBt) +p(ct) and equally p(Bt) = 1- p(Bt) =p(bt)+p(dt). 
Since the joint probability of At and Bt is denoted in general by p(At ÇBt), it is p(At ÇBt) = p(At) - p(bt) or  
p(AtÇBt)=p(Bt) - p(ct) or in other words p(Bt) + p(bt) - p(ct) = p(At). In general, it is p(at)+p(ct)+p(bt)+p(dt) = 1 or 
equally at + bt + ct + dt = Nt. The meaning of the abbreviations at, bt, ct, dt, Nt are explained by following 2 by 2-
table (Table 1). 
 
Table 1. The sample space of a contingency table. 

  Conditioned Bt 
(Outcome) 

 
 

Total   Yes = 1 Not = +0 
Condition At 
(risk factor) 

Yes =+1 at bt At 
Not = +0 ct dt At 

 Total Bt Bt Nt 
 
2.1.5.a Definition. Index of unfairness 
The index of unfairness (IOU) is defined as 

 

𝐼𝑂𝑈 ≡ QR
𝐴> + 𝐵>
𝑁>

T − 1U (13) 

 
2.1.6 Definition. Sufficient Condition (Conditio per Quam) 
The mathematical formula of the sufficient condition relationship (Barukčić, 1989; Barukčić, 1997; Barukčić, 
2005; Barukčić, 2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 2017; 
Barukčić, 2018) (conditio per quam) of a population is defined as 
 

 
𝑝@𝐴> → 𝐵> A ≡

@𝑎> A + @𝑐> A + @𝑑> A
𝑁>

= 1

≡ 𝑝@𝑎> A + 𝑝@𝑐> A + 𝑝@𝑑> A

≡ 𝑝@𝐵> A + 𝑝@𝑑> A

≡ 𝑝@𝑎> A + 𝑝@𝐴> A

≡ +1.

 (14) 

 
and is used to prove the hypothesis: if At then Bt or is taken to express that the occurrence of an event At is a 
sufficient condition (Wertheimer, 1968; Gomes, 2009) for existence or occurrence of an event Bt. The occurrence 
of an event At is a sufficient condition for occurrence of the event Bt or Bt is a necessary condition for At. In other 
words, sufficient and necessary conditions (Wertheimer, 1968; Gomes, 2009) are converse relations. 
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2.1.7 Definition. The X² Test of Goodness of Fit of a Sufficient Condition 
A random sample of observations can come from a particular distribution (sufficient condition distribution) but 
must not. The X² test of goodness-of-fit is an appropriate method for testing the null hypothesis that a random 
sample of observations comes from a specific distribution (i.e. the distribution of a sufficient condition) against 
the alternative hypothesis that the data have some other distribution. The additive property of X² distribution may 
sometimes be used as an additional test of significance. In this case, the continuity correction should be omitted 
from each X² value. Under conditions where the chi-square goodness of fit test cannot be used it is possible to use 
an approximate and conservative (one sided) confidence interval known as the rule of three. The X² distribution 
is a particular type of a gamma distribution and widely applied in the field of mathematical statistics. The 
applicability of using the Pearson chi-squared statistic in cases where the cell frequencies of a 2× 2 contingency 
table are not greater than five is widely discussed (Fisher, 1922) in literature and the use of Yate’s continuity 
correction (Yates, 1934) is proposed. However, studies provided evidence that incorporating Yate’s continuity 
correction is not essential (Grizzle, 1967; Conover, 1974). Still, using the continuity correction (Yates, 1934), the 
chi-square value of a conditio per quam relationship is derived (Barukčić, 2018) as 
 

 

𝑋: B@𝐴> → 𝐵> A|𝐴> C ≡
B@𝑏> A − @1 2] AC

:

𝐴>
+ 0 = 0 (15) 

 
 
or alternatively as 
 

 

𝑋: B@𝐴> → 𝐵> A|𝐵> C ≡
B@𝑏> A − @1 2] AC

:

𝐵>
+ 0 = 0 (16) 

 
2.1.8 Definition. Necessary Condition (Conditio Sine Qua Non) 
Among the many generally valid natural laws and principles under which nature or matter itself assures its own 
self-organization, a relationship between events denoted as a necessary (Barukčić, 1989; Barukčić, 1997; Barukčić, 
2005; Barukčić, 2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 2017; 
Barukčić, 2018) condition (a conditio sine qua non) is one among the most important. A necessary (or an essential) 
event or condition At for some event Bt is a condition that must be satisfied in order to obtain Bt. In this respect, 
to say that an event At with its own probability p(At) is at the same (period of) time t a necessary condition for 
another event Bt with its own probability p(Bt) is equivalent to say that it is impossible to have Bt without At. In 
other words, without At no Bt or the absence of At guarantees the absence of Bt. The mathematical formula of the 
necessary condition relationship (conditio sine qua non) of a population is defined as 

 
𝑝@𝐴> ← 𝐵> A ≡

@𝑎> A + @𝑏> A + @𝑑> A
𝑁>

= 1

≡ 𝑝@𝑎> A + 𝑝@𝑏> A + 𝑝@𝑑> A

≡ 𝑝@𝐴> A + 𝑝@𝑑> A

≡ 𝑝@𝑎> A + 𝑝@𝐵> A = 𝑝@𝑎> A + B1 − 𝑝@𝐵> AC

≡ +1.

 (17) 
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2.1.9 Definition. The X² Test of Goodness of Fit of a Necessary Condition 
Under conditions where the chi-square goodness of fit test cannot be used it is possible to use an approximate and 
conservative (one sided) confidence interval known as the rule of three. Using the continuity correction, the chi-
square value of a conditio sine qua non distribution (Barukčić, 1989; Barukčić, 1997; Barukčić, 2005; Barukčić, 
2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 2017; Barukčić, 2018) before 
changes to 

 

𝑋: B@𝐴> ← 𝐵> A|𝐵> C ≡
B@𝑐> A − @1 2] AC

:

𝐵>
+ 0 = 0 (18) 

Depending upon the study design, another method to calculate the chi-square value of a conditio sine qua non 
distribution (while using the continuity correction) is defined as 

 

𝑋: B@𝐴> ← 𝐵> A|𝐴> C ≡
B@𝑐> A − @1 2] AC

:

𝐴>
+ 0 = 0 (19) 

2.1.10 Definition. Exclusion (At Excludes Bt and Vice Versa Relationship) 
The mathematical formula of the exclusion relationship (At excludes Bt and vice versa) of a population was defined 
(Barukčić, 1989; Barukčić, 1997; Barukčić, 2005; Barukčić, 2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 
2012; Barukčić, 2016; Barukčić, 2017; Barukčić, 2018) as 

 
𝑝@𝐴> |𝐵> A ≡

@𝑏> A + @𝑐> A + @𝑑> A
𝑁>

= 1

≡ 𝑝@𝑏> A + 𝑝@𝑐> A + 𝑝@𝑑> A

≡ 𝑝@𝑏> A + 𝑝@𝐴> A = 𝑝@𝑏> A + B1 − 𝑝@𝐴> AC

≡ 𝑝@𝑐> A + 𝑝@𝐵> A = 𝑝@𝑐> A + B1 − 𝑝@𝐵> AC

≡ +1.

 (20) 

 
and used to prove the hypothesis: At excludes Bt and vice versa. Why should At exclude Bt and vice versa? Under 
which conditions can such a relationship be given? 
 
2.1.11 Definition. The X² Test of Goodness of Fit of the Exclusion Relationship 
The chi square value with degree of freedom 2-1=1of the exclusion relationship (Barukčić, 1989; Barukčić, 1997; 
Barukčić, 2005; Barukčić, 2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 
2017; Barukčić, 2018) with a continuity correction can be calculated as 

 

𝑋: B@𝐴> |𝐵> A|𝐴> C ≡
B@𝑎> A − @1 2] AC

:

𝐴>
+ 0 = 0 (21) 

Depending upon the study design, another method to calculate the chi-square value of a conditio sine qua non 
distribution is defined as 

 

𝑋: B@𝐴> |𝐵> A|𝐵> C ≡
B@𝑎> A − @1 2] AC

:

𝐵>
+ 0 = 0 (22) 
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The chi square Goodness of Fit Test of the exclusion relationship examines how well observed data compare 
with the expected theoretical distribution of an exclusion relationship. 
 
 
2.1.12 Definition. The Mathematical Formula of the Causal Relationship k 
The mathematical formula of the causal relationship k (Barukčić, 1989; Barukčić, 1997; Barukčić, 2005; Barukčić, 
2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 2017; Barukčić, 2018) is 
defined at every single event, at every single Bernoulli trial t, as 
 

 
𝑘@𝐴> , 𝐵> A ≡

𝑝@𝐴> Ç𝐵> A − B𝑝@𝐴> A × 𝑝@𝐵> AC

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

 (23) 

 
where At denotes the cause and Bt denotes the effect. Under some certain circumstances, the chi-square distribution 
can be applied to determine the significance of causal relationship k. Pearson’s concept of correlation is not 
identical with causation. Causation as such is not identical with correlation. This has been proved many times and 
is widely discussed in many publications.  
 
2.1.13 Definition. The 95% Confidence Interval of the Causal Relationship k 
A confidence interval (CI) of the causal relationship k calculated from the statistics of the observed data can help 
to estimate the true value of an unknown population parameter with a certain probability. Under some conditions, 
the 95% interval for the causal relationship k is derived as 

 

c𝑘@𝐴> , 𝐵> A − d5
𝑁

b
; 𝑘@𝐴> , 𝐵> A + d5

𝑁
b

f (24) 

 
2.1.14 Definition. The Binomial distribution 
Historically, the binomial probability mass function of observing exactly x successes in n trials, with the 
probability of success on a single trial denoted by p and q = 1- p is 
 

 
p(𝑋 = 𝑥) = F

𝑛!
𝑥! × (𝑛 − 𝑥)!G

(1 − 𝑞)k × (1 − 𝑝)<lk (25) 

and was derived by the prominent Suisse mathematician Jacob Bernoulli (1655 - 1705) in his work Ars Conjectandi 
(Bernoulli, 1713). The mathematical formula to find probabilities in the binomial distributions may by very simple 
but to do the calculation itself can be pretty troublesome. A binomial distribution with parameters p and n = 1 is 
called the Bernoulli distribution with parameter p while x can take the values either +0 or +1. It is  
 

 p(𝑋 = 𝑥) = (1 − 𝑞)k × (1 − 𝑝)8lk (26) 

 
Under conditions where X = n, the binomial distributions simplifies to 
 

 
p(𝑋 = 𝑛) = F

𝑛!
𝑥! × (𝑛 − 𝑥)!

G (1 − 𝑞)k × (1 − 𝑝)<lk = F
𝑛!

𝑛! × (𝑛 − 𝑛)!
G (1 − 𝑞)< × (1 − 𝑝)<l< = (1 − 𝑞)< (27) 
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Under conditions where X = 0, the binomial distributions simplifies to 
 

 
p(𝑋 = 0) = F

𝑛!
𝑥! × (𝑛 − 𝑥)!

G (1 − 𝑞)k × (1 − 𝑝)<lk = F
𝑛!

0! × (𝑛 − 0)!
G (1 − 𝑞)m × (1 − 𝑝)<lm = (1 − 𝑝)< (28) 

 
Under certain circumstances, the Poisson distribution is an useful approximation to the binomial distribution with 
a very small success probability especially when the value of n is large and the value of p is close to 0. The binomial 
distribution can be approximated by the normal distribution too. The accuracy of such an approximation depends 
on several factors and first requires some pre-calculations. A rule of thumb using the normal distribution to 
approximate binomial probabilities is good if both (N´p) > 5-10 and if (N´(1-p)) > 5-10. Especially under 
conditions where the number of successes x is equal to the number of trials n or goes to n, such an approximation 
may provide inaccurate probabilities.  
 
2.1.15 Definition. The Poisson distribution 
The Poisson distribution, given previously by Abraham de Moivre (Moivre, 1733), is ascribed to Siméon Denis 
Poisson (1781–1840), a French mathematician, physicist, and engineer who published the same distribution 1837 
in his work “Recherches sur la probabilité des jugements en matière criminelle et en matière civile” (Poisson, 
1837). Ladislaus Bortkiewicz (Bortkiewicz, 1898) provided in 1898 one of the first practical applications of 
Poisson's distribution while investigating the number of soldiers in the Prussian army killed accidentally by horse 
kicks. A discrete random variable X is said to have a Poisson distribution with parameter l > 0, if, for x = 0, 1, 2, 
..., the probability mass function of X is given by 

 
p(𝑋 = 𝑥) = R

𝜆k

𝑥! T × 𝑒
ll (29) 

were x is the number of times an event occurs in an interval and x can take values 0, 1, 2, …., e is Euler's number 
(the number 2.71828..., the base of the natural logarithms) and x! is the factorial of x or x!=(x)´(x-1) ´ (x-2) 
´...2´1 and  l = n ´ p is the mean of the Poisson distribution. Many times, the Poisson distribution is applied to 
experimental conditions or situations with a large number of trials n while the occurrence of each event is very 
rare. Under conditions were x=0, it is 

 
p(𝑋 = 0) = R

𝜆k

𝑥! T × 𝑒
ll = R

𝜆m

0! T × 𝑒
ll = 𝑒ll (30) 

Scholium. 
Suppose that the probability of a conditio sine qua non relationship p(At ¬Bt) » +1. The probability the a conditio 
sine qua non relationship will not be given will be p(At ¬Bt) = 1- p(At ¬Bt) » +0. The expectation value that 
there is no conditio sine qua non relationship is  l = n ´ p(At ¬Bt) = n ´ (1- p(At ¬Bt)). The probability follows 
as 

 
p(𝑋 = 0) = p(𝑋 ≤ 0) = R

𝜆k

𝑥! T × 𝑒
lq = R

𝜆m

0! T × 𝑒
lq = 𝑒

lR<×F8lrBst ←ut CGT (31) 

 
The probability of counting at least one rare Poisson event is 1 minus the probability of counting none, which is 
as 

 
p(𝑋 ≥ 1) = 1 − p(𝑋 = 0) = 1 − R

𝜆k

𝑥! T × 𝑒
lq = 1 − R

𝜆m

0! T × 𝑒
lq = 1 − 𝑒

lRw×F8lrBst ←ut CGT (32) 
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2.1.16 Definition. Hypergeometric distribution  
The hypergeometric distribution (Huygens and van Schooten, 1657; Pearson, 1899; Gonin, 1936) is defined by 
the parameters population size, event count in population, sample size and can be used to calculate the exact 
probability of an event even for small samples which are drawn from relatively small populations, without 
replacement. The hypergeometric distribution differs to some extent from the binomial distribution. In contrast to 
the hypergeometric distribution, the probability of a binomially distributed random variable is the same from trial 
to trial. While the chi square distribution is of limited value for samples drawn from relatively small populations, 
the hypergeometric distribution can be used to calculate the exact probabilities for samples drawn from relatively 
small populations and without replication and for large populations too. The probability of having randomly 
exactly at (Table 1) successes in Nt hypergeometric trials or the significance of the causal relationship k can be 
tested under conditions of sampling without replacement by the hypergeometric distribution too. The probability 
of having exactly at successes by chance in Nt hypergeometric experimental trials is given by 
 

 

p@𝑋 = 𝑎> A =
R𝐴>
𝑎>
T × R𝑁> − 𝐴>

𝐵> − 𝑎>
T

R
𝑁>
𝐵>

T
 (33) 

2.1.17 Definition. The Chebyshev inequality 
Let X be a random variable with finite expected value E(x) and finite non-zero variance s(x)². Then for any real 
number x > 0, the probability p(x) for each real number x calculated according to the Chebyshev's inequality 
(Bienaymé, 1846; Tchébychef, 1867) follows as 

 
𝑝(|𝑋 − µ| ≥ 𝑥) ≤ R

𝜎(𝑋):

𝑥:
T (34) 

The Chebyshev's inequality (also called the Bienaymé-Chebyshev inequality) provide us only very approximate 
values. 
 
2.1.18 Definition. The rule of three   
Under some specified conditions (i. e. the dataset analyzed is large enough or n, the sample size, is n ~ 30 and 
more), a Chi-square goodness of fit test (Pearson, 1900) is able to provide evidence whether a sample distribution 
observed is identical with a theoretical distribution expected. Formally, the Chi-square goodness of fit test is 
defined as X2 = ((sample distribution) - (theoretical distribution))2/(theoretical distribution) or something like 
X2=((observed)-(expected))2/(expected). An approximate and conservative (one sided) confidence interval as 
discussed by (Rumke, 1975; Louis, 1981; Hanley, 1983; Jovanovic and Levy, 1997) and known as the rule of three 
can be of practical value if the Chi-square goodness of fit test cannot be applied. The rule of three is known to be 
derived as 

 
𝑝xyz>z{|} = 1 − R

3
𝑁>

T (35) 

and is one way to calculate the probability of events which occur with a probability near 1. Another and a very 
simple path to calculate the probability of an event can be performed by the following method. 
2.1.19 Definition. The unknown population proportion  pupper  
Tests of hypotheses concerning the sampling distribution of the sample proportion p (i. e. conditio sine qua non 
p(SINE), conditio per quam p(IMP) et cetera) can be performed using the normal approximation. The calculation 
of the rejection region based on the sample proportion to construct a confidence interval for an unknown population 
proportion pupper can be performed under conditions of sampling without replacement (Sachs, 1992) by the formula 

 

𝑝{yz>z{|}	�rr�y = F𝑝 −
1

2 × 𝑛G − Q𝑍 × dR
𝑝 × (1 − 𝑝)

𝑛 T × F
𝑁 − 𝑛
𝑁 − 1G

b
U (36) 

while the term ((N-n)/(N-1)) denotes the finite population correction (Isserlis, 1918). 
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2.1.20 Definition. Odds Ratio  
The odds ratio (Fisher, 1935; Cornfield, 1951; Edwards, 1963; Mosteller, 1968), abbrivated as OR(At,Bt), is a very 
commonly used measure of association for 2× 2 contingency tables (Table 1) and given by 

 
𝑂𝑅@𝐴> , 𝐵> A ≡ 	

𝑎> /𝑏>
𝑐> /𝑑>

≡
𝑎> × 𝑑>
𝑐> × 𝑏>

 (37) 

In addition, researchers are regularly relying on Odds ratio to gain some new knowledge. Still, we need to address 
some different aspect of Odds ratio itself to find out the straightforward contradictions and the deep theoretical 
inconsistency which is associated with Odds ratio. It turns out that we are ill-advised if we believe blindly, 
uncritically in Odds ratio. 
Case ct = 0 (conditio sine qua non relationship). 
Many authors use the term “objective reality” to refer to something like nature or processes in nature which are 
independent of human mind and consciousness. Let's begin with a question: is the physical world inherently 
objective or is there some deeper reality beyond the same? A part of the real world which exists outside of ourselves 
is an interplay of various opposite dualities too and a real world doesn’t hide anything if we can read the signs 
right. In particular, under similar circumstances, the same events, natural processes et cetera will be repeated. Thus 
far, to respond to some objections to the notion of “objective reality”, an event At can be a necessary condition of 
an event Bt independently of our belief, independently of our mind and consciousness. Under conditions were ct=0, 
there exists a conditio sine qua non relationship between At and Bt while in the same respect the Odds ratio 
collapses. To date, it is not generally accepted to divide by zero. The Odds ratio cannot speak about one of the 
natural, profound and far reaching relationships (i.e conditio sine qua non) but must pass over in silence on this 
relationship. Pagano & Gauvreau are quietly returning through the back door (Pagano & Gauvreau, 2018) to 
circumvent this fundamental problem of Odds ratio by adding 0.5 to the cells (Pagano & Gauvreau, 2018) at, bt, 
ct, dt. This simple way to circumvent the inconsistency and spectacular methodological incompleteness of Odds 
ratio is fundamentally misleading. To date, a substantial amount of research data available is analyzed by the Odds 
ratio. The more serious difficulty of this point of view is that it appears to be impossible to rely on Odds ratio in 
principle. 
Case bt = 0. 
Furthermore, under conditions were bt=0, a conditio per quam relationship between At and Bt is given while the 
Odds ratio collapses again. For this reason, the Odds ratio is overshadowed by a deep theoretical inconsistency 
and appears not to be grounded on a seemingly sound piece of reasoning. More likely, the Odds ratio (OR) is 
nothing more but Yule’s coefficient of association (Yule, 1900) Q(At,Bt) re-written (Warrens, 2008) in a non-
normalized form and given by 

 
𝑂𝑅@𝐴> , 𝐵> A ≡

𝑂𝑅@𝐴> , 𝐵> A − 1
𝑂𝑅@𝐴> , 𝐵> A + 1

≡
R𝑎> × 𝑑>
𝑏> × 𝑐>

T − 1

R𝑎> × 𝑑>
𝑏> × 𝑐>

T + 1

≡
R
@𝑎> × 𝑑> A − @𝑏> × 𝑐> A

@𝑏> × 𝑐> A
T

R
@𝑎> × 𝑑> A + @𝑏> × 𝑐> A

@𝑏> × 𝑐> A
T

≡
B@𝑎> × 𝑑> A − @𝑏> × 𝑐> AC

B@𝑎> × 𝑑> A + @𝑏> × 𝑐> AC

 

 

(38) 

 
Under conditions where Yule's coefficient (Yule, 1900) of association Q=0, there is no association. Although 
severely and justifiably criticized especially by Karl Pearson (1857–1925), the long-time and rarely challenged 
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leader of statistical science and Heron (Pearson and Heron, 1913), Odds ratio is still regularly referred to. The 
standard error and 95% confidence interval of the Odds ratio (OR) can be calculated according to Altman (Altman, 
1999). Given the severely limited character of odds ratio, the standard error of the log Odds ratio is calculated as 
 

 

𝑆𝐸 F𝑙𝑛 B𝑂𝑅@𝐴> , 𝐵> ACG ≡ dR
1
𝑎>
T + R

1
𝑏>
T + R

1
𝑐>
T + R

1
𝑑>
T

b
 (39) 

where ln denotes the logarithmus naturalis. The 95% confidence interval of the odds ratio is given by 
 

95	%	𝐶𝐼 ≡ 𝑒𝑥𝑝 �𝑙𝑛 B𝑂𝑅@𝐴> , 𝐵> AC − R1.96 × 𝑆𝐸 F𝑙𝑛 B𝑂𝑅@𝐴> , 𝐵> ACGT�

𝑡𝑜

𝑒𝑥𝑝 �𝑙𝑛 B𝑂𝑅@𝐴> , 𝐵> AC + R1.96 × 𝑆𝐸 F𝑙𝑛 B𝑂𝑅@𝐴> , 𝐵> ACGT�

 (40) 

2.1.21 Definition. The Chi Square Distribution 
The following critical values (Sachs, 1992) of the chi square distribution (Pearson, 1900) as visualized by Table 2 
are used in this publication. 
 
Table 2. The critical values of the chi square distribution (degrees of freedom: 1) 

  p-Value One sided X² Two sided X² 

The chi square distribution  

0.1000000000 
0.0500000000 
0.0400000000 
0.0300000000 
0.0200000000 
0.0100000000 
0.0010000000 
0.0001000000 
0.0000100000 
0.0000010000 
0.0000001000 
0.0000000100 
0.0000000010 
0.0000000001 

1.642374415 
2.705543454 
3.06490172 
3.537384596 
4.217884588 
5.411894431 
9.549535706 
13.83108362 
18.18929348 
22.59504266 
27.03311129 
31.49455797 
35.97368894 
40.46665791 

2.705543454 
3.841458821 
4.217884588 
4.709292247 
5.411894431 
6.634896601 
10.82756617 
15.13670523 
19.51142096 
23.92812698 
28.37398736 
32.84125335 
37.32489311 
41.82145620 
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2.1.22 Definition. The p-value 
A null hypothesis formulated before the performance of a scientific study should be either accepted or rejected. P-
values are one of the useful statistical measures which enable us to some extent to compare the statistical 
plausibility and clinical relevance of the conclusions drawn about a study finding with respect to a random event. 
Historically, the evidence of the first use of the p-value in statistics dates back as far the late 17th century. The 
question of the p-value was addressed especially by John Arbuthnott (Arbuthnott, 1710) in 1710. Arbuthnot (1667 
– 1735) examined birth records in London for each of the 82 years from 1629 to 1710 and compared the human 
sex ratio at birth to the null hypothesis of equal probability. About 100 years later, Pierre-Simon Laplace starts the 
Chapter V of his book “Théorie analytique des probabilités” (Laplace, 1812) with the computation of a p-value. 
In Chapter VI, of his book Laplace provided his famous study on the statistics of almost half a million births and 
demonstrated an excess of boys compared to girls. Laplace concluded by calculation of a p-value that the excess 
was a real effect. Formally, it was Karl Pearson who introduced the p-value (Pearson, 1900) as capital P. In point 
of fact, Fisher himself proposed in his influential book “Statistical Methods for Research Workers” (Fisher, 1925) 
the level p-value = 0.05 as a limit for statistical significance (Schervish, 1994). Many times, studies or experiments 
are investigating whether there is a difference between different experimental set-ups that the researchers are 
testing. In particular, a sample is drawn from a population, studied and the results are extrapolated to the population 
from where the sample was drawn. A condition or factor being studied can produces an effect or can make a 
difference but must not. In every experiment, the observed difference in the sample data must not reflect a true 
difference in the populations or in objective reality as such. To a certain extent, it is possible that a true null 
hypothesis is incorrectly rejected (type I error (or error of the first kind)). In other words, we falsely infer that 
something (i.e. Ho; there is no difference) is present when it actually it is not present. The probability of rejecting 
the null hypothesis given that the null hypothesis is true is called type I error rate or significance level, denoted by 
the Greek letter a (alpha). By convention, statisticians and journals suggest a significance level of a=5% (Type I 
error) with the consequence (or potential consequence) that the difference observed is not due to chance but equally 
we have to accept to be fooled by randomness or subjective or objective random errors 1 time out of 20. In 
particular, the probability of incorrectly rejecting the null hypothesis or p (incorrectly rejecting the null hypothesis) 
= 5% is defined as being acceptable. A false null hypothesis should be rejected. Theoretically, it is possible to fail 
to reject a false null hypothesis (type II error or error of the second kind, ß error). A false null hypothesis is rejected 
with the probability 1- ß, denoted by the Greek letter ß (beta). In an investigation, several statements based on the 
result of hypothesis tests are presented along with the associated p values. A hypothesis test should provide some 
help to decide whether the results of a study, based on a small sample, provide enough evidence against a claimed 
null hypothesis (denoted by H0), with the consequence that it is reasonable to believe that in a larger target 
population, H0 is false too. The strength of our evidence against H0 is measured by the p-value. Still, there are 
some misunderstandings associated with the interpretation of a p value. In particular, a very small p value does 
provide strong evidence that H0 is not true. In contrast to this, even as large p value does not provide real evidence 
that H0 is true. Thus far and depending on the point of view, the p-value (Panagiotakos, 2008) is defined as the 
probability of obtaining a result equal to or more extreme than an actually observed result under the condition that 
a null hypothesis is valid. In general, it is 

 
𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 (41) 

The (left tailed) null and alternative hypothesis is under some circumstances as follows: 
  

𝐻m : 𝑝 ≥ 𝑝m

𝐻s : 𝑝 < 𝑝m
 (42) 

A left tailed p-value which is greater than or equal to α (p-value > α) provides some evidence to accept the null 
hypothesis while a p-value calculated which is less than α (p-value < α), support the decision to reject the null 
hypothesis. In other words, under the condition of the validity of the null-hypothesis, the left tailed p value can be 
calculated using the formula 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒}��>	>|z}�� = 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 > 𝑥)|𝐻m C (43) 
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Following Fisher’s approach, a null hypothesis is never proved, but is possibly disproved. The testing of hypothesis 
is one of the means of examining the discrepancy between a null hypothesis and experimental data. In this context, 
a p-value of 0.10, means that a difference observed can be attributed to chance by 10%. To date by convention, 
the threshold of significance (i.e., α) is commonly set to 0.05, 0.01, 0.005, or 0.001. If the left tailed p-value 
calculated is greater than or equal to α (p-value > α), 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒}��>	>|z}�� = 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C ≡ 1 − 𝑝B(𝑋 > 𝑥)|𝐻m C ≥ 𝛼	? (44) 

then there is evidence to accept the null hypothesis. If the p-value calculated is less than α (p-value < α), then there 
is evidence to reject the null hypothesis. It follows that 

 

𝑝 B(𝑋 > 𝑥)|𝐻m C = 1 − @𝑝 − 𝑣𝑎𝑙𝑢𝑒}��>	>|z}��A	 = 1 − 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C (45) 

The calculation of the probability 1- p(X>x|H0) enable us to calculate the left tail (lower) p-value. The (right tailed) 
null and alternative hypothesis is sometimes as follows: 

  

𝐻m : 𝑝 ≤ 𝑝m

𝐻s : 𝑝 > 𝑝m
 (46) 

 
A right tailed p-value which is greater than or equal to α (p-value > α) provides some evidence to accept the null 
hypothesis while a p-value calculated which is less than α (p-value < α), support the decision to reject the null 
hypothesis. The p-value tells the investigator the probability of obtaining a result equal to or more extreme than 
what was actually observed. In general, the p-value for a right tail (upper) event is given by   
  

 𝑝 − 𝑣𝑎𝑙𝑢𝑒yz��>	>|z}�� = 𝑝 B(𝑋 ≥ 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 < 𝑥)|𝐻m C (47) 
If the right tailed p-value calculated is greater than or equal to α (p-value > α), 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒yz��>	>|z}�� = 𝑝 B(𝑋 ≥ 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 < 𝑥)|𝐻m C ≥ 𝛼? (48) 
then there is evidence to accept the null hypothesis. If the p-value calculated is less than α (p-value < α), then 
there is evidence to reject the null hypothesis. 
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Example. Conditio sine qua non.  
Suppose x = 395 as the number of times the conditio sine qua non relationship occurred in n = 400 trials. This 
random variable has the binomial distribution where p is the population parameter corresponding to the probability 
of success on any trial. The binomial distribution is used when there are exactly two mutually exclusive outcomes 
of a trial. The formula for the binomial probability mass function of observing exactly x successes in n trials, with 
the probability of success on a single trial denoted by p is 
 

 
p(𝑋 = 𝑥) = F

𝑛!
𝑥! × (𝑛 − 𝑥)!G

(𝑝)k × (1 − 𝑝)<lk (49) 

The probability of exactly x=395 events out of n=400 trials is p(X = 395) =0.0000412947. The probability of 
exactly not x=395 events out of n=400 trials is p(X<>395) = 1- p(X= 395) = 0.9999587053. The probability of 
exactly, or more than x=395 events out of n=400 trials is calculated as p(X>395) =0.0000533965. The probability 
of less than x=395 events out of n=400 trials is calculated as p(X < 395) = 0.9999466035. The probability of more 
than x=395 events out of n=400 trials is calculated as p(X >395) =0.0000121017. Setting α = 0.05, we have the 
cumulative probability of x=395 out of 400 events as 

 p@𝑋 ≤ 395|𝐻m A = p(𝑋 = 0) + p(𝑋 = 1) + …+ p(𝑋 = 395) (50) 

The probability of exactly, or fewer than, x=395 events out of n=400 trials is p = 0.9999878983 or in other words 
 

p@𝑋 ≤ 𝑥|𝐻m A = HF
𝑛!

𝑡! × (𝑛 − 𝑡)!
G (𝑝)> × (1 − 𝑝)<l>

>Ik

>Im

= H F
𝑛!

𝑡! × (𝑛 − 𝑡)!
G (0.95)> × (1 − 0.95)<l>

>I���

>Im

= 0.9999878983 (51) 

The probability p(X > 395) = 0.0000121017 follows as 
 

p@𝑋 > 𝑥|𝐻m A = 1 −HF
𝑛!

𝑡! × (𝑛 − 𝑡)!
G (𝑝)> × (1 − 𝑝)<l>

>Ik

>Im

= 1 − H F
𝑛!

𝑡! × (𝑛 − 𝑡)!
G (0,95)> × (1 − 0.95)<l>

>I���

>Im

= 0.0000121017 (52) 

Again, if p value > a then accept H0; if p value < a then reject H0. We used a one-tailed test with null and alternative 
hypothesis and conclude with 95% confidence to accept the null hypothesis H0 and reject the alternative hypothesis 
HA since the p value = 0.9999878 alternative hypothesis, because the associated p-value is less or equal to the level 
of significance a. In this context, the p value is thus the smallest level of significance to which the null hypothesis 
can still be rejected. Under some certain circumstances n´p´(1-p) > 9. Another rule of thumb demands that the 
sample size n is “sufficiently large” and the binomial distribution can be approximated by the normal distribution 
if at least n´p ≥ 5 and if n´(1-p)≥5. If these conditions are met, then the binomial distribution can be treated as 
approximating the normal distribution and a z-test for significance can be performed. 
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Right tailed p value for a Binomial random variable according to Chebyshev inequality 
Bernoulli's Theorem published in his Book Ars Conjectandi in 1713 (Bernoulli, 1713) and described by Poisson 
in 1837 (Poisson, 1837) under the name “la loi des grands nombres” (“The law of large numbers”) can be used to 
calculate the p value too. A Bernoulli distributed random variable xt takes the value +1 with probability p(xt) and 
the value +0 with probability q(xt) = 1 − p(xt) at each Bernoulli trial t. The Bernoulli distribution itself is a special 
case of the binomial distribution with n = 1. Let Xn = (x1+ x2+ ...+ xn) denote the sum of all independent, identically 
distributed (i.i.d.) random variables x1, x2, ..., xn. Let H(Xn)=Xn/Nt denote the relative frequency of such a binomial 
distributed random variable with 

 

𝐸@𝐻< A = 𝐸 R
𝑋<
𝑁>

T =
𝐸@𝑋< A
𝑁>

=
𝑁> × 𝑝
𝑁>

= 𝑝 (53) 

while E(H(Xn)) denotes the expectation value of relative frequency. Let s(H(Xn)) 2 denote the variance of relative 
frequency as 

 

𝜎@𝐻< A
:
= R

1
𝑁>:
T × 𝜎@𝑋< A

:
= 𝜎R

𝑋<
𝑁>

T
:

=
𝑝 × (1 − 𝑝)

𝑁>
 (54) 

Let X be a random variable with finite expected value E(x) and finite non-zero variance s(x)². In the case of 
conditio sine qua non, or conditio per quam et cetera, we define E(x)=N, X = N´ (1-a) while a is the level of 
significance and Xpopulation = | X-E(x)|. For any real number x observed > 0, the p-value for each real number x can be 
calculated according to the Chebyshev's inequality. Our (right tailed) null and alternative hypotheses are as 
follows: 

  

𝐻m : |𝐸(𝐻𝑛 ) − 1| ≥ 𝛼

𝐻s : |𝐸(𝐻𝑛 ) − 1| < 𝛼
 (55) 

The p-value according to the Chebyshev's inequality tell us again the probability of obtaining a result equal to or 
more extreme than what was actually observed. In general, the p-value for a right tail (upper) event is given by 
the Chebyshev's inequality as    

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒yz��>	>|z}�� = 𝑝 B(|𝐸(𝐻𝑛 ) − 1| ≥ 𝛼)|𝐻m C ≡ 1 − 𝑝B(|𝐸(𝐻𝑛 ) − 1| < 𝛼)|𝐻m C ≤
𝜎(𝐻𝑛 )2

(𝛼)2
 (56) 

The p-value for the relative frequency according to Chebyshev's inequality (Bienaymé, 1846; Tchébychef, 1867) 
follows (Scheid, 1992) as 

 

𝑝@�𝐸@𝐻< A − 1� ≥ 𝛼A ≤ Q
𝜎@𝐻< A

:

(𝛼):
U ≤ Q

𝐸@𝐻< A × B1 − 𝐸@𝐻< AC

𝑁> × (𝛼):
U (57) 

 
as long as Nt > p´(1-p)/(a2). The Chebyshev's inequality (also called the Bienaymé-Chebyshev inequality) 
guarantees only an approximate p-values.  
 
Example. 
The sample size may be Nt = 172. Set the relative frequency as E(H(Xn)) = p=0,98255814 and a = 0,05. Since 
p´(1-p)/(a2) = 6,855056787 it is Nt > p´(1-p)/(a2) and Chebyshev's inequality can be used. Within the population 
we expect the probability of 1. Our hypothesis is that the sample value does not deviate more than a = 0,05 from 
the population. The p-value can be calculated as 
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𝑝@�𝐸@𝐻< A − 1� ≥ 𝛼A ≤ Q
𝐸@𝐻< A × B1 − 𝐸@𝐻< AC

𝑁> × (𝛼):
U ≤ R

0.98255814 × (1 − 0.98255814)
172 × (0.05):

T =0.03719038 
(58) 

 
In general, if a p-value is greater than or equal to α (p-value > α) then accept the null hypothesis. If the p-value 
calculated is less than α (p-value < α), then reject the null hypothesis. Our p-value is less than α therefore we reject 
the null-hypothesis and accept the alternative hypothesis. The sample value deviates less then 5% from the 
population value. 
 
Right tailed p value according to normal distribution 
Our null-hypothesis is that the probability of the conditio sine qua non relationship is  p(At ¬ Bt). A random 
sample of the size n is drawn from the population. The absolute frequency of the conditio sine qua non relationship 
within the sample drawn was observed as X(At ¬ Bt) = n´p(At ¬ Bt) while p(At ¬ Bt) = (X(At ¬ Bt)/ n) denotes 
the relative frequency of the conditio sine qua non relationship within the sample. What is the probability that there 
will be X(At ¬ Bt) or more cases of the conditio sine qua non relationship within the population? Obviously, the 
normalized variable z one sided right tailed (Sachs, 1992) becomes  

 

𝑧	 <�	¡z���	yz��>	>|z}��	 ≡
R𝑝@𝐴> ← 𝐵> A − F

1
(2 × 𝑛)GT − B𝜋@𝐴> ← 𝐵> AC

d𝜋@𝐴> ← 𝐵> A × B1 − 𝜋@𝐴> ← 𝐵> AC
𝑛

b
 (59) 

The continuity correction (1/(2´n)) becomes smaller as n becomes larger. This table 3 gives a probability that a 
statistic is less than Z (i.e. between negative infinity and Z) in other words 

 

Φ(𝑧) ≡
1

2 × 𝜋
¤ 𝑒l>

b /:𝑑𝑡
¥

l¦
 (60) 
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Table 3. Probability associated with a Z value.  
Z 0 +0.01  +0.02  +0.03  +0.04  +0.05  +0.06  +0.07  +0.08  +0.09 

1,00 0,84134 0,84375 0,84614 0,84849 0,85083 0,85314 0,85543 0,85769 0,85993 0,86214 

1,10 0,86433 0,8665 0,86864 0,87076 0,87286 0,87493 0,87698 0,879 0,881 0,88298 

1,20 0,88493 0,88686 0,88877 0,89065 0,89251 0,89435 0,89617 0,89796 0,89973 0,90147 

1,30 0,9032 0,9049 0,90658 0,90824 0,90988 0,91149 0,91308 0,91466 0,91621 0,91774 

1,40 0,91924 0,92073 0,9222 0,92364 0,92507 0,92647 0,92785 0,92922 0,93056 0,93189 

1,50 0,93319 0,93448 0,93574 0,93699 0,93822 0,93943 0,94062 0,94179 0,94295 0,94408 

1,60 0,9452 0,9463 0,94738 0,94845 0,9495 0,95053 0,95154 0,95254 0,95352 0,95449 

1,70 0,95543 0,95637 0,95728 0,95818 0,95907 0,95994 0,9608 0,96164 0,96246 0,96327 

1,80 0,96407 0,96485 0,96562 0,96638 0,96712 0,96784 0,96856 0,96926 0,96995 0,97062 

1,90 0,97128 0,97193 0,97257 0,9732 0,97381 0,97441 0,975 0,97558 0,97615 0,9767 

2,00 0,97725 0,97778 0,97831 0,97882 0,97932 0,97982 0,9803 0,98077 0,98124 0,98169 

2,10 0,98214 0,98257 0,983 0,98341 0,98382 0,98422 0,98461 0,985 0,98537 0,98574 

2,20 0,9861 0,98645 0,98679 0,98713 0,98745 0,98778 0,98809 0,9884 0,9887 0,98899 

2,30 0,98928 0,98956 0,98983 0,9901 0,99036 0,99061 0,99086 0,99111 0,99134 0,99158 

2,40 0,9918 0,99202 0,99224 0,99245 0,99266 0,99286 0,99305 0,99324 0,99343 0,99361 

2,50 0,99379 0,99396 0,99413 0,9943 0,99446 0,99461 0,99477 0,99492 0,99506 0,9952 

2,60 0,99534 0,99547 0,9956 0,99573 0,99585 0,99598 0,99609 0,99621 0,99632 0,99643 

2,70 0,99653 0,99664 0,99674 0,99683 0,99693 0,99702 0,99711 0,9972 0,99728 0,99736 

2,80 0,99744 0,99752 0,9976 0,99767 0,99774 0,99781 0,99788 0,99795 0,99801 0,99807 

2,90 0,99813 0,99819 0,99825 0,99831 0,99836 0,99841 0,99846 0,99851 0,99856 0,99861 

2,00 0,99865 0,99869 0,99874 0,99878 0,99882 0,99886 0,99889 0,99893 0,99896 0,999 
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The following table 4 gives a probability that a statistic is greater than z. 

 

f(z) = 1 − 	Φ(𝑧) ≡ 1 − R
1

2 × 𝜋¤ 𝑒l>
b /:𝑑𝑡

¥

l¦
T (61) 

Table 4. Probability associated with a Z value.  
z  +0 +0,01 +0,02 +0,03 +0,04 +0,05 +0,06 +0,07 +0,08 +0,09 

1,00 0,15866 0,15625 0,15386 0,15151 0,14917 0,14686 0,14457 0,14231 0,14007 0,13786 

1,10 0,13567 0,1335 0,13136 0,12924 0,12714 0,12507 0,12302 0,121 0,119 0,11702 

1,20 0,11507 0,11314 0,11123 0,10935 0,10749 0,10565 0,10383 0,10204 0,10027 0,09853 

1,30 0,0968 0,0951 0,09342 0,09176 0,09012 0,08851 0,08692 0,08534 0,08379 0,08226 

1,40 0,08076 0,07927 0,0778 0,07636 0,07493 0,07353 0,07215 0,07078 0,06944 0,06811 

1,50 0,06681 0,06552 0,06426 0,06301 0,06178 0,06057 0,05938 0,05821 0,05705 0,05592 

1,60 0,0548 0,0537 0,05262 0,05155 0,0505 0,04947 0,04846 0,04746 0,04648 0,04551 

1,70 0,04457 0,04363 0,04272 0,04182 0,04093 0,04006 0,0392 0,03836 0,03754 0,03673 

1,80 0,03593 0,03515 0,03438 0,03362 0,03288 0,03216 0,03144 0,03074 0,03005 0,02938 

1,90 0,02872 0,02807 0,02743 0,0268 0,02619 0,02559 0,025 0,02442 0,02385 0,0233 

2,00 0,02275 0,02222 0,02169 0,02118 0,02068 0,02018 0,0197 0,01923 0,01876 0,01831 

2,10 0,01786 0,01743 0,017 0,01659 0,01618 0,01578 0,01539 0,015 0,01463 0,01426 

2,20 0,0139 0,01355 0,01321 0,01287 0,01255 0,01222 0,01191 0,0116 0,0113 0,01101 

2,30 0,01072 0,01044 0,01017 0,0099 0,00964 0,00939 0,00914 0,00889 0,00866 0,00842 

2,40 0,0082 0,00798 0,00776 0,00755 0,00734 0,00714 0,00695 0,00676 0,00657 0,00639 

2,50 0,00621 0,00604 0,00587 0,0057 0,00554 0,00539 0,00523 0,00508 0,00494 0,0048 

2,60 0,00466 0,00453 0,0044 0,00427 0,00415 0,00402 0,00391 0,00379 0,00368 0,00357 

2,70 0,00347 0,00336 0,00326 0,00317 0,00307 0,00298 0,00289 0,0028 0,00272 0,00264 

2,80 0,00256 0,00248 0,0024 0,00233 0,00226 0,00219 0,00212 0,00205 0,00199 0,00193 

2,90 0,00187 0,00181 0,00175 0,00169 0,00164 0,00159 0,00154 0,00149 0,00144 0,00139 

3,00 0,00135 0,00131 0,00126 0,00122 0,00118 0,00114 0,00111 0,00107 0,00104 0,001 

3,10 0,00097 0,00094 0,0009 0,00087 0,00084 0,00082 0,00079 0,00076 0,00074 0,00071 

3,20 0,00069 0,00066 0,00064 0,00062 0,0006 0,00058 0,00056 0,00054 0,00052 0,0005 

3,20 0,00048 0,00047 0,00045 0,00043 0,00042 0,0004 0,00039 0,00038 0,00036 0,00035 

3,40 0,00034 0,00032 0,00031 0,0003 0,00029 0,00028 0,00027 0,00026 0,00025 0,00024 

3,50 0,00023 0,00022 0,00022 0,00021 0,0002 0,00019 0,00019 0,00018 0,00017 0,00017 

3,60 0,00016 0,00015 0,00015 0,00014 0,00014 0,00013 0,00013 0,00012 0,00012 0,00011 

3,70 0,00011 0,0001 0,0001 0,0001 0,00009 0,00009 0,00008 0,00008 0,00008 0,00008 

3,80 0,00007 0,00007 0,00007 0,00006 0,00006 0,00006 0,00006 0,00005 0,00005 0,00005 

3,90 0,00005 0,00005 0,00004 0,00004 0,00004 0,00004 0,00004 0,00004 0,00003 0,00003 

4,00 0,00003 0,00003 0,00003 0,00003 0,00003 0,00003 0,00002 0,00002 0,00002 0,00002 
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Results 

 
Theorem. The normalization of the variance of a single event 
Mathematically, the probability that an event will occur is expressed as a number between +0 and +1 and can be 
defined in many different ways. For our purposes, the probability of event, which has a value or quantity xt is 
represented by p(xt) and we define the probability that a single event has the value xt at the Bernoulli trial t by the 
relationship 

 
p@𝑥> A = R

𝐸@𝑥> A
𝑥>

T = R
𝑥> × 𝐸@𝑥> A
𝑥> × 𝑥>

T = R
𝐸(𝑥>:)
𝑥>:

T (62) 

while E(xt) denotes the expectation value of a single event. Such a definition of probability assumes that every 
single event is associated with its own expectation value even under circumstances where p(xt) = 1. Under these 
conditions it is equally E(xt) = xt. In other words, it is 

 
𝐸@𝑥> A = @𝑥> A × p@𝑥> A = R

𝐸(𝑥>:)
𝑥>

T (63) 

or 
 

𝐸@𝑥> A
:

= (𝑥>:) × p@𝑥> A
:
= B𝑥> × p@𝑥> AC

:
 (64) 

or 
 

𝐸(𝑥>:) = (𝑥>:) × p@𝑥> A = @𝑥> A × B𝑥> × p@𝑥> AC = B𝑥> × 𝐸@𝑥> AC  (65) 

while the definitions above are independent of the distribution of xt. The variance of a single event xt denoted as 
s(xt)² is independent of the distribution of xt and defined as 

 
𝜎@𝑥> A

:
= 𝐸(𝑥>:) − 𝐸@𝑥> A

:
= B𝑥>: × p@𝑥> AC − B𝑥> × p@𝑥> AC

:
= 𝑥>: × Fp@𝑥> A × B1 − p@𝑥> ACG (66) 

Claim. 
In general, it is 

 𝐸@𝑥> A
:

𝐸(𝑥>:)
+
𝜎@𝑥> A

:

𝐸(𝑥>:)
= +1 (67) 

 
 𝑷𝒓𝒐𝒐𝒇.

𝜎@𝑥𝑡 A
2 ≡ 𝐸(𝑥𝑡2) − 𝐸@𝑥𝑡 A

2

𝑅𝑒𝑎𝑟𝑟𝑎𝑖𝑛𝑔, 𝑖𝑡	𝑖𝑠

𝐸@𝑥𝑡 A
2
+ 𝜎@𝑥𝑡 A

2 ≡ 𝐸(𝑥𝑡2)
𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔,𝑤𝑒	𝑜𝑏𝑡𝑎𝑖𝑛

𝐸@𝑥𝑡 A
2

𝐸(𝑥𝑡2)
+
𝜎@𝑥𝑡 A

2

𝐸(𝑥𝑡2)
≡

𝐸(𝑥𝑡2)
𝐸(𝑥𝑡2)

= +1

𝑜𝑟

𝐸@𝑥𝑡 A
2

𝐸(𝑥𝑡2)
+
𝜎@𝑥𝑡 A

2

𝐸(𝑥𝑡2)
≡ +1

𝑸𝒖𝒐𝒅	𝒆𝒓𝒂𝒕	𝒅𝒆𝒎𝒐𝒏𝒔𝒕𝒓𝒂𝒏𝒅𝒖𝒎.

 (68) 
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Theorem. The exact probability of a single event I 
Claim. 
In general, it is 

 
𝑝(𝑥𝑡 ) = 1 −

𝜎@𝑥> A
:

𝐸(𝑥>:)
 (69) 

 
 𝑷𝒓𝒐𝒐𝒇.

𝜎@𝑥> A
:

≡ 𝐸(𝑥>:) − 𝐸@𝑥> A
:

𝑜𝑟
𝐸@𝑥> A

:

𝐸(𝑥>:)
+
𝜎@𝑥> A

:

𝐸(𝑥>:)
= 1

𝑜𝑟

𝑝@𝑥> A =
𝐸@𝑥> A

:

𝐸(𝑥>:)
=
B𝑥> × 𝑥> × 𝑝@𝑥> A × 𝑝@𝑥> AC

B𝑥> × 𝑥> × 𝑝@𝑥> AC
≡ 1 −

𝜎@𝑥> A
:

𝐸(𝑥>:)

𝑸𝒖𝒐𝒅	𝒆𝒓𝒂𝒕	𝒅𝒆𝒎𝒐𝒏𝒔𝒕𝒓𝒂𝒏𝒅𝒖𝒎.

 (70) 

 
 
Theorem. The exact probability of a single event II 
Claim. 
Under conditions of a Binomial distribution, it is 

 
𝑝(𝑥𝑡 ) = 1 −

𝜎@𝑥 A
:

𝐸@𝑥 A
 (71) 

 
 

𝑷𝒓𝒐𝒐𝒇.
+1 = +1

𝑝@𝑥> A × 1 = 𝑝@𝑥> A × 1

𝑝@𝑥> A = 𝑝@𝑥> A

= 0 + 𝑝@𝑥> A

= 1 − 1 + 𝑝@𝑥> A

= 1 − B1 − 𝑝@𝑥> AC

= 1 −
𝑝@𝑥> A × B1 − 𝑝@𝑥> AC

𝑝@𝑥> A

= 1 −
𝑁> × 𝑝@𝑥> A × B1 − 𝑝@𝑥> AC

𝑁> × 𝑝@𝑥> A

𝑝@𝑥> A ≡ 1 −
𝜎@𝑥 A

:

𝐸@𝑥 A

𝑸𝒖𝒐𝒅	𝒆𝒓𝒂𝒕	𝒅𝒆𝒎𝒐𝒏𝒔𝒕𝒓𝒂𝒏𝒅𝒖𝒎.

 (72) 
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Example. Chebyshev's inequality 
According to Chebyshev's inequality, it is  

 
𝑝 B|𝑋 − 𝜇| < ½𝐸(𝑋)b C ≥ 1 −R

𝜎(𝑥):

𝐸(𝑋) T (73) 

while the number E(X) is also called the mean of X or the expected value of X. The terms mean, expected value 
or expectation value are used interchangeably.  

 
Theorem. The approximate probability p of a single event  
Claim. 
In general, the probability p of a single event is given approximately by 
 

 
p = a𝑒l@<×(8lr)A

¾
= a𝑒l(<l¿)

¾
= a𝑒lq

¾  (74) 

as long as the number of trials n goes to positive infinity (n ® +¥) while X = n´p denotes the number of successes 
occurred anywhere among the n trials. 
Proof. 
In general, it is +1 equal to +1 (lex identitatis (von Leibniz, 1765; Barukčić, 2016)) or   

 +1 = +1 (75) 

Multiplying by p, we obtain 1´p=1´p or  
 𝑝 = p (76) 

were p denotes the probability of a single event. Let n denote something like the number of trials or the sample 
size et cetera. Performing the power operation, it is 

 (𝑝)< = (𝑝)< (77) 

According to mathematical requirements it is p º q or p º 1-p º 1- q and l º n´p and l º n´p º n´q º n´(1-p). 
Rearranging the equation before it is 

 

(𝑝)< = (1 − 𝑞)< = R1 − F
𝑛 × 𝑞
𝑛 GT

<

= �1 − F
𝜆
𝑛G�

<

 (78) 

Taking the limit as the number of trials as n goes to positive infinity (n ® +¥), we obtain 
 

�1 − F
𝜆
𝑛G�

<

= lim
<→J¦

��1 − F
𝜆
𝑛G�

<

� (79) 

According to elementary (DeGroot et al., 2005) calculus it is  
 

lim
<→J¦

��1 − F
𝜆
𝑛G�

<

� = 𝑒lq (80) 

as the number of trials n goes to positive infinity (n ® +¥) the equation above simplifies as 
 

(𝑝)< = 𝑒lq (81) 

In this context, the probability p in a sequence of n independent Bernoulli trials (experiments) with q = 1 – p and 
l= n´(1-p) as the number of trials n goes to positive infinity (n ® +¥) is given by 
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p = a𝑒l@<×(8lr)A

¾
= a𝑒lq

¾  (82) 

Quod erat demonstrandum. 
 
Example. 

For a single trial, i.e., n = 1, it is 
 

 
p = a𝑒l@8×(8lr)A

Ã
= 𝑒l@(8lr)A (83) 

and the probability is determined by its own other. 
 
Example. 
Suppose a team of Astronomers has investigated n=10 galaxies and found one black hole inside each galaxy, 
consequently it is l = 0. The probability that every possible galaxy has a black hole can be calculated approximately 
as 

 
p = a𝑒l@<×(8lr)A

¾
= a𝑒mÃÄ = 1 (84) 

According to the rule of three, the probability that every galaxy does possess a black could be calculated as 
 

𝑝{yz>z{|} = 1 − F
3
𝑛G = 1 − F

3
10G = 0.7 (85) 

Example. 
Suppose an investigation is performed with n=100 cases and controls. The probability of an event within the 
population is assumed to be p=0.95 and l= n´q = n´(1-p) = 100´(1-0.95) = 5. What is the critical p? 
 

 
𝑝{yz>z{|} = a𝑒l@<×(8lr)A

¾
= a𝑒l�

ÃÄÄ
= 0.951229425 (86) 

The probability found within sample should not be lower than 0.951229425. Otherwise the data do not support the 
hypotheses that p = 0.95 or even more. Are such observations appropriate at all to justify some predictions about 
observations we have not yet made or a reality, we are still not aware of or may be even with regard to general 
claims which go far beyond the observed? The question is of course are we allowed to infer a hypothesis about the 
general situation based on the observation of such a limited sample? In other words, how (long) can we be uncertain 
about the unknown, the infinitely empty, the unobserved, on what ground and to what extent? One may object that 
any analysis of the notions of cause and effect is confronted by the unobserved and the not completely known too. 
On this view, how many galaxies are given within the universe known? We do not know for sure. How many of 
all galaxies do possess a black hole? We do not know for sure, either. Still, even such a small sample of 
observations justifies the conclusion and provides some degree of support but of course not the ultimate evidence 
for the truth that about 100 % of all galaxies possess a black hole. It is not the main goal of this paper to solve the 
famous philosophical problem of induction and inductive inference as introduces by David Hume in Book 1, part 
iii, section 6 in 1739 in his book “A Treatise of Human Nature” (Hume, 1739). However, in order to approach to 
the solution of this problem it is necessary to point out that under certain circumstances logic, mathematics and 
statistics are able to provide us to some extent with methods of direct inference even about the unknown.  
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Theorem. 
In general, under conditions where X = x = n, it is 

 
p(𝑋 = 𝑛) = 𝑒l@<×(8lr)A (87) 

were the probability of a single event is given by p and n is the sample size as the number of trials n goes to positive 
infinity (n ® +¥). 

Proof. 
The binomial distribution is defined as  

 
p(𝑋 = 𝑥) = RF

𝑛!
𝑥! × (𝑛 − 𝑥)!G

(1 − 𝑞)k × (1 − 𝑝)<lkT (88) 

were p = 1- q. Under conditions where X = x = n, it follows that 
 

 
p(𝑋 = 𝑛) = RF

𝑛!
𝑛! × (𝑛 − 𝑛)!G

(1 − 𝑞)< × (1 − 𝑝)<l<T (89) 

or that 
 p(𝑋 = 𝑛) = (1 − 𝑞)< (90) 

Defining l= n´q = n´(1-p), we obtain 
 

p(𝑋 = 𝑛) = (1 − 𝑞)< = R1 − F
𝑛 × 𝑞
𝑛 GT

<

= �1 − F
𝜆
𝑛G�

<

 (91) 

Taking the limit as the number of trials as n goes to positive infinity (n ® +¥), we obtain 
 

�1 − F
𝜆
𝑛G�

<

= lim
<→J¦

��1 − F
𝜆
𝑛G�

<

� (92) 

According to elementary (DeGroot et al., 2005) calculus it is  
 

lim
<→J¦

��1 − F
𝜆
𝑛G�

<

� = 𝑒lq (93) 

In this context, the probability to obtain x=n successes drawn with replacement from a population in a sequence 
of n independent Bernoulli trials (experiments) with q = 1 – p and l= n´(1-p) as the number of trials n goes to 
positive infinity (n ® +¥) is given by 

 
p(𝑋 = 𝑛) = 𝑒l@<×(8lr)A = 𝑒lq (94) 

were the probability of a single event is given by p. 
Quod erat demonstrandum. 
 
As proved in this publication, the p-value for a right tail (upper) event under conditions were our expectation is 
that X = x = n, is given by  

 
𝑝 B(𝑋 = 𝑛)|𝐻m C ≡ 1 − 𝑝 B(𝑋 < 𝑛)|𝐻m C = 𝑝 B(𝑋 ≥ 𝑛)|𝐻m C = 𝑒l@<×(8lr)A (95) 
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Theorem. 
The cumulative distribution function abbreviated as P(x) or as F(x) or as d.f.(x) or c.d.f.(x) of every random 
variable X, regardless of whether the distribution of X is continuous, discrete or mixed, for each real number x is 
defined as 

 𝑃(𝑥) = 𝐹(𝑥) = 𝑑. 𝑓. (𝑥) = 𝑐. 𝑑. 𝑓. (𝑥) = 𝑝(𝑋 ≤ 𝑥) = 𝑝(𝑋 = 𝑥) + 𝑝(𝑋 < 𝑥) (96) 

for -¥ < x < +¥.  
 
Claim. 
For every value x, it is 

 𝑝(𝑋 > 𝑥) = 1 − 𝑝(𝑋 ≤ 𝑥) (97) 

Proof.  
For every value x, it is 

 𝑝(𝑋 ≤ 𝑥) + 𝑝(𝑋 > 𝑥) = 1 (98) 

and the theorem follows directly from the definition of the cumulative distribution function as 
 𝑝(𝑋 > 𝑥) = 1 − 𝑝(𝑋 ≤ 𝑥) (99) 

Quod erat demonstrandum. 
 
 
 
 
Theorem. 
The p-value for a right tail (upper) event is given by   

 
𝑝 B(𝑋 ≥ 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 = 𝑥)|𝐻m C (100) 

Proof. 
In general, it is 

 
𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 (101) 

or 
 

𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C (102) 

Adding p((X=x)|H0), we obtain 
 

𝑝 B(𝑋 = 𝑥)|𝐻m C + 𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 = 𝑥)|𝐻m C (103) 

In general, it is p((X>x)|H0) = p((X=x)|H0) + p((X>x)|H0). The p-value for a right tail (upper) event is given by   
 

𝑝 B(𝑋 ≥ 𝑥)|𝐻m C ≡ 1 − 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 = 𝑥)|𝐻m C = 1 − 𝑝B(𝑋 < 𝑥)|𝐻m C (104) 

Q. e. d. 
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Theorem. 
The p-value for a right tail (upper) event under conditions where X = x = n is given by  

 
1 − 𝑝 B(𝑋 < 𝑛)|𝐻m C = 𝑝 B(𝑋 = 𝑛)|𝐻m C (105) 

Proof. 
In general, it is 

 
𝑝 B(𝑋 ≤ 𝑥)|𝐻m C + 𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 (106) 

or 
 

𝑝 B(𝑋 = 𝑥)|𝐻m C + 𝑝 B(𝑋 < 𝑥)|𝐻m C + 𝑝 B(𝑋 > 𝑥)|𝐻m C ≡ 1 (107) 

Under conditions where X = x = n, we obtain 
 

𝑝 B(𝑋 = 𝑛)|𝐻m C + 𝑝 B(𝑋 < 𝑛)|𝐻m C + 𝑝 B(𝑋 > 𝑛)|𝐻m C ≡ 1 (108) 

Mathematically, it is not possible that X > n. Thus far, p((X>n)|H0) = 0. Under these assumptions, the equation 
before simplifies as 

 
𝑝 B(𝑋 = 𝑛)|𝐻m C + 𝑝 B(𝑋 < 𝑛)|𝐻m C ≡ 1 (109) 

Rearranging equation, it is 
 

𝑝 B(𝑋 = 𝑛)|𝐻m C ≡ 1 − 𝑝 B(𝑋 < 𝑛)|𝐻m C (110) 

Mathematically it is p((X>x)|H0) = 1- p((X<x)|H0). The p-value for a right tail (upper) event under conditions 
where X = x = n, is given by  

 
𝑝 B(𝑋 = 𝑛)|𝐻m C ≡ 1 − 𝑝 B(𝑋 < 𝑛)|𝐻m C = 𝑝 B(𝑋 ≥ 𝑛)|𝐻m C (111) 

Q. e. d. 
 
The results one expects to obtain if some underlying assumption is true and the results observed while using some 
experimental data can differ by chance or systematically. 
 
Theorem. p value according to Poisson Distribution 
A binomial distribution is a sum of n independent Bernoulli random variables with the probability p. For very high 
or very low p, a binomial distribution is a very skewed distribution. Under conditions with very low p probability 
and very large n, the Poisson distribution may be used as an approximation to the binomial distribution. In practice 
it is possible not to observe a conditio sine qua non relationship within a sample even if within a population, such 
a relationship is given. Events like these can be accepted only under very limited circumstances and should be 
extremely small with the consequence that the law of rare events or Poisson limit theorem can be used to test the 
significance.  
 
Claim. 
The left tailed p-value of a Poisson distributed random variable (were x = 0) is given by 

 p(𝑋 ≤ 0) = @1 − p(𝑋 > 0)A = p(𝑋 = 0) = 𝑒ll (112) 
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Proof. 
In general, it is  

 p(𝑋 ≥ 0) = p(𝑋 = 0) + p(𝑋 > 0) = 1 (113) 

or 
 1 − p(𝑋 > 0) = p(𝑋 = 0) (114) 

Mathematically, the left tailed p-value is defined as p(X<0) = 1- p(X>0). Rearranging equation before, we obtain 
 p(𝑋 ≤ 0) = @1 − p(𝑋 > 0)A = p(𝑋 = 0) (115) 

The Poisson distribution is given by 
 

p(𝑋 = 𝑥) = R
𝜆k

𝑥! T × 𝑒
ll (116) 

Under conditions where x = 0 we obtain 
 

p(𝑋 = 0) = R
𝜆m

0! T × 𝑒
ll (117) 

and the left tailed p-value is given by 
 p(𝑋 ≤ 0) = @1 − p(𝑋 > 0)A = p(𝑋 = 0) = 𝑒ll (118) 

Q. e. d. 
 
 
Example 

The (left tailed) null and alternative hypotheses may be as follows: 
  

𝐻m : 𝑝 ≥ 0.05 (𝑖. 𝑒.		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜	𝑠𝑖𝑛𝑒	𝑞𝑢𝑎	𝑛𝑜𝑛:𝑁𝑂)

𝐻s : 𝑝 < 0.05 (𝑖. 𝑒.		𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜	𝑠𝑖𝑛𝑒	𝑞𝑢𝑎	𝑛𝑜𝑛: 𝑌𝐸𝑆)
 (119) 

 
A left tailed p-value which is greater than or equal to α (p-value > α) provides some evidence to accept the null 
hypothesis while a p-value calculated which is less than α (p-value < α), support the decision to reject the null 
hypothesis.  

 
The Poisson distribution is given by 

 
p(𝑋 = 𝑥) = R

𝜆k

𝑥! T × 𝑒
ll (120) 

were x is the number of times an event occurs in an interval and x can take values 0, 1, 2, …., e is Euler's number 
(the number 2.71828..., the base of the natural logarithms) and x! is the factorial of x or x!=x´(x-1)´(x-2)´... ́ 2´1 
and l= N´p is a positive real number or the mean or equal to the expected number of rare occurrences of an event 
(i. e. no conditio sine qua non relationship observed). Under the condition of the validity of the null-hypothesis, 
the left tailed Poisson p value can be calculated using the formula 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒}��>	>|z}�� = 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C ≡ H R
(𝑁 × 𝑝)>

𝑡! T × 𝑒l(w×r)
k

>Im
 (121) 

The sample size is again Nt = 172. The relative frequency of the conditio sine qua non relationship is 
E(H(Xn))=169/172=0.98255814 and p = 0.05. In other words, the conditio sine qua non relationship was not 
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observed in toto in 3 out of 172 cases. According to our left tailed hypothesis, we are of the opinion that this 
probability is greater or equal to 0.05. The left p-value can be calculated as 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒}��>	>|z}�� = 𝑝 B(𝑋 ≤ 𝑥)|𝐻m C ≡ H R
(𝑁 × 𝑝)>

𝑡! T × 𝑒l(w×r)
kI�

>Im
= 0.02809258031854000000 (122) 

We must reject the null-hypothesis. The probability that a conditio sine qua non relationship within the population 
will not be observed is less than 0.05.   

 
Theorem. Distribution and anti distribution 
Suppose that S defines the sample space of an experiment completely. Let a real-valued function (a random 
variable) X which is defined on the sample space S assign a real number X(s) to each possible outcome s Î S in a 
particular experiment. The distribution of the random variable of X is defined as the collection of all probabilities 
p(X Î A) for all subsets A of the real numbers. A discrete random variable is defined as a random variable X 
which can take only a finite number of k different values x1, …, xk or at most, an infinite sequence of x1, x2, … 
The distribution of a discrete random variable X is defined as the probability mass function and abbreviated as 
p(x) or p. m. f.(x) of X, namely p(x) = p. m. f.(x) = p( X = x ) for all x in the set of possible values.  
A random variable X which can take every value in an interval is called a continuous random variable. A 
continuous distribution is defined by its own probability density function (p.d.f.) of the distribution of X for every 
interval (a,b) as 

 

p(𝑎 < 𝑋 ≤ 𝑏) ≡ ¤𝑓(𝑥)𝑑𝑥
È

|

 (123) 

Continuous random variables satisfy the condition p(X=x)=0. In practical problems it may sometimes be necessary 
to consider a distribution as a mixture of a continuous distribution and a discrete distribution. Again, the cumulative 
distribution function abbreviated as P(x) or as F(x) or as d.f.(x) or c.d.f.(x) of every random variable X, regardless 
of whether the distribution of X is continuous, discrete or mixed, for each real number x is defined as 

 𝑃(𝑥) = 𝐹(𝑥) = 𝑑. 𝑓. (𝑥) = 𝑐. 𝑑. 𝑓. (𝑥) = 𝑝(𝑋 ≤ 𝑥) = 𝑝(𝑋 = 𝑥) + 𝑝(𝑋 < 𝑥) (124) 

for -¥ < x < +¥.  
 
Claim. 
For every value x, the anti distribution of x , denoted as p(X ¹ x), is determined as 

 𝑝(𝑋 ≠ 𝑥) = 1 − 𝑝(𝑋 = 𝑥) = 𝑝(𝑋 < 𝑥) + 𝑝(𝑋 > 𝑥) (125) 

Proof.  
For every value x, regardless of whether the distribution of X is continuous, discrete or mixed, it is 

 𝑝(𝑋 ≤ 𝑥) + 𝑝(𝑋 > 𝑥) = 1 (126) 

Since p(X<x) = p(X=x) + p(X<x), the equation before can be rearranged as 
 𝑝(𝑋 < 𝑥) + 𝑝(𝑋 = 𝑥) + 𝑝(𝑋 > 𝑥) = 1 (127) 

for -¥ < x < +¥. Rearranging again, we obtain 
 𝑝(𝑋 < 𝑥) + 𝑝(𝑋 > 𝑥) = 1 − 𝑝(𝑋 = 𝑥) (128) 

for -¥ < x < +¥. We define the anti-distribution of x as p(x) º p(X ¹ x) º p(X<x) + p(X>x) as the distribution for 
every value of anti x denoted as x or as the anti distribution of x as 

 𝑝(𝑋	¹	𝑥) = 𝑝(𝑋 < 𝑥) + 𝑝(𝑋 > 𝑥) = 1 − 𝑝(𝑋 = 𝑥) (129) 

for -¥ < x < +¥.  
Quod erat demonstrandum. 
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Example. 
The anti binomial distribution can be derived as 

 
p(𝑋 ≠ 𝑥) = 1 − p(𝑋 = 𝑥) = 1 − RF

𝑛!
𝑥! × (𝑛 − 𝑥)!G

(𝑝)k × (1 − 𝑝)<lkT (130) 

For n=25 and p=0.15 we obtain the following figure. 

 
Figure 1. Anti-binomial distribution 

 
The probability density of an anti normal (or anti Gaussian or anti Gauss or anti Laplace–Gauss) distribution 
follows as 

 

p(𝑋 ≠ 𝑥) = 1 − p(𝑋 = 𝑥) = 1 −

⎝

⎜
⎛

⎝

⎛ 1

a2 × 𝜋 × 𝜎(𝑥):
b

⎠

⎞ × Q𝑒
lR klÏ
:×Ð(k)b

T
U

⎠

⎟
⎞

 (131) 

where µ denotes the mean or expectation of the distribution and s(x)² is the variance. For µ=1.0 and  s=1.5 we 
obtain the following figure of an anti normal distribution. 

 
Figure 2. Anti normal distribution. 

 
The (anti) normal distribution is useful because of the unofficial sovereign and the foundation of any statistics and 
probability theory, the central limit theorem. Any average of enough independent copies of a random variable will 
result nearly in a normal (Gaussian) distribution. The French-born mathematician Abraham de Moivre (1667 – 
1754) while working on “Bernoulli’s Law of Large Numbers” (Moivre, 1718), the main theorem of Jakob 
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Bernoulli's Ars conjectandi (Bernoulli, 1713) published in the year 1733 the first historical pre-work on the central 
limit theorem (Moivre, 1733). After the monumental work “Théorie analytique des probabilités” (Laplace, 1812)  
of the famous French mathematician Pierre-Simon Laplace published in 1812 and the very precisely prove 
provided 1901 by the Russian mathematician Aleksandr Lyapunov (Lyapunov, 1901), the Hungarian born 
mathematician George Pólya coined in 1920 the German term “zentraler Grenzwertsatz” (Pólya, 1920) or central 
limit theorem. In a similar way, anti distributions of other distributions can be derived as demonstrated before. 
 
The anti Poisson distribution 
A discrete random variable X is said to have a Poisson distribution with parameter l > 0, if, for x = 0, 1, 2, ..., the 
probability mass function of X is given by 

 
p(𝑋 = 𝑥) = R

𝜆k

𝑥! T × 𝑒
ll (132) 

were x is the number of times an event occurs in an interval and x can take values 0, 1, 2, …., e is Euler's number 
(the number 2.71828..., the base of the natural logarithms) and x! is the factorial of x or x!=x´(x-1)´(x-2)´... ́ 2´1. 
Many times, the Poisson distribution is applied to experimental conditions or situations with a large number of 
trials n while the occurrence of each event is very rare. The probability density of an anti Poisson distribution is 
given by 

 
p(𝑋 ≠ 𝑥) = 1 − p(𝑋 = 𝑥) = 1 − �R

𝜆k

𝑥! T × 𝑒
ll� (133) 

were x is the number of times a very rare event was observed. Thus far, let the probability p of an event in n 
Bernoulli trials be extremely near 1 or it is p~1. In the same context, the probability, denoted by q, that the same 
event will not occur in n Bernoulli is extremely small and will be very near to zero or q ~ 0. It is p + q= 1 and q = 
1-p and the expectation value of the very rare events is l = n ´q= n ´(1-p). In an experiment we observed X= n ´p 
events. The rate of very rare events which should not have occurred is x= n -X or in detail x= n -X= n -( n ´p) = n 
´(1-p) = l. In other words, if we know that the probability of x very rare p(X=x), we know equally that the 
probability p(X¹x) of very often events/non-events is p(X¹x) = 1- p(X=x). For µ=2.0 we obtain the following 
figure of an anti Poisson distribution. 

 
Figure 3. Anti Poisson distribution. 

 
Consequently, the anti Poisson distribution above under experimental conditions were the expectation value l is 
equal to the number of rare events x, i. e. where (l=x) > 0 simplifies as 

 
p(𝑋 ≠ 𝑥) = 1 − p(𝑋 = 𝑥) = 1 − �R

𝑥k

𝑥! T × 𝑒
lk� (134) 
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where x indicates the expected (or average) number of occurrences of a very rare event. This very simplified form 
of the Poisson distribution can be called the distribution of the likely. Under conditions where l=n the anti Poisson 
distribution simplifies as 
 

 
p(𝑋 ≠ 𝑥) = 1 − p(𝑋 = 𝑥) = 1 − �R

𝑛k

𝑥! T × 𝑒
l<� (135) 

and were (l=x=n) as 
 

 
p(𝑋 ≠ 𝑛) = 1 − p(𝑋 = 𝑛) = 1 − �R

𝑛<

𝑛! T × 𝑒
l<� (136) 

 
Example. The distribution of likely events 
Suppose that, on the average, 1999 houses in 2000 in a certain district are free of fire or not burning during a year. 
If n = 4000 houses are in that district, what is the probability that exactly 3995 houses will stay free of fire or will 
not have a fire during the year. We focus on the fact that 1999 houses from 2000 houses will not burn, which is 
not a Poisson distributed random variable. In turn, it is insightful to point to the fact that 1 out of 2000 houses will 
have a fire which is a very rare event and Poisson distributed. As is so often the case, it is a matter of personal taste 
whether a glass is treated as half full or whether the same glass is treated as half empty. The anti Poisson 
distribution can be used to calculate the probability. Since 1999 houses have no fire, we know that 1 house in 2000 
has fire or it is q = 1-p = (1/2000) or l = n´(1-p) = n´q = 4000´(1/2000)= 2. The probability that exactly 3995 
houses will have no fire during a year means that exactly 5 houses or 4000-3995 = 5 houses will have a fire. In 
other words, the probability that exactly 3995 houses in 4000 will have no fire during a year is 
 

 
p(𝑋 ≠ 𝑥) = 1 − �R

𝜆k

𝑥! T × 𝑒
ll� = 1 − QR

2�

5! T × 𝑒
l:U = 1 − 0.036089408863097 = 0.963910591 (137) 

and extremely near 1 and equivalent with the rare event 1 minus the probability that exactly 5 houses in 4000 
houses will have a fire (p=0.036089408863097). Ultimately, under conditions were an event occurs its own 
complementary event does not occur or it is p + q =1, the two terms are more or less interchangeable and it remains 
a matter of personal taste what is understood as p and what is taken as q.  
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Theorem. The Chi-square goodness-of fit test of a necessary condition 
Unfortunately, there is always the possibility that the results of a study may be wrong and sometimes, a difference 
observed during an investigation is just the result of random subjective or objective errors or random effects. A 
statistical test is more or less about managing such and similar risks by the tools of probability theory and not 
about certainty. In point of fact, a true null hypothesis (there is no difference) should be accepted. Thus far we 
assume that a null hypothesis (H0) is true.  
Let p(At) denote the probability of a condition (i.e. a risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability of At and Bt. The the relationship between At and Bt 
is determined in many ways, both can be independent of each other too. Still, under conditions were the relationship 
between an event At and another event Bt is determined by a necessary condition, a conditio sine qua non, it is 
p(At  ¬ Bt) = p(At and Bt) +(1 - p(Bt)) = p(dt) + p(At)=1 and equally p(At and Bt) = p(Bt).  
 
Claim. 
In general, a mathematical formula of the Chi-square goodness-of fit test of a necessary condition can be derived 
as 

 

𝑋: B@𝐴> ← 𝐵> A|𝐵> C =
@−𝑐> A

:

𝐵>
= 0 (138) 

Proof. 
The conditio sine qua non relationship of a population is defined as  

 𝑝@𝐴> ← 𝐵> A ≡ 𝑝@𝑎> A + 𝑝@𝑏> A + 𝑝@𝑑> A = 	 B𝑝@𝑎> A + 𝑝@𝑏> AC + 𝑝@𝑑> A = 𝑝@𝑎> A + B𝑝@𝑑> A + 𝑝@𝑏> AC = 1 (139) 

(Table 1) or as 
 𝑝@𝐴> ← 𝐵> A ≡ 𝑝@𝑎> A + 𝑝@𝑏> A + 𝑝@𝑑> A = 	𝑝@𝐴> A + 𝑝@𝑑> A = 𝑝@𝑎> A + @𝐵> A = 1 (140) 

To see how this applies to the theorem above, let's simplify the equation before as 
 

𝑝@𝑎> A = 1 − B𝑝@𝑏> A + 𝑝@𝑑> AC = 1 − B𝑝@𝑏> A + 𝑝@𝑑> AC (141) 

or as 
 

𝑝@𝑎> A = 1 − B𝑝@𝐵> AC (142) 

In general it is p(Bt) = 1- p(Bt). Ultimately, for this reason, a conditio sine qua non relationship simplifies under 
the press of mathematics as 

 𝑝@𝑎> A = 𝑝@𝐵> A (143) 

Multiplying by Nt, we obtain 
 𝑁> × 𝑝@𝑎> A = 𝑁> × 𝑝@𝐵> A (144) 

which is equivalent with 
 𝑎> = 𝐵>  (145) 

Rearraning, it is 
 𝑎> − 𝐵> = 0 (146) 

or  
 

@𝑎> − 𝐵> A
:

= 0:  (147) 

Dividing by Bt, it is 
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@𝑎> − 𝐵> A

:

𝐵>
=

0
𝐵>

= 0 (148) 

or  
 

@𝑎> − 𝐵> A
:

𝐵>
+ 0 =

0
𝐵>

+ 0 = 0 (149) 

More precisely, it is 
 

@𝑎> − 𝐵> A
:

𝐵>
+
B@𝑏> + 𝑑> A − @𝑏> + 𝑑> AC

:

@𝑏> + 𝑑> A
=

0
𝐵>

+ 0 = 0 (150) 

or  
 

𝑋: B@𝐴> ← 𝐵> A|𝐵> C =
@𝑎> − 𝐵> A

:

𝐵>
=

0:

𝐵>
= 0 (151) 

It is Bt = at + ct. More broadly, the equation reduces to 
 

𝑋: B@𝐴> ← 𝐵> A|𝐵> C =
B𝑎> − @𝑎> + 𝑐> A C

:

𝐵>
= 0 (152) 

 
Finally, the clearness, beauty and simplification provided by equation before yields the Chi-square goodness of 
fit test of a necessary condition without using the continuity correction, as 

 

𝑋: B@𝐴> ← 𝐵> A|𝐵> C =
@−𝑐> A

:

𝐵>
= 0 (153) 

 

Quod erat demonstrandum. 
 
Depending upon personal taste, another method to calculate the chi-square value of a conditio sine qua non 
relationship with the continuity correction as demonstrated before can be derived as 

 

𝑋: B@𝐴> ← 𝐵> A|𝐴> C ≡
B@𝑐> A − @1 2] AC

:

𝐴>
+ 0 = 0 (154) 
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Theorem. The Chi-square goodness-of fit test of a sufficient condition 
Let p(At) denote the probability of the condition (i.e. risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability of At and Bt. Under conditions were the relationship 
between At and Bt is determined by a sufficient condition it is p(At ® Bt) = p(At and Bt) +(1 - p(At)) =1 and it is 
equally p(At and Bt) = p(At).  
 
Claim. 
In general, a mathematical formula of the Chi-square goodness-of fit test of a sufficient condition can be derived 
as 

 

𝑋: B@𝐴> → 𝐵> A|𝐴> C =
@−𝑏> A

:

𝐴>
= 0 (155) 

Proof. 
In order to get clear on the Chi-square goodness-of fit test of a sufficient condition, we present here and point to 
a possible way out. In general, it is 

 +1 = +1 (156) 

In fact, it remains a matter of dispute whether this simple and to some extent cruel-looking axiom is so meaningful 
as it appears to be. But given that the relation in question is a matter of simple logic, this axiom can be the starting 
point of our further progress. Ultimately, for this reason, the equation before changes to 

 𝑝@𝐴> → 𝐵> A ≡ 𝑝@𝑎> A + 𝑝@𝑐> A + 𝑝@𝑑> A = 1 (157) 

according to our definition of the conditio per quam relationship of a population. The point is powerful inasmuch 
as it lets us simplify the equation a 

 
𝑝@𝑎> A = 1 − B𝑝@𝑐> A + 𝑝@𝑑> AC (158) 

or as 
 

𝑝@𝑎> A = 1 − B𝑝@𝐴> AC (159) 

As a matter of historical fact, the point is that the question of what makes this equation meaningful is the 
relationship p(At) = 1- p(At). The exact nature of a conditio per quam relationship is easy to pinpoint and simplifies 
under the press of pure mathematics as 

 𝑝@𝑎> A = 𝑝@𝐴> A (160) 

Facts as opposed to theories or values demand us that 
 𝑁> × 𝑝@𝑎> A = 𝑁> × 𝑝@𝐴> A (161) 

Per definition it at = Nt ´ p(at) is or At = Nt  ´ p(At). Judged solely in terms of mathematics, we obtain 
 𝑎> = 𝐴>  (162) 

or  
 𝑎> − 𝐴> = 0 (163) 

The inward/outward looking nature of this equation doesn’t change by the following operation. 
 

@𝑎> − 𝐴> A
:

= 0:  (164) 

Dividing by At, it is 
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@𝑎> − 𝐴> A

:

𝐴>
=

0
𝐴>

= 0 (165) 

Most importantly of all, it is doubtful, however, that something which is a complex and self-organized whole might 
be reduced only to one single aspect. Indeed, many times, an attempt to reduce something complex to something 
simple can be associated with some shortcomings. There for, the whole aspect of a conditio per quam relationship 
should be considered. The equation before changes to 

 
@𝑎> − 𝐴> A

:

𝐴>
+ 0 =

0
𝐴>

+ 0 = 0 (166) 

or to 
 

@𝑎> − 𝐴> A
:

𝐴>
+
B@𝑐> + 𝑑> A − @𝑐> + 𝑑> AC

:

@𝑐> + 𝑑> A
=

0
𝐴>

+ 0 = 0 (167) 

or as 
 

𝑋: B@𝐴> → 𝐵> A|𝐴> C =
@𝑎> − 𝐴> A

:

𝐴>
= 0 (168) 

More broadly, it is At = at + bt. The exact nature of the equation before changes to 
 

𝑋: B@𝐴> → 𝐵> A|𝐴> C =
B𝑎> − @𝑎> + 𝑏> A C

:

𝐴>
= 0 (169) 

Finally, the equation before yields the Chi-square goodness of fit test of a sufficient condition without using the 
continuity correction, as 

 

𝑋: B@𝐴> → 𝐵> A|𝐴> C =
@−𝑏> A

:

𝐴>
= 0 (170) 

Quod erat demonstrandum. 
 
Depending upon personal approach, study design or other factors, another equivalent method to calculate the chi-
square value of a conditio per quam relationship with the continuity correction can be derived as demonstrated 
before as 

 

𝑋: B@𝐴> → 𝐵> A|𝐵> C ≡
B@𝑏> A − @1 2] AC

:

𝐵>
+ 0 = 0 (171) 

A fair study design should assure that both methods provide the same chi-square value of a conditio per quam 
relationship. 
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Theorem. The Chi-square goodness-of fit test of “Big Data” 
There appears to be a growing interest in the analysis of “big datasets” with sizes beyond the ability of commonly 
used statistical methods. In this context, it is necessary to consider a variety of biases that are likely in the era of 
big data, including measurement error, sampling error, aggregation error, multiple comparisons errors, and other 
errors (Kaplan et al., 2014) associated with a systematic exclusion of information. At the heart of any scientific 
understanding of “big data” or large sample size studies which may integrate information from different data 
sources or/and from many thousands of persons is the notions of representation. “Big data” studies can be 
misleading and can lead to big inferential errors or are of a relatively little value if a large sample size of a study 
is not an accurate representative of the population to which the results of a study will be generalized. Even “big 
data” studies can go wrong and are not for sure more reliable than studies with smaller sample size (The 1936 
Literary Digest presidential election disaster (Kaplan et al., 2014)) and it is more or less necessary to exercise 
greater caution to be able to rely on a big sample size. The study design should assure that a sample drawn from a 
population, a subset of a population, is an accurate and unbiased indication of what the population is like. A chi-
square goodness-of-fit test proves whether an observed frequency distribution differs from a theoretical 
distribution.  
Claim. 
The chi-square goodness-of-fit test for an extremely very large sample follows as 

 

𝑋: =
B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A − 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> AC

:

𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A
 (172) 

Proof. 
For an extremely large sample size, the conventional chi-square goodness-of-fit test may perform very poorly even 
if the mathematical foundation of a very large sample is the same as for small data. In general, the mathematical 
foundation of a chi-square goodness-of-fit test is the equation 

 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑>  (173) 

The large sample behavior of chi-square goodness-of-fit test improves especially for an extremely very large 
sample while taking the natural logarithm. The basic relationship doesn’t change at all. It is 

 𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A = 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A (174) 

where ln denotes the logarithmus naturalis. Rearranging equation, it is 
 𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A − 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A = 0 (175) 

or 
 

B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A − 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> AC
:

= 0:  (176) 

or 
 

B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A − 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> AC
:

𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A
= 0:  (177) 

The chi-square goodness-of-fit test for an extremely very large sample follows 
 

𝑋: ≡
B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A − 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> AC

:

𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A
 (178) 

Quod erat demonstrandum. 
 
For preliminary reasons, a sample size of n = 1000 and more can be treated as “Big Data”. The chi-square 
goodness-of-fit test for an extremely very large is an alternative to the G-square test (Quine and Robinson, 1985) 
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or to Cramer’s V test et cetera. From a mathematical point of view, a chi-square goodness-of-fit test of a sufficient 
condition with a very large sample size n can be adopted to these new aspects too. Under these circumstances, it 
appears to be appropriate to take the logarithm of the data itself as 
 

 𝑙𝑛@𝑎> A = 𝑙𝑛@𝐴> A (179) 

or as 
 𝑙𝑛@𝑎> A − 𝑙𝑛@𝐴> A = 0 (180) 

and then implement the chi-square goodness-of-fit test for “Big Data” of a conditio per quam relationship on these 
transformed data as 

 

𝑋: B@𝐴> → 𝐵> A|𝐴> C =
@𝑙𝑛@𝑎> A − 𝑙𝑛@𝐴> AA

:

𝑙𝑛@𝐴> A
= 0 (181) 

 
Theorem. The Chi-square goodness-of fit test of “Supra-Big Data” 
Claims. 
For „Supra-Big Data”, the Chi-square goodness-of fit test is 

 

𝑋: @𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> , 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A =
�R𝑙𝑛… F𝑙𝑛 B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> ACGT− R𝑙𝑛…F𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> ACGT�

:

R𝑙𝑛 …F𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> ACGT
= 0 (182) 

Proof. 
Even for „Supra-Big Data” it stays valid that 

 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑>  (183) 

Taking the natural logarithm we obtain 
 𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> A = 𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A (184) 

Repeating this operation one times it is  
 
 𝑙𝑛 B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> AC = 𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> AC (185) 

Even after repeating the operation before many times it is 
 
 R𝑙𝑛… F𝑙𝑛 B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> ACGT = R𝑙𝑛…F𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> ACGT (186) 

where ln denotes the logarithmus naturalis. The chi-square goodness-of-fit test a conditio per quam relationship 
of extremely “Supra-Big Data” samples follows as 

 

𝑋: @𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> , 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> A =
�R𝑙𝑛… F𝑙𝑛 B𝑙𝑛@𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑> ACGT− R𝑙𝑛…F𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> ACGT�

:

R𝑙𝑛 …F𝑙𝑛 B𝑙𝑛@𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑> ACGT
= 0 (187) 

 

Quod erat demonstrandum. 
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Theorem. The Chi-square goodness-of fit test of an Exclusion relationship (antidote) I 
Human medicine increasingly technology-dependent, can be characterized as a non-ending or everlasting 
administration of special antidotes to prevent an effect of something on something other. The truth is simply that 
many times human condition is not improving, either circumstances are getting worse as long as an useful antidote 
is not applied. We are forced to develop statistical methods that are jointly sufficient for a careful and systematic 
analysis of data which might provide us some help to identify antidotes. Thus far, let an event At be a sufficient 
condition of an event Ct or it is p(At®Ct) = 1. An event or an antidote Bt can counteract the effects of At with 
respect to Ct even if At is given. Let p(At) denote the probability of a condition (i.e. a risk factor), let p(Bt) denote 
the probability of the conditioned (i.e. the outcome), let p(At and Bt) denote the joint probability of At and Bt. It is 
1´1=1 and p(At®Ct) ´ p(At | Bt)=1.Under conditions were the relationship between At and Bt is determined by 
an exclusion relationship between At and Bt it is p(At | Bt) = p(bt) +(1 - p(At)) = p(ct) +(1 - p(Bt)) = 1.  
 
Claim. 
In general, a mathematical formula of the Chi-square goodness-of fit test of an exclusion relationship can be 
derived as 

 

𝑋: B@𝐴> |𝐵> A|𝐴> C =
@−𝑎> A

:

𝐴>
= 0 (188) 

Proof. 
What were some of the useful circumstances under which a Chi-square goodness-of fit test of an exclusion 
relationship can be derived. The truth is simply that 

 +1 = +1 (189) 

In fact, the equation before changes to 
 𝑝@𝐴> ½𝐵> A ≡ 𝑝@𝑏> A + 𝑝@𝑐> A + 𝑝@𝑑> A = 1 (190) 

according to our definition of the exclusion relationship of a population. Let us simplify the equation as 
 

𝑝@𝑏> A = 1 − B𝑝@𝑐> A + 𝑝@𝑑> AC (191) 

or as 
 

𝑝@𝑏> A = 1 − B𝑝@𝐴> AC (192) 

As a matter of it is p(At) = 1- p(At). One of the foundations of the exclusion relationship follows as 
 𝑝@𝑏> A = 𝑝@𝐴> A (193) 

Multiplying by Nt, we obtain 
 𝑁> × 𝑝@𝑏> A = 𝑁> × 𝑝@𝐴> A (194) 

Per definition it bt = Nt ´ p(bt) is or At = Nt ´ p(At). Thus far, in terms of mathematics, it is 
 𝑏> = 𝐴>  (195) 

or  
 𝑏> − 𝐴> = 0 (196) 

Rearranging equation, it is 
 

@𝑏> − 𝐴> A
:

= 0:  (197) 

Dividing by At, it is 
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@𝑏> − 𝐴> A

:

𝐴>
=

0
𝐴>

= 0 (198) 

The equation before changes to 
 

@𝑏> − 𝐴> A
:

𝐴>
+ 0 =

0
𝐴>

+ 0 = 0 (199) 

or to 
 

@𝑏> − 𝐴> A
:

𝐴>
+
B@𝑐> + 𝑑> A − @𝑐> + 𝑑> AC

:

@𝑐> + 𝑑> A
=

0
𝐴>

+ 0 = 0 (200) 

or as 
 

𝑋: B@𝐴> → ½𝐵> A|𝐴> C =
@𝑏> − 𝐴> A

:

𝐴>
+ 0 = 0 (201) 

More broadly, it is At = at + bt. The exact nature of the equation before changes to 
 

𝑋: B@𝐴> ½𝐵> A|𝐴> C =
B𝑏> − @𝑎> + 𝑏> A C

:

𝐴>
= 0 (202) 

 
Finally, the Chi-square goodness of fit test of an exclusion relationship without using the continuity correction, 
with degrees of freed d.f. = 2-1 = 1 follows as 

 

𝑋: B@𝐴> ½𝐵> A|𝐴> C =
@−𝑎> A

:

𝐴>
= 0 (203) 

Quod erat demonstrandum. 
 
 
Theorem. The Chi-square goodness-of fit test of an Exclusion relationship (antidote) II 
Let p(At) denote the probability of the condition (i.e. risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability of At and Bt. Under conditions were the relationship 
between At and Bt is determined by an exclusion relationship between At and Bt it is p(At | Bt) = p(bt) +(1 - p(At)) 
= p(ct) +(1 - p(Bt)) = 1.  
 
Claim. 
In general, a mathematical formula of the Chi-square goodness-of fit test of an exclusion relationship can be 
derived as 

 

𝑋: B@𝐴> |𝐵> A|𝐵> C =
@−𝑎> A

:

𝐵>
= 0 (204) 

Proof. 
The Chi-square goodness-of fit test of an exclusion relationship can be derived from the equation 
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 +1 = +1 (205) 

In fact, the equation before changes to 
 𝑝@𝐴> ½𝐵> A ≡ 𝑝@𝑏> A + 𝑝@𝑐> A + 𝑝@𝑑> A = 1 (206) 

according to our definition of the exclusion relationship of a population. Let us simplify the equation as 
 

𝑝@𝑐> A = 1 − B𝑝@𝑏> A + 𝑝@𝑑> AC (207) 

or as 
 

𝑝@𝑐> A = 1 − B𝑝@𝐵> AC (208) 

As a matter of it is p(Bt) = 1- p(Bt). The exclusion relationship is determined as 
 𝑝@𝑐> A = 𝑝@𝐵> A (209) 

Multiplying by Nt, we obtain 
 𝑁> × 𝑝@𝑐> A = 𝑁> × 𝑝@𝐵> A (210) 

Per definition it ct = Nt ´ p(ct) or Bt = Nt ´ p(Bt). Thus far, in terms of mathematics, it is 
 𝑐> = 𝐵>  (211) 

or  
 𝑐> − 𝐵> = 0 (212) 

Rearranging equation, it is 
 

@𝑐> − 𝐵> A
:

= 0:  (213) 

Dividing by Bt, it is 
 

@𝑐> − 𝐵> A
:

𝐵>
=

0:

𝐵>
= 0 (214) 

The equation before changes to 
 

@𝑐> − 𝐵> A
:

𝐵>
+ 0 =

0
𝐵>

+ 0 = 0 (215) 

or to 
 

@𝑐> − 𝐵> A
:

𝐵>
+
B@𝑏> + 𝑑> A − @𝑏> + 𝑑> AC

:

@𝑏> + 𝑑> A
=

0
𝐵>

+ 0 = 0 (216) 

or as 
 

𝑋: B@𝐴> ½𝐵> A|𝐵> C =
@𝑐> − 𝐵> A

:

𝐵>
+ 0 = 0 (217) 

More broadly, it is Bt = at + ct. The exact nature of the Chi-square goodness-of fit test of an exclusion relationship 
changes to 



http://vixra.org/author/ilija_barukcic  

  © Ilija Barukčić, Jever, Germany, 2019. All rights reserved. 
 

 

𝑋: B@𝐴> ½𝐵> A|𝐵> C =
B𝑐> − @𝑎> + 𝑐> A C

:

𝐵>
= 0 (218) 

Finally, the Chi-square goodness of fit test of an exclusion relationship without using the continuity correction, 
follows as 

 

𝑋: B@𝐴> ½𝐵> A|𝐵> C =
@−𝑎> A

:

𝐵>
= 0 (219) 

Quod erat demonstrandum. 
 
Theorem. Self-contradictory data I  
Let p(At) denote the probability of the condition (i.e. risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability that At and Bt will occur/has occurred. Under 
conditions were the relationship between two random events abbrivated as At and Bt is determined by a necessary 
condition it is p(At ¬ Bt) = p(At and Bt) +(1 - p(Bt)) =1 and equally p(At and Bt) = p(Bt).  
 
Claim. 
In general, under circumstances where p(At) < 1 and p(At and Bt) = p(Bt) it is  

 
𝑘@𝐴> , 𝐵> A > +0

𝑷𝒓𝒐𝒐𝒇.

+1 > 𝑝@𝐴> A

𝑝@𝐵> A > 𝑝@𝐵> A × 𝑝@𝐴> A

𝑆𝑖𝑛𝑐𝑒	𝑝@𝐴> ← 𝐵> A = 𝑝@𝑎> A 	+ B1 − 𝑝@𝐵> AC = +1 𝑖𝑡	𝑖𝑠	𝑡ℎ𝑒𝑛 𝑝@𝑎> A = 𝑝@𝐵> A. 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔, 𝑤𝑒	𝑜𝑏𝑡𝑎𝑖𝑛

𝑝@𝑎> A > B𝑝@𝐵> A × 𝑝@𝐴> AC

𝑝@𝑎> A − B𝑝@𝐴> A × 𝑝@𝐵> AC > +0

𝑝@𝑎> A − B𝑝@𝐴> A × 𝑝@𝐵> AC

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

>
0

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

𝑘@𝐴> , 𝐵> A > +0

𝑸. 𝒆. 𝒅.

 

 

(220) 

Under conditions where p(At) = 1 it follows that k(At and Bt) = 0 and mathematically, At and Bt have to be treated 
as being independent of each other. In many problems, data gained from some observations provide an opportunity 
to increase the degree of confidence, when a decision is made to either accept the null hypothesis or accept the 
alternative hypothesis. Clearly, the null hypothesis and the alternative hypothesis are mutually exclusive thus that 
either the null hypothesis is false and the alternative hypothesis is true or the null hypothesis is true and the 
alternative hypothesis is false. In other words, a study design which provides data supporting the null-hypothesis: 
without At no Bt cannot at the same time support the hypothesis that k < 0. Such data are self-contradictory and 
cannot be used for further analysis. 
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Theorem. Self-contradictory data II  
Let p(At) denote the probability of the condition (i.e. risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability that At and Bt will occur/has occurred. Under 
conditions were the relationship between At and Bt is determined by an exclusion realtionship p(At | Bt) it is equally 
p(At | Bt) = p(ct) +(1 - p(Bt)) = p(bt) +(1 - p(At)) = 1 and p(At and Bt) = p(at) = 0. 
 
Claim. 
In general, an exclusion relationship demands that 

 
𝑘@𝐴> , 𝐵> A < +0

𝑷𝒓𝒐𝒐𝒇.

𝑝@𝐴> |𝐵> A ≡ 1 − 𝑝@𝐴> A = 1
𝐼𝑡	𝑖𝑠	𝑒𝑢𝑞𝑎𝑙𝑙𝑦

𝑝@𝐴> ∩ 𝐵> A ≡ 𝑝@𝑎> A = 1 − 1 = 0
𝐹𝑢𝑟𝑡ℎ𝑒𝑟𝑚𝑜𝑟𝑒, 𝑖𝑡	𝑖𝑠

𝑘@𝐴> |𝐵> A =
𝑝@𝑎> A − B𝑝@𝐴> A × 𝑝@𝐵> AC

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

𝑈𝑛𝑑𝑒𝑟	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	𝑤ℎ𝑒𝑟𝑒 𝑝@𝐴> ∩ 𝐵> A ≡ 𝑝@𝑎> A = 0 𝑖𝑡	𝑖𝑠

𝑘@𝐴> , 𝐵> A =
0 − B𝑝@𝐴> A × 𝑝@𝐵> AC

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

𝑜𝑟

𝑘@𝐴> , 𝐵> A < 0

𝑸. 𝒆. 𝒅.

 

 

(221) 

In other words, data which provide significant evidence that At excludes Bt and vice versa should equally demand 
that the causal relationship should be k(At,Bt) < 0, otherwise the data should be treated as self-contradictory. 
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Theorem. Self-contradictory data III 
Let p(At) denote the probability of the condition (i.e. risk factor), let p(Bt) denote the probability of the conditioned 
(i.e. the outcome), let p(At and Bt) denote the joint probability of At and Bt. Under conditions were the relationship 
between At and Bt is determined by a sufficient condition it is p(At ® Bt) = p(At and Bt) +(1 - p(At)) =1 and it is 
equally p(At and Bt) = p(At). In general, under circumstances where p(Bt) < 1, it is  
 

 
𝑘@𝐴> , 𝐵> A > +0

𝑷𝒓𝒐𝒐𝒇.

+1 > 𝑝@𝐵> A

𝑝@𝐴> A > 𝑝@𝐴> A × 𝑝@𝐵> A

𝑆𝑖𝑛𝑐𝑒	𝑝@𝐴> → 𝐵> A = 𝑝@𝑎> A 	+ B1 − 𝑝@𝐴> AC = +1 𝑖𝑡	𝑖𝑠	𝑡ℎ𝑒𝑛 𝑝@𝑎> A = 𝑝@𝐴> A. 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔, 𝑤𝑒	𝑜𝑏𝑡𝑎𝑖𝑛

𝑝@𝑎> A > B𝑝@𝐴> A × 𝑝@𝐵> AC

𝑝@𝑎> A − B𝑝@𝐴> A × 𝑝@𝐵> AC > +0

𝑝@𝑎> A − B𝑝@𝐴> A × 𝑝@𝐵> AC

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

>
0

a𝑝@𝐴> A × B1 − 𝑝@𝐴> AC × 𝑝@𝐵> A × B1 − 𝑝@𝐵> AC
b

𝑘@𝐴> , 𝐵> A > +0

𝑸. 𝒆. 𝒅.

 

 

(222) 

Under conditions where p(Bt) = 1 it follows that k(At and Bt) = 0 and At and Bt must be treated as being 
independent of each other. In many problems, data gained from some observations provide an opportunity to 
increase the degree of confidence, when a decision is made to either accept the null hypotheses or accept the 
alternative hypothesis. Clearly, the null hypotheses and the alternative hypotheses are mutually exclusive thus that 
exactly one of the hypotheses must be true. Still, the quality of data varies and data as such do not assure an exact 
and true picture of reality with the consequence that a decision of an investigator can be wrong in principle.  
An investigator can accept null hypotheses as true even if the same is wrong and vice versa. It is possible to accept 
alternative hypotheses as true even if the same is wrong. Data which provide evidence that At is a sufficient 
condition of Bt must not in the same respect provide evidence that there is a significant cause effect relationship. 
In fact, our ability to recognize conditions or risk factors might be seriously endangered by treating a cause as 
being identical with a condition. A cause is a condition too but not vice versa. A condition must not be a cause. 
Therefore, and due to mathematical requirements, a significant cause effect relationship is not necessary to 
establish a significant sufficient condition relationship. The analysis of alleged examples can show, among other 
things, how sufficient conditions should be understood, especially with relation to causation.  
 
Example 
For example there might be wet and dry conditions of a street while the relationship between raining and the state 
of a street is measured or investigated in a case control study. Rain (At) is generally known to be a sufficient 
condition for wet streets (Bt). In other words, rain as such guarantees that the event ‘the street is wet’ occurs. If it 
is raining then the street is wet (n=1000). Every time it is raining, the street gets wet, which was measured n=4 
times. It isn't raining and the street isn’t wet was documented n=500 times (not raining and street not wet). It is 
raining but the street wasn’t wet (raining and street not wet) was not measured all (n=0).  
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However, the presence of a street which is wet is not enough to conclude that was raining. In point of fact, there 
are also other possible factors (n=496) which are able to make the street wet (not raining and street is wet). The 
neighbor might have poured water on the street; a lorry may have lost oil et cetera. The data of this investigation 
are viewed by the table 5.  
 

Table 5: The relationship between rain and a street 
  The street is wet <Bt>  
  Yes No Total 

It is 
raining Yes 4 bt = 0 4 

<At> No 496 500 996 
 Total 500 500 1000 
     
  k = +0.0634  
 p value (k) = 0.06212481 

 
The Chi-square goodness of fit test of a sufficient condition without using the continuity correction, is defined as 

 

𝑋: B@𝐴> → 𝐵> A|𝐵> C =
@−𝑏> A

:

𝑁> − 𝐵>
=

@−𝑏> A
:

𝐴>
= 𝑋: B@𝐴> → 𝐵> A|𝐴> C = 0 (223) 

According to the data above, we obtain 
 

𝑋: B@𝐴> → 𝐵> A|𝐵> C =
@−0> A

:

500 =
@−0> A

:

4 = 𝑋: B@𝐴> → 𝐵> A|𝐴> C = 0 (224) 

Independent of study design, both methods provide the same Chi square value. The data agree with the null-
hypothesis that the sample distribution does not differ from the theoretical population of the conditio per quam 
relationship. In other words, if it is raining, then the street is wet. Still, it is worth to mention that the data as 
obtained by the investigation presented before support the hypothesis too, that At and Bt are independent of each 
other (k = +0.0634, p value (k)= 0.06212481) which is a contradiction. Clearly, if it is raining then the street is wet 
with the consequence that the process of raining and a street which becomes wet cannot be treated as being 
independent of each other. Thus far, the conclusion drawn depend to a very great extent upon study design and 
other factors and it is possible that data support the null-hypothesis: At is a sufficient condition of Bt while the 
causal relationship k is not significant. Such data are not self-contradictory and can be used for the analysis of 
conditions or risk factors, but not for causal analysis. In particular, as proofed before, even under these 
circumstances it is necessary that the cause effect relationship should at least be greater than zero or k > 0 otherwise 
the data are potentially self-contradictory and should not be used even for the analysis of conditions or risk factors. 
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Example. 
A second study group investigated once again the relationship between the risk factor rain and the outcome “street 
is wet” and obtained the following data (Table 6). 
 

Table 6: Antidot 
 

 The street is wet <B>  
 

 Yes No Total 
It is 
raining 

Yes 4 20 24 

<A> No 496 480 976 
 

Total 500 500 1000      
  

k = -0.1045 
 

 
p value (k) = 0.00056237  

Odds ratio = 0.1935 
 

95% CI (Odds ratio) = (0.0657; 0.5704)   
IF <At>  THEN <Bt>   
p (IMP)= 0.9800 

 
  

X² (IMP)= 15.8438 
 

 
 
Even if the relationship between rain and the state of a street is clear, it is necessary to consider the following case. 
Different conditions of investigation can have an impact on the quality of conclusions based on data gained by 
studies. The data presented before do support a null hypothesis that the rain has a protective effect against the 
wetness of a street (Odds ratio = 0.1935; 95% CI (Odds ratio) = (0.0657; 0.5704)). It is raining and the street isn’t 
wet was measured n=20 times wet (raining and street not wet) which contradicts our everyday experience. How 
is such a result possible? One reason for such a fundamental error can be an incorrect definition of cases and 
controls and an unfair study design. The index of unfairness is IOU = (((24+500)/1000)-1) = - 0.476 and indicates 
a very unfair study design. Furthermore, it is possible that the street was wet but not recognized as being wet or 
not recorded as being wet although it rained. In other studies, the controls may have been contaminated et cetera. 
A mismatch of cases and controls excluded, it is possible that the control group possess an antidote against the 
effect of the rain on the street. In other words, it is possible that the measurements were performed under conditions 
were the street was protected against the effect of the rain i.e. by a great (transparent) tent or something similar 
thus that the street could not become wet even if it was possible to observe that it was raining. The conditions, 
inclusion and exclusion criteria et cetera under which investigations are performed can have fundamental influence 
on the quality of data and the validity of the conclusions drawn. Truth is one of the central subjects in scientific 
inquiry. And yet, despite a long history of debate in its own right going back for more than thousands of years the 
truth was, is and stays relative. Narrowly speaking, the truth or falsity of a scientific conclusion is based on many 
factors, among them the quality of data and the circumstances of investigation and has the potential to vary, 
sometimes extensively. In addition to a careful systematic observation and experiments, any scientific success 
achieved requires appropriate methods of scientific inference which enable us to infer beyond what is known by 
observation. 
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Theorem. Self-contradictory data IV 
Claim. 
The data are “suspicious” for significant bias or potentially self-contradictory if 

 
𝑋: B@𝐴> → 𝐵> A|@𝑁> − 𝐵> AC< 𝑋: B@𝐴> → 𝐵> A|@𝐴> AC (225) 

 
Proof. 
As long as the whole population is not investigated, the study design of a case-control or of another study should 
assure that the same chi square value can be achieved from the data recorded. This condition is seldom provided 
by studies published. Many times, the study design demands or assures conditions or a sample were 
 

 𝐴> <	 @𝑁> − 𝐵> A (226) 

 
Multiplying by (-b)²/(At ´ (Nt -Bt)) it is 

 

𝐴> × Q
@−𝑏> A

:

𝐴> × @𝑁> − 𝐵> A
U<	 @𝑁> − 𝐵> A × Q

@−𝑏> A
:

𝐴> × @𝑁> − 𝐵> A
U (227) 

Simplifying, we obtain 
 

Q
@−𝑏> A

:

@𝑁> − 𝐵> A
U<	 Q

@−𝑏> A
:

𝐴>
U (228) 

or 
 

𝑋: B@𝐴> → 𝐵> A|@𝑁> − 𝐵> AC< 𝑋: B@𝐴> → 𝐵> A|@𝐴> AC (229) 

 

Quod erat demonstrandum. 
 
Thus far, a study design which demands or assures that At < (Nt -Bt) can lead to biased Chi-square values 
characterized by the formula X²(At®Bt |(Nt -Bt)) <  X²(At®Bt |(At)) and the question arises, which X² should 
be used? Statistical tests primary handle samples and not populations. Still, an appropriate sample should assure 
that something insignificant stays significant and that statistical tests correctly applied should have the same chance 
to rejects a false null hypothesis.  
 
 
 
 
 
 
 
 
 
 
 



http://vixra.org/author/ilija_barukcic  

  © Ilija Barukčić, Jever, Germany, 2019. All rights reserved. 
 

Theorem. Self-contradictory data V 
Claim. 
The data are “suspicious” for significant bias or potentially self-contradictory if 

 
𝑋: B@𝐴> → 𝐵> A|@𝑁> − 𝐵> AC> 𝑋: B@𝐴> → 𝐵> A|@𝐴> AC (230) 

 
Proof. 
Circumstances were the study design demands or assures conditions or a sample were 
 

 𝐴> >	 @𝑁> − 𝐵> A (231) 

 
are leading to similar point of view. Multiplying by (-b)²/(At ´ (Nt -Bt)) it is 

 

𝐴> × Q
@−𝑏> A

:

𝐴> × @𝑁> − 𝐵> A
U>	 @𝑁> − 𝐵> A × Q

@−𝑏> A
:

𝐴> × @𝑁> − 𝐵> A
U (232) 

Simplifying, we obtain 
 

Q
@−𝑏> A

:

@𝑁> − 𝐵> A
U>	 Q

@−𝑏> A
:

𝐴>
U (233) 

or 
 

𝑋: B@𝐴> → 𝐵> A|@𝑁> − 𝐵> AC> 𝑋: B@𝐴> → 𝐵> A|@𝐴> AC (234) 

 

Quod erat demonstrandum. 
 
Again, a study design which is grounded on the assumption that  At > (Nt -Bt)  leads to the conclusion that 
X²(At®Bt |(Nt -Bt)) > X²(At®Bt |(At)) and the question arises again, which X² is valid and which X² should be 
used.  
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Theorem. Self-contradictory data VI 
Claim. 
The data are “suspicious” for significant bias or potentially self-contradictory if 

 
𝑋: B@𝐴> ← 𝐵> A|@𝑁> − 𝐵> AC< 𝑋: B@𝐴> ← 𝐵> A|@𝐴> AC (235) 

 
Proof. 
As long as the whole population is not investigated, the study design of a case-control or of another study should 
assure that the same chi square value can be achieved from the data recorded. This condition is seldom provided 
by studies published. Many times, the study design demands or assures conditions or as sample were 
 

 𝐵> <	 @𝑁> − 𝐴> A (236) 

 
Multiplying by (-c)²/(Bt ´ (Nt -At)) it is 

 

𝐵> × Q
@−𝑐> A

:

𝐵> × @𝑁> − 𝐴> A
U<	 @𝑁> − 𝐴> A × Q

@−𝑐> A
:

𝐵> × @𝑁> − 𝐴> A
U (237) 

Simplifying, we obtain 
 

Q
@−𝑐> A

:

@𝑁> − 𝐴> A
U<	 Q

@−𝑐> A
:

𝐵>
U (238) 

or 
 

𝑋: B@𝐴> ← 𝐵> A|@𝑁> − 𝐴> AC< 𝑋: B@𝐴> ← 𝐵> A|@𝐵> AC (239) 

 

Quod erat demonstrandum. 
 
Thus far, a study design which demands that At < (Nt -Bt) leads to a Chi-square values which are characterized 
by the formula X²(At¬Bt |(Nt -At)) < X²(At¬Bt |(Bt)) and the question arises, which X² is the correct one.    
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Theorem. Self-contradictory data VII 
Claim. 
The data are “suspicious” for significant bias or potentially self-contradictory (from the standpoint of a necessary 
condition) if 

 
𝑋: B@𝐴> ← 𝐵> A|@𝑁> − 𝐵> AC> 𝑋: B@𝐴> ← 𝐵> A|@𝐴> AC (240) 

 
Proof. 
A study design which demands or assures conditions or as sample were 
 

 𝐵> >	 @𝑁> − 𝐴> A (241) 

 
can be misleading too. Multiplying by (-c)²/(Bt ´ (Nt -At)) it is 

 

𝐵> × Q
@−𝑐> A

:

𝐵> × @𝑁> − 𝐴> A
U>	 @𝑁> − 𝐴> A × Q

@−𝑐> A
:

𝐵> × @𝑁> − 𝐴> A
U (242) 

Simplifying, we obtain 
 

Q
@−𝑐> A

:

@𝑁> − 𝐴> A
U>	 Q

@−𝑐> A
:

𝐵>
U (243) 

or 
 

𝑋: B@𝐴> ← 𝐵> A|@𝑁> − 𝐴> AC> 𝑋: B@𝐴> ← 𝐵> A|@𝐵> AC (244) 

 

Quod erat demonstrandum. 
 
 
Again, a study design which is grounded on the assumption that  At > (Nt -Bt)  leads to X²(At¬Bt |(Nt -Bt)) > 
X²(At¬Bt |(At)) and the question arises again, which X² is valid and should be used.  
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Theorem. A fair study design I 
Claim. 
A study design from the standpoint of a conditio per quam relationship is fair and the data are formally not self-
contradictory due to study design if 

 𝑁> = 𝐴> + 𝐵>  (245) 

Proof. 
The Chi-square value of a conditio per quam relationship is demands that 

 

𝑋: B@𝐴> → 𝐵> A|𝐵> C =
@−𝑏> A

:

𝑁> − 𝐵>
=

@−𝑏> A
:

𝐴>
= 𝑋: B@𝐴> → 𝐵> A|𝐴> C (246) 

Both methods applied on a data body should yield the same Chi-square value. In other words, it is 
 

@−𝑏> A
:

𝑁> − 𝐵>
=

@−𝑏> A
:

𝐴>
 (247) 

Define (-bt)2  º 1 and rearrange equation, it is 
 

 𝑁> − 𝐵> = 𝐴>  (248) 

or 
 𝑁> = 𝐴> + 𝐵>  (249) 

Quod erat demonstrandum. 
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Theorem. A fair study design II 
Claim. 
A study design from the standpoint of a conditio sine qua non relationship is fair and the data are formally not 
self-contradictory due to study design if 

 𝑁> = 𝐴> + 𝐵>  (250) 

Proof. 
The Chi-square value of a conditio sine qua non relationship demands that 

 

𝑋: B@𝐴> ← 𝐵> A|𝐴> C =
@−𝑐> A

:

𝑁> − 𝐴>
=

@−𝑐> A
:

𝐵>
= 𝑋: B@𝐴> ← 𝐵> A|𝐵> C (251) 

Both methods applied on a data body should yield the same Chi-square value. In other words, it is 
 

@−𝑐> A
:

𝑁> − 𝐴>
=

@−𝑐> A
:

𝐵>
 (252) 

Define (-ct)2  º 1 and rearrange equation, it is 
 

 𝑁> − 𝐴> = 𝐵>  (253) 

or 
 𝑁> = 𝐴> + 𝐵>  (254) 

Quod erat demonstrandum. 
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Theorem. A fair study design III 
The guarantee of a fair study design is fundamental in any empirical scientific research and of every modern 
medical investigation. The framework of a fair study design should obey especially the principle of equality of 
arms which is a central feature of every scientific combat to ensure completely only the discovery of the truth. The 
principle of equality of arms leaves no room for defending material interest, ideological position or wishful 
thinking but requires that advocates of a special null hypothesis and opponents of the same null hypotheses have 
the same chance or possibilities to reject or to accept the null-hypothesis at their disposal. One could sum up the 
principle of equality of (scientific) arms by saying that no party should have an unfair advantage over the other 
party especially due to study design. Put in other terms, any scientific research is not complete without the notion 
of fairness. Ignoring the historical origins and theoretical foundations of the principle of equality of (scientific) 
arms a fair and careful study design directed to the goal that a correct null-hypothesis has to be accepted and that 
a false null-hypothesis has to be rejected is the core of evaluations to determine how believable a hypothesis is. 
Independently of the extent of the data to be recorded or the type of the study (case-control study, cohort study et 
cetera), formally, the design of the study must ensure that the analyzing results of the data generated are the same. 
In the following, this problem will be analyzed from the standpoint of the research on secondary data (i. e. case 
control studies) and the research on primary data under ideal conditions (No bias, no systematic errors, perfect 
accuracy of a measuring instrument et cetera). Aside from the type of study, we intended to give the same answer 
to scientific questions and to gain the same new knowledge. 
 
Claim. 
A study design which demands that at = dt is fair and the data are formally not self-contradictory due to study 
design if 

 𝐴> + 𝐵> = 𝑁>  (255) 

Proof. 
Sometimes, study design demands or assures conditions or a sample were 

 𝑎> = 𝑑>  (256) 

were at denotes the number of subjects (exposed and diseased) while dt denotes the number of subjects (not 
exposed and not diseased). Adding (bt + ct + dt) to the equation before, it is 

 
@𝑎> A + B@𝑏> A + @𝑐> A + @𝑑> AC = @𝑑> A + B@𝑏> A + @𝑐> A + @𝑑> AC (257) 

or 
 

@𝑎> A + @𝑏> A + @𝑐> A + @𝑑> A = B@𝑐> A + @𝑑> AC + B@𝑏> A + @𝑑> AC (258) 

In general, it is Nt = (at + bt + ct + dt). Furthermore, it is At = (ct + dt) and Bt = (bt + dt). The equation changes to 
 𝑁> = 𝐴> + 𝐵>  (259) 

In other words, under these conditions, the study design demands equally that 
 𝑁> − 𝐴> = 𝐵>  (260) 

It is At = (Nt – At) and the equation before simplifies as 
 𝐴> = 𝐵>  (261) 

It is At = (Nt – At) and Bt = (Nt – Bt). The equation above derived as 
 𝑁> = 𝐴> + 𝐵>  (262) 

simplifies as 
 𝑁> = @𝑁> − 𝐴> A + @𝑁> − 𝐵> A (263) 

or to 	
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 𝑁> − @𝑁> − 𝐴> A = @𝑁> − 𝐵> A (264) 

or to 	
 𝐴> = 𝑁> − 𝐵>  (265) 

The condition at = dt is assured if 
 𝐴> + 𝐵> = 𝑁>  (266) 

 

Quod erat demonstrandum. 
 
Theorem. A fair study design IV 
Claim. 
A study design from the standpoint of an exclusion relationship is fair and the data are formally not self-
contradictory due to study design if 

 𝑁> = 𝐴> + 𝐵>  (267) 

Proof. 
The Chi-square value of an exclusion relationship demands that 

 

𝑋: B@𝐴> |𝐵> A|𝐴> C =
@−𝑎> A

:

𝐴>
=

@−𝑎> A
:

𝐵>
= 𝑋: B@𝐴> |𝐵> A|𝐵> C (268) 

Both methods applied on a data body should yield the same Chi-square value. In other words, it is 
 

@−𝑎> A
:

𝐴>
=

@−𝑎> A
:

𝐵>
 (269) 

Define (-at)2  º 1 and rearrange equation, it is 
 𝐴> = 𝐵>  (270) 

or 
 𝑁> − 𝐴> = 𝑁> − 𝐵>  (271) 

or 
 𝐴> = 𝐵>  (272) 

The study design to test the exclusion relationship demands that At = Bt and that At = Bt. This circumstances can 
be identical with the demand that At = Bt = At = Bt but must not. In other words, an exclusion relationship demands 
a study design were At=Bt. Adding Bt it is 
 

 𝐴> + 𝐴> = 𝐵> + 𝐴>  (273) 

or 
 𝑁> = 𝐴> + 𝐵>  (274) 

Quod erat demonstrandum. 
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Theorem. A fair study design V 
Claim. 
A study design from the standpoint of conditio sine qua non and conditio per quam and an exclusion relationship 
is fair and the data are formally not self-contradictory due to study design if 

 𝑁> = 𝐴> + 𝐵>  (275) 

Proof. 
The Chi-square value of an exclusion relationship demands that 
 

 𝑁> = 𝐴> + 𝐵>  (276) 

A study design from the standpoint of conditio sine qua non and conditio per quam relationship can be regarded 
as fair if Nt = At+Bt. Substituting this relationship into equation before, it is 

 𝐴> + 𝐵> = 𝐴> + 𝐵>  (277) 

or 
 𝐴> = 𝐴>  (278) 

 
At the same time, the study design should be fair with respect to an exclusion relationship. In this case, it is equally 
true that At = Bt. We obtain 
 

 𝐴> = 𝐴> = 𝐵> = 𝐵>  (279) 

Quod erat demonstrandum. 
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Theorem. A fair study design VI 
Claim. 
A study design which investigates the causal relationship between At and Bt should respect especially the law of 
independence. Whether the absence of independence may be or not be one aspect of the causal relationship or not, 
study design should ensure that an independence of At from Bt and vice versa can be recognized. Under the 
assumption of independence of At from Bt study design is fair and the data are formally not self-contradictory due 
to study design if 

 𝐴> = 𝐵>  (280) 

Proof. 
Under the assumption of independence, it is 

 𝑝@𝐴> ∩ 𝐵> A ≡ 𝑝@𝑎> A = 𝑝@𝐴> A × 𝑝@𝐵> A (281) 

Multiplying by Nt´Nt, it is 
 𝑁> × 𝑁> × 𝑝@𝑎> A = 𝑁> × 𝑁> × 𝑝@𝐴> A × 𝑝@𝐵> A (282) 

or 
 

𝑁> × 𝑎> = 𝐴> × 𝐵>
∕ ∖

∕ ∖

 (283) 

Rearranging equation, we obtain 
 𝑁> × 𝑎>

𝐴>
= 𝐵> 𝑎𝑛𝑑

𝑁> × 𝑎>
𝐵>

= 𝐴>  (284) 

or 
 

QR
𝑁> × 𝑎>
𝐴>

T − 𝐵> U = 0 𝑎𝑛𝑑 QR
𝑁> × 𝑎>
𝐵>

T − 𝐴> U = 0 (285) 

or 
 

QR
𝑁> × 𝑎>
𝐴>

T −
𝐴> × 𝐵>
𝐴>

U = 0 𝑎𝑛𝑑 QR
𝑁> × 𝑎>
𝐵>

T −
𝐴> × 𝐵>
𝐵>

U = 0 (286) 

or that 
 

R
@𝑁> × 𝑎> A − @𝐴> × 𝐵> A

𝐴>
T = 0 𝑎𝑛𝑑 R

@𝑁> × 𝑎> A − @𝐴> × 𝐵> A
𝐵>

T = 0 (287) 

 
In other words, under the condition of independence, study design should fulfill the requirement that 
 

 
R
@𝑁> × 𝑎> A − @𝐴> × 𝐵> A

𝐴>
T = R

@𝑁> × 𝑎> A − @𝐴> × 𝐵> A
𝐵>

T (288) 

 
We define ((Nt´at)-(At´Bt)) = 1. The equation before simplifies to 
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R
1
𝐴>
T = R

1
𝐵>

T (289) 

 
Under the assumption of independence, a study design is fair if 

 𝐴> = 𝐵>  (290) 

 

Quod erat demonstrandum. 
 
Example. 
Under the assumption of a conditio sine qua non relationship or of a conditio per quam relationship study design 
should assured that 

 𝑁> = 𝐴> + 𝐵>  (291) 

Under the condition of independence, it is at the same time At = Bt. Substituting we obtain 
 𝑁> = 𝐴> + 𝐵> = 2 × 𝐴> = 2 × 𝐵>  (292) 

or 
 

𝐴> = 𝐵> = R
𝑁>
2 T (293) 
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Theorem. Index of unfairness.  
Aside from personnel, financial, organizational and logistical questions of a study, the scientific value of a 
(medical) study is determined especially by factors like study design, statistical methodology used, sample size 
calculations and a properly selected, highly representative study population with defined and selective inclusion 
and exclusion criteria. The extent to which the measuring technique and instruments used consistently provide the 
same results if measurements are repeated should be accurate enough. The significance of study design for the 
quality of the conclusions drawn is often underestimated. In point of fact, errors in the statistical evaluation can be 
corrected after the study has been completed. In contrast to errors in the statistical evaluation it is difficult to correct 
errors in study design afterwards. A number of potential problems may bias the results of observational studies or 
even or well-planned, experimental randomized clinical trials. Nevertheless, even if many questions in human 
medicine can only be answered with observational studies medical research studies itself provide already 
additional statistical information whether the data of a study can be considered to be evaluated by statistical test 
procedures to generalize the results from the sample for the whole population. The relation between data and 
hypotheses is of key importance in almost all empirical research and those who plan to perform a study which 
should make an important contribution to medical knowledge must occupy themselves intensively with an 
appropriate and careful study design. Statistical methods which are relating hypotheses in the light of empirical 
facts may enable us even to extrapolate from data to predictions and general facts. Some of the main 
methodological problems can be avoided if the foundations of statistical methods are logically and mathematically 
correct. Data have an impact on a hypothesis, but the impact should depend on the data themselves and not just on 
the study design of the researcher. The underlying question arises, therefore, how can such a problem (even ex 
post) be operationalized, meaning that it must be converted into an evaluable and measurable form. 
 
Claim. 
The index of unfairness (IOU) can be derived as 
  

 

𝐼𝑂𝑈 = QR
𝐴> + 𝐵>
𝑁>

TU − 1 (294) 

Proof. 
Under conditions were the data of a study are analyzed by a chi-square goodness of fit test of a necessary condition, 
the study design should assure, that the same chi square value should be achieved. In other words, it is 

 
𝑋: B@𝐴> ← 𝐵> A|𝐴> C ≡ 𝑋: B@𝐴> ← 𝐵> A|𝐵> C (295) 

or 
 

@−𝑐> A
:

𝐴>
≡

@−𝑐> A
:

𝐵>
 (296) 

If ct = 0, we set ct =1. We obtain 
 1

𝐴>
≡

1
𝐵>

 (297) 

or 
 𝐴> ≡ 𝐵>  (298) 

It is At = Nt – At. Substituting this relationship into the equation before, we obtain 
 𝑁> − 𝐴> ≡ 𝐵>  (299) 

or 
 𝑁> ≡ @𝐴> + 𝐵> A (300) 
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or 
 𝑁>

𝑁>
= +1 ≡

@𝐴> + 𝐵> A
𝑁>

 (301) 

The index of unfairness, abbreviated as IOU, follows as 
 

𝐼𝑂𝑈 ≡ QR
@𝐴> + 𝐵> A

𝑁>
T − 1U = 0 (302) 

Q. e. d. 
 
The range of the index of unfairness is [-1;+1]. In this context let IOF=0 denote a fair study design, let 0 < |IOF| < 
0.25 denote an unfair study design, let 0.25 < |IOF| < 0.5 denote a very unfair study design, let 0.5 < |IOF| < 0.75 
denote a highly unfair study design and let 0.75 < |IOF| < 1 denote an extremely unfair study design.  
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4. Discussion 
Failure to apply rigorous standards and appropriate statistical methods in biomedical research on data collected 
from a valid scientific design can lead to misleading conclusions and the costs to patients and society could be 
high. Briefly, many times a very large sample is required to discover a small difference. Still, the sample size of 
medical studies is often too small, thus that the power is also too small and a relationship is either only described 
imprecisely (Moher et al., 1994) or even unidentified. Anyone who denies that a very careful calculation of the 
sample size of a study is one of the problems of scientific research may characteristically insist that the 
measurements itself may be invalid or false and may lead to erroneous conclusions too. Therefore, whatever the 
sample size calculation and other potential sources of bias, the selection of an appropriate study design, free of 
publication bias, is important too, to be able to generalize the study results to the population. Funnel plots are one 
of the several attempts made to assess the magnitude of publication bias. Many meta-analyses show Funnel plots 
as proposed in 1984 by Light and Pillemer (Light and Pillemer, 1984) to examine whether there is evidence against 
or for the presence of publication bias. The funnel plot is a kind of a scatter plot with some measure of weight 
(such as the sample size, the inverse variance, the standard error et cetera) on the vertical axis and the treatment 
effect on the horizontal axis. More precisely, the Funnel plot’s (plots of effect estimates against sample size) wide 
popularity followed an article published in the BMJ in 1997 (Egger et al., 1997) is not unrestrictedly justified. The 
capacity of Funnel plot to detect publication bias in meta-analyses is often misleading (Lau et al, 2006) and equally 
inaccurate especially for meta-analyses of proportion studies (Hunter et al., 2014) with low proportion outcomes. 
To date, funnel plot may overlook serious bias (Lau et al, 2006) and it is still clear whether funnel plots really 
diagnose publication bias (Zwetsloot et al., 2017) at all. Formal statistical tests are sometimes useful tools to 
eliminate the subjectivity in scientific research. Nonetheless, bias starts when subjectivism begins. Any use and 
abuse of methodological tests depends on the chance of a study of being published too. Medical studies with results 
different from the published ones are often more endangered and threatened of not being published or have a 
decreased likelihood of being published. Medical studies with favorable results are published more often, and more 
quickly, than trials with negative findings which can lead to publication bias (Hopewell et al., 2009). As a result 
of such a scientific practice or scientific evolution or a natural (peer-reviewed dominated) selection, main-stream 
compatible or source of funding adequate favorable results are published more often than other ones. On the long 
run, there is a serious overestimation of the effects in the literature found and a damaging and escalating effect on 
the integrity of scientific knowledge is possible. Unfortunately, there is evidence suggesting that this systematic 
publication bias documented in the literature for decades is increasing (Joober et al., 2012). Finally, a prevention 
of publication bias is of course much more desirable than a corrective or diagnostic analysis or finding or excluding 
of publication bias. With regard to the prevention of publication bias the index of unfairness is of use since the 
same reduces errors due to study design. Nonetheless, the knowledge of publication bias even ex-post due to index 
of unfairness possible needed to detect or to avoid inconsistent conclusions too. The index of unfairness and other 
methods developed in this publication are useful tools for further evaluation of publication bias and can help to 
reduce the impact of publication bias on the certainty of scientific evidence.  
 
5. Conclusion 
The several attempts to assess the magnitude of publication bias require several assumptions which are difficult to 
ascertain and are labeled with various other limitations. The presence of publication bias can be determined even 
ex post while using the index of unfairness. 
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