Classifying conic sections in terms of differential forms

Kohji Suzuki*

kohjisuzuki@yandex.com

Abstract

We explore classification of conics from a viewpoint of differential forms.

1 Introduction

Singularities play some roles in both mathematics and physics. Among other things, a conical singularity leads us to address the origin O(0, 0, 0) in the double cone $A(x, y, z) = z^2 - x^2 - y^2 = 0$, where $\frac{\partial A(x, y, z)}{\partial x}\Big|_{x=0} = -2x|_{x=0} = -2 \cdot 0 = 0$, $\frac{\partial A(x, y, z)}{\partial y}\Big|_{y=0} = -2y|_{y=0} = -2 \cdot 0 = 0$, and $\frac{\partial A(x, y, z)}{\partial z}\Big|_{z=0} = 2z|_{z=0} = 2 \cdot 0 = 0$. Partial derivatives playing the above role in discerning a singular point, we wonder if the so-called differential form s can function similarly in distinguishing.

der if the so-called differential form s can function similarly in distinguishing singularities . Viewing the double cone as an epitome, we derive differential form s from the conic sections in Euclidean geometry and investigate such possibility.

2 **Obtaining** *SING*, **differential** form - derived notion

We start from the following equation :

^{*} Protein Science Society of Japan

$$\phi = ax^2 + bxy + cy^2 + ex + fy + g = 0, a, b, c, e, f, g \in \mathbb{R}^{-1, 2, 3}.$$
 (1)

Differentiating ϕ wrt x gives

which we check using Maxima and Octave 7,8,9:

% maxima

Maxima 5.41.0 http://maxima.sourceforge.net using Lisp GNU Common Lisp (GCL) GCL 2.6.12 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information.

(%i1) diff(a*x^2+b*x*y(x)+c*y(x)^2+e*x+f*y(x)+g,x);

²Regarding the general binary quadratic form , Lagrange considered $ax^2 + bxy + cy^2$ with integral coefficients, whereas Gauss restricted attention to $ax^2 + 2bxy + cy^2$ [1].

³Gauss treated the integral solutions to the equation $ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$ [2], and in this footnote, where because of the absence of the aforementioned $\frac{d}{dx}$, we are not so worried about mixing up dx's, we refrained from replacing 'd' in that equation by 'e' to be in conformity with the original text in [2]. *Cf.* footnote 1.

⁴ Linearity of differentiation was used.

Some differentiation rules were used.

⁶Ditto.

⁸Throughout this preprint, we use elementary OS ver. 5.0 (Juno) . Central processing units are the same as those indicated in footnote 3 of [4].

¹We avoided writing 'dx' lest it should be confused with that in the differential operator $\frac{d}{dx}$, which will be used soon. *Cf.* footnote 3.

⁷See footnote 4 in [3] for how we verify our computations.

⁹Verbatim outputs of (on-line) softwares are sometimes edited. For instance, the Maxima output (% o1) on p3 doesn't always reflect the original one, which is not shown for simplicity.

```
(%01) 2 c y(x) (-- (y(x))) + b x (-- (y(x))) + f (-- (y(x)))
                                  dx
                dx
                                                  dx
     + b y(x) + 2 a x + e
% octave -W
GNU Octave, version 4.2.2
Copyright (C) 2018 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type 'warranty'.
Octave was configured for "x86_64-pc-linux-gnu".
Additional information about Octave is available at
http://www.octave.org.
Please contribute if you find this software useful.
For more information, visit http://www.octave.org/get-involved.html
Read http://www.octave.org/bugs.html to learn how to submit bug
reports.
For information about changes from previous versions, type 'news'.
octave:1> pkg load symbolic
octave: 2 >  syms a b c e f g x y(x)
OctSymPy v2.6.0: this is free software without warranty, see source.
Initializing communication with SymPy using a popen2() pipe.
Some output from the Python subprocess (pid 21361) might appear next.
Python 2.7.15rc1 (default, Nov 12 2018, 14:31:15)
[GCC 7.3.0] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> >>>
OctSymPy: Communication established. SymPy v1.1.1.
octave: 3 \ge diff(a*x^2+b*x*y+c*y^2+e*x+f*y+g,x)
```

d

d

d

Having verified (3), we multiply both left-hand side (LHS) of (2) and right-hand side (RHS) of (3) by dx. Then, after some rearrangements, we get the 1-form ω , *i.e.*,

$$d\phi = (2ax+by+e)dx+(bx+2cy+f)dy,$$
(4)

in which $\frac{\partial(2ax+by+e)}{\partial y} = \frac{\partial(bx+2cy+f)}{\partial x} = b$ holds ¹⁰. Rewriting (4) more generally yields

$$\omega = d\phi = f(x, y)dx + g(x, y)dy.$$
(5)

 $\omega = 0^{-11}$ implying $d\omega = 0^{-12}$, 13 , we try defining a *SING* to be a point at which f(x, y) = g(x, y) = 0 holds, and accordingly, such a 1-form vanishes 14 . With regard to whereabouts, *SING*'s can exist 15 :

- **IN**(side) := *SING* is enclosed by a certain curve ;
- (up)**ON** := *SING* is on certain curve (s) 16 ;

¹⁰*Cf.* **Criterion 1.10** in [5].

¹¹Since it follows from (1) that $\phi = 0$, $\frac{d\phi}{dx} = \frac{d}{dx}(0) = 0$. So $\frac{d\phi}{dx} = 0$. Multiplying both sides of it by dx, we get $d\phi = 0$. Hence, $\omega = 0$, too, since $\omega = d\phi$. See, *e.g.*, (5).

¹²When $d\omega = 0$, ω is regarded as closed [6].

¹³*Cf.* [7].

¹⁴The fact that all the partial derivatives simultaneously vanish at the singular points has inspired us. See also **1**.

¹⁵Henceforth, a line is regarded as a kind of a curve . See footnotes 19, 20, and 52.

¹⁶ SING can be on the intersection point of curve s. See **3.5**, **3.6**, and **4**. Cf. footnote 53.

- **OUT**(side) := *SING* is neither enclosed by a certain curve nor on certain curve (s);
- **NO**(where) := *SING* is nonexistent.

3 SING-based classification of conic section s

We derive five examples from (1), apply the notion of *SING* to them, and classify the conic s into the above four categories.

3.1 The case where a = 1, b = 0, c = 1, e = -8, f = -8, and g = 31

In this case, we consider

$$\phi = x^2 + y^2 - 8x - 8y + 31 = (x - 4)^2 + (y - 4)^2 - 1^2 = 0,$$
(6)

a circle. So

$$\frac{d\phi}{dx} = \frac{d}{dx}(x^2 + y^2 - 8x - 8y + 31) = 2x + 2y\frac{dy}{dx} - 8 - 8\frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = 2xdx + 2ydy - 8dx - 8dy = 2(x-4)dx + 2(y-4)dy$. Thus, *SING* is the point (4, 4), or the center of the circle . The *SING* lies inside the circle , and the circle is therefore classified into the category **IN**.

3.2 The case where a = 4, b = 0, c = 1, e = 32, f = -8, and g = 79

In this case, we consider

$$\phi = 4x^2 + y^2 + 32x - 8y + 79 = 4(x+4)^2 + (y-4)^2 - 1 = 0,$$
(7)

an ellipse. So

$$\frac{d\phi}{dx} = \frac{d}{dx}(4x^2 + y^2 + 32x - 8y + 79) = 8x + 2y\frac{dy}{dx} + 32 - 8\frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = 8xdx + 2ydy + 32dx - 8dy = 8(x+4)dx + 2(y-4)$ dy. Thus, *SING* is the point (-4, 4), or the center of the ellipse . The *SING* lies inside the ellipse , and likewise, the ellipse is classified into the category **IN**. **3.3** The case where a = 1, b = 0, c = 0, e = 0, f = -1, and g = 1

In this case, we consider

$$\phi = x^2 - y + 1 = 0, \tag{8}$$

a parabola. So

$$\frac{d\phi}{dx} = \frac{d}{dx}(x^2 - y + 1) = 2x - \frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = 2xdx - dy$. This time, even if we set x = 0, -dy remains, which means that ω doesn't vanish. The parabola is therefore classified into the category **NO**.

3.4 The case where a = 1, b = 0, c = -1, e = 0, f = 0, and <math>g = -61

In this case, we consider

$$\phi = x^2 - y^2 - 61 = 0, \tag{9}$$

a hyperbola. So

$$\frac{d\phi}{dx} = \frac{d}{dx}(x^2 - y^2 - 61) = 2x - 2y\frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = 2xdx - 2ydy$. Thus, *SING* is the point (0, 0), or the center of the hyperbola . The hyperbola cannot encircle the *SING*, and the hyperbola is therefore classified into the category **OUT**.

3.5 The case where a = 1, b = 0, c = -1, e = 0, f = -4, and g = -4

In this case, we consider

$$\phi = x^2 - y^2 - 4y - 4 = x^2 - (y+2)^2 = 0,$$
(10)

two intersecting lines $y = \pm x - 2^{-17}$. So

 $^{^{17}}Cf$. here .

¹⁸We are interested more in *SING*-based classification of conic section s than in pondering on whether to exclude degenerate cases, including two intersecting lines and a double line, which is why we consider them for now.

$$\frac{d\phi}{dx} = \frac{d}{dx}(x^2 - y^2 - 4y - 4) = 2x - 2y\frac{dy}{dx} - 4\frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = 2xdx - 2ydy - 4dy = 2xdx - 2(y+2)dy$. Thus, *SING* is the point (0, -2). The *SING* lies on the intersection point of those line s, and those intersecting lines are therefore classified into the category **ON**.

3.6 Visualizing (6) - (10)

We visualize (6) - (10) using SageMath and Xcas (browser version) :

% more Fig1.sage

```
var('x y')
C1=implicit_plot((x-4)^2+(y-4)^2-1^2,(x,-10,10),(y,-10,10),
                                                                   color='blue')
C2=implicit_plot(4*(x+4)^2+(y-4)^2-1, (x, -10, 10), (y, 
                                                                  color='red')
C3=implicit_plot(x^2-y+1,(x,-10,10),(y,-10,10),
                                                                   color='green')
C4=implicit_plot(x^2-y^2-61, (x, -10, 10), (y, -10, 10), color='orange')
C5=implicit_plot(x^2-(y+2)^2,(x,-10,10),(y,-10,10),color='black')
                                                                                                                                 +(y-4)^{2}-1^{2}=0'', (3.7, 6.0),
t1=text(''(x-4)^2 n
                               color='blue')
                                                                                                      +(y-4)^2-1=0",(-5.4,5.8),color='red')
t2=text("4*(x+4)^{2}n)
t3=text("x^2-y+1=0",(0.0,8.4),color='green')
t4=text("x^2-y^2-61=0", (5.3, 0.7), color='orange')
t5=text("x^2-(y+2)^2=0",(0.0,-5.4),color='black')
(C1+C2+C3+C4+C5+t1+t2+t3+t4+t5). show(xmax=10, xmin=-10, ymax=10,
ymin=-10,axes=true)
```

% sage

SageMath version 8.1, Release Date: 2017-12-07
Type "notebook()" for the browser-based notebook interface.
Type "help()" for help.

```
sage: load("Fig1.sage")
```

Launched png viewer for Graphics object consisting of 10 graphics primitives

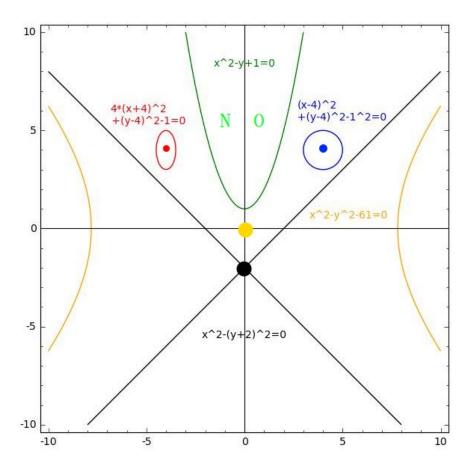


Fig. 1. (6) – (10) visualized by SageMath . Four dots were insetted later by using Pinta ver. 1.6 and correspond to the *SING*'s of the curve s except for the parabola ¹⁹ . 'NO' was insetted in a similar manner and denotes the category **NO**(where).

¹⁹As mentioned in footnote 15, the two intersecting lines in this Fig. are regarded as certain curve s.

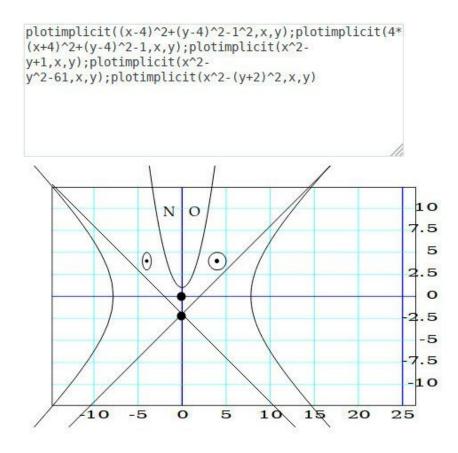


Fig. 2. (6) – (10) visualized by Xcas . Four dots were insetted in a manner similar to Fig. 1 and likewise indicate the *SING*'s of the curve s except for the parabola 20 . 'NO' was also insetted in a similar manner and likewise denotes the category **NO**(where).

²⁰Ditto.

3.7 The case where a = 1, b = 2, c = 1, e = 0, f = 0, and <math>g = 0

In addition to the aforementioned five cases, we consider

$$\phi = x^2 + 2xy + y^2 = (x + y)^2 = 0, \tag{11}$$

a double line 21 . So

$$\frac{d\phi}{dx} = \frac{d}{dx}(x^2 + 2xy + y^2) = 2x + 2y + 2x\frac{dy}{dx} + 2y\frac{dy}{dx},$$

and we get the 1-form $\omega = d\phi = (2x+2y)dx + 2xdy + 2ydy = 2(x+y)dx + 2(x+y)$ dy. Thus, *SING* is the line x + y = 0. As we haven't treated such a 1-dimensional *SING* yet ²², taking this opportunity, we would like to visualize (11) and its *SING* by using SageMath and Xcas (browser version) :

```
% more Fig3.sage
```

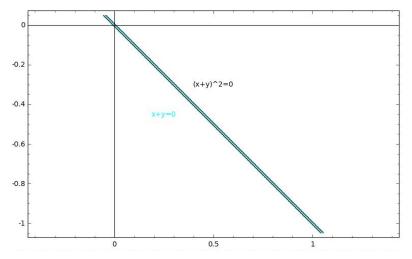
```
var('x y')
C1=implicit_plot((x+y)^2-0.00007,(x,-0.4,1.4),(y,-1.05,0.05),
color='black')
# Actually, the term -0.00007 is a "dummy". If we simply write
# (x+y)^2, the double line (x+y)^2=0 fails to show up.
C2=implicit_plot(x+y,(x,-0.4,1.4),(y,-1.05,0.05),color='cyan')
t1=text("(x+y)^2=0",(0.50,-0.30),color='black')
t2=text("x+y=0",(0.25,-0.45),color='cyan')
(C1+C2+t1+t2).show(xmax=1.4,xmin=-0.4,ymax=0.05,ymin=-1.05,
axes=true)
```

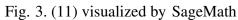
% sage

SageMath version 8.1, Release Date: 2017-12-07

```
sage: load("Fig3.sage")
Launched png viewer for Graphics object consisting of 4
graphics primitives
```

```
<sup>21</sup> Cf. here .
<sup>22</sup> See 3.1-3.6.
```





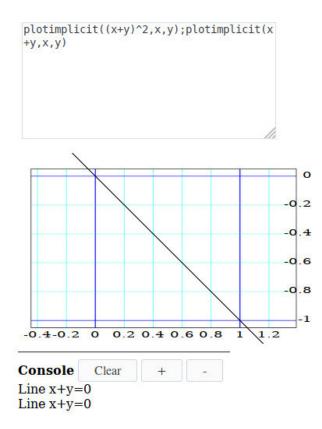


Fig. 4. (11) visualized by Xcas

These figures indicate that the double line $(x+y)^2 = 0$ and the line x+y=0 overlap. Now we learn that the *SING* x+y=0 is, in a sense, stuff *itself* we initially considered, which leads us to add **IT**(self) to the aforementioned four categories.

We have thus referred to five categories, which include IN, IT, NO, ON, and OUT 23 .

4 Wrap-up

We tabulate the results we have so far obtained as follows:

Equation	Shape	1-form
$(x-4)^2 + (y-4)^2 - 1^2 = 0$	Circle	2(x-4)dx + 2(y-4)dy
$4(x+4)^2 + (y-4)^2 - 1 = 0$	Ellipse	8(x+4)dx+2(y-4)dy
$x^2 - y + 1 = 0$	Parabola	2xdx - dy
$x^2 - y^2 - 61 = 0$	Hyperbola	2xdx - 2ydy
$x^2 - (y+2)^2 = 0$	Two intersecting lines	2xdx - 2(y+2)dy
$(x+y)^2 = 0$	Double line	2(x+y)dx + 2(x+y)dy

Table

Table (cont'd)

Whereabouts of SING	SING-based classification of equation	
(4, 4)	IN	
(-4, 4)	IN	
Nonexistent	NO	
(0, 0)	OUT	
(0, -2)	ON	
x + y = 0	IT	

Cf. determinant-based classification .

²³As **IT** and **ON** have been embodied by the line x + y = 0 and the point (0, -2), respectively, defining a line as a set of points might enable us to subsume **ON** under **IT**, thereby reducing such five categories to four. See also **4**.

5 Some generalizations

Having summarized (rather) concrete results we obtained, we wish to see if at least some of them generalize. Undertaking (10), which can be rewritten as (x + y+2)(x-y-2) = 0, we consider

$$\phi = (hx + jy + k)(\ell x + my + n) = 0, h, j, k, \ell, m, n \in \mathbb{R}, hm - j\ell \neq 0^{-24}, 2^{-5}.$$
 (12)

So

$$\begin{split} \phi &= hx(\ell x + my + n) + jy(\ell x + my + n) + k(\ell x + my + n) \\ &= h\ell x^2 + hmxy + hnx + j\ell xy + jmy^2 + jny + k\ell x + kmy + kn \\ &= h\ell x^2 + (hm + j\ell)xy + jmy^2 + (hn + k\ell)x + (jn + km)y + kn. \end{split}$$

And

$$\frac{d\phi}{dx} = \frac{d}{dx} \{ h\ell x^2 + (hm + j\ell)xy + jmy^2 + (hn + k\ell)x + (jn + km)y + kn \} \\ = 2h\ell x + (hm + j\ell)y + (hm + j\ell)x\frac{dy}{dx} + 2jmy\frac{dy}{dx} + hn + k\ell + (jn + km)\frac{dy}{dx}.$$
 (13)

We check (13) using Maxima and Octave :

% maxima

²⁴We substituted 'j' for 'i' lest 'i' should be confused with the imaginary unit ι . See also footnote 76.

²⁵Rewriting $\phi = 0$ as the product of hx + jy + k = 0 and $\ell x + my + n = 0$ yields two line s. In matrix notation, one gets

$$\left(\begin{array}{cc}h&j\\\ell&m\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)+\left(\begin{array}{c}k\\n\end{array}\right)=\left(\begin{array}{c}0\\0\end{array}\right),$$

which we further rewrite as $A\vec{x} + \vec{a} = \vec{0}$. If $hm - j\ell \neq 0$, that is, the matrix A is invertible, intersection point (x, y) is obtained by computing $-A^{-1}\vec{a}$. Explicitly,

$$\begin{pmatrix} x \\ y \end{pmatrix} = -\begin{pmatrix} h & j \\ \ell & m \end{pmatrix}^{-1} \begin{pmatrix} k \\ n \end{pmatrix} = \frac{1}{hm - j\ell} \begin{pmatrix} -m & j \\ \ell & -h \end{pmatrix} \begin{pmatrix} k \\ n \end{pmatrix} = \frac{1}{hm - j\ell} \begin{pmatrix} -km + jn \\ k\ell - hn \end{pmatrix}.$$

And the condition $hm - j\ell \neq 0$ will take effect again. See the denominator s in the RHS of (15).

+ (h m + j 1) y(x) + 2 h 1 x + h n + k 1
% octave -W
GNU Octave, version 4.2.2
octave:1> pkg load symbolic
octave:2> syms h j k 1 m n x y(x)
OctSymPy v2.6.0: this is free software without warranty, see
source.
Python 2.7.15rc1 (default, Nov 12 2018, 14:31:15)
[GCC 7.3.0] on linux2
>>> >>>
OctSymPy: Communication established. SymPy v1.1.1.
octave:3> expand(diff((h*x+j*y(x)+k)*(1*x+m*y(x)+n),x))
ans = (sym)

$$2*h*1*x + h*m*x*--(y(x)) + h*m*y(x) + h*n + j*1*x*--(y(x))$$

 dx dx
+ j*1*y(x) + 2*j*m*y(x)*--(y(x)) + j*n*--(y(x)) + k*1
 dx dx

We have thus verified (13) and multiply it by dx. After some rearrangements, one gets

 $\omega = d\phi = \{2h\ell x + (hm + j\ell)y + hn + k\ell\}dx + \{(hm + j\ell)x + 2jmy + jn + km\}dy.$ Thus, we are meant to solve

$$\begin{cases} 2h\ell x + (hm + j\ell)y + hn + k\ell = 0, \\ (hm + j\ell)x + 2jmy + jn + km = 0 \end{cases}$$
(14)

for *x*, *y* and get

$$(x, y) = \left(\frac{jn-km}{hm-j\ell}, \frac{k\ell-hn}{hm-j\ell}\right),\tag{15}$$

which is the SING. Let us check it using Giac and SageMath. % giac -v

1.2.3

% giac

```
// Using locale /usr/share/locale/
// ja_JP.UTF-8
// /usr/share/locale/
// giac
// UTF-8
// Maximum number of parallel threads 4
Help file /usr/share/giac/doc/local/aide_cas not found
Added 0 synonyms
Welcome to giac readline interface
(c) 2001,2016 B. Parisse & others
Homepage http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
Released under the GPL license 3.0 or above
See http://www.gnu.org for license details
May contain BSD licensed software parts (lapack, atlas, tinymt)
_____
Press CTRL and D simultaneously to finish session
Type ?commandname for help
0>> linsolve([2*h*l*x+(h*m+j*l)*y+h*n+k*l=0,
             (h*m+j*1)*x+2*j*m*y+j*n+k*m=0],[x,y])
[(j*n-k*m)/(h*m-j*1), (-h*n+k*1)/(h*m-j*1)]
// Time 0.01
% sage
SageMath version 8.1, Release Date: 2017-12-07
sage: h,j,k,l,m,n,x,y=var('h,j,k,l,m,n,x,y')
sage: solve([2*h*l*x+(h*m+j*l)*y+h*n+k*l==0,
```

$$[[x = (k*m - j*n)/(j*1 - h*m), y = -(k*1 - h*n)/(j*1 - h*m)]]$$

We have thus verified (15). What about its whereabouts, then? As the point (0, -2) lies on the intersection point of (10) ²⁶, we infer that the RHS of (15) lies on the intersection point of (12). Sure enough, $(\frac{jn-km}{hm-j\ell}, \frac{k\ell-hn}{hm-j\ell})$, or the RHS of (15), coincides with $\frac{1}{hm-j\ell} \begin{pmatrix} -km+jn \\ k\ell-hn \end{pmatrix}$ mentioned in footnote 25. Moreover, substituting (15) into (12) yields $(h \cdot \frac{jn-km}{hm-j\ell} + j \cdot \frac{k\ell-hn}{hm-j\ell} + k) \cdot (\ell \cdot \frac{jn-km}{hm-j\ell} + m \cdot \frac{k\ell-hn}{hm-j\ell} + n) = \{\frac{h(jn-km)+j(k\ell-hn)+k(hm-j\ell)}{hm-j\ell}\} \cdot \{\frac{\ell(jn-km)+m(k\ell-hn)+n(hm-j\ell)}{hm-j\ell}\} = (\frac{hjn-hkm+jk\ell-jhn+khm-kj\ell}{hm-j\ell}) \cdot (\frac{\ell jn-\ell km+mk\ell-mhn+njm}{hm-j\ell}) = \frac{0}{hm-j\ell} \cdot \frac{0}{hm-j\ell} = 0 \cdot 0 = 0^{27}$. Thus, the point (0, -2) is to (10) what the RHS of (15) is to (12). Therefore, like (10), (12) is classified into the category **ON** ²⁸, and we note that such categorization is immutable following a certain generalization.

Now that we seem to be able to achieve some generalizations, we proceed to deduce the two intersecting lines $x^2 - (y+2)^2 = 0^{29}$ from (12). Replacing *h*, *j*, *k*, ℓ , *m*, and *n* in (12) by 1, 1, 2, 1, -1, and -2, respectively, we get (x+y+2)(x-y-2), which amounts to $\{x + (y+2)\}\{x - (y+2)\} = x^2 - (y+2)^2$, one of the cases we have already described ³⁰. Can we further proceed to deduce their *SING*, or the point $(0, -2)^{31}$, from something more general, then? Likewise, replacing *h*,..., *n* in the RHS of (15) with 1,...,-2, respectively, we get $(x, y) = (\frac{1 \times (-2) - 2 \times (-1)}{1 \times (-1) - 1 \times 1})$, the RHS of which amounts to the point (0, -2), the very *SING* we obtained in **3.5**. We have thus managed to deduce the two intersecting lines $x^2 - (y+2)^2 = 0$ and their *SING* (0, -2) from (12) and (15), respectively.

²⁶See **3.5**, **3.6**, and **4**.

²⁷By the way, substituting (15) into the LHS 's of (14) also yields 0's, which in turn confirms that we solved (14) correctly.

²⁸See **3.5** and **4**.

²⁹See **3.5**, **3.6**, and **4**.

³⁰See, *e.g.*, **3.5**.

³¹See **3.5**, **3.6**, and **4**.

Next, we try to generalize the double line $(x+y)^2 = 0^{32}$ in a similar manner. Let us consider

$$\phi = (ox + py + q)^2 = 0, \qquad o, p, q \in \mathbb{R} .$$
(16)

Expanding $(ox + py + q)^2$, one gets

$$\phi = o^2 x^2 + p^2 y^2 + q^2 + 2opxy + 2pqy + 2oqx.$$

So

$$\frac{d\phi}{dx} = \frac{d}{dx}(o^2x^2 + p^2y^2 + q^2 + 2opxy + 2pqy + 2oqx)$$

= $2o^2x + 2p^2y\frac{dy}{dx} + 2opy + 2opx\frac{dy}{dx} + 2pq\frac{dy}{dx} + 2oq,$

and we get the 1-form

$$\omega = d\phi = 2o^2 x dx + 2p^2 y dy + 2opy dx + 2opx dy + 2pq dy + 2oq dx$$

= 2o(ox + py + q)dx + 2p(ox + py + q)dy. (17)

Though it is clear that it follows from (16) that ox + py + q = 0, we try resorting to *reductio ad impossibilem*. Specifically, we venture to suppose $ox + py + q \neq 0$.

Then, for us to obtain a *SING* from (17), the relation 2o = 2p = 0 must hold, that is, we have o = p = 0. Now we plug o = 0 and p = 0 into (16) to get $q^2 = 0$, which means that q = 0, too. Hence, we have o = p = q = 0, from which it follows that $ox + py + q = 0 \cdot x + 0 \cdot y + 0 = 0$. But this contradicts our supposition $ox + py + q \neq 0$. So we have to admit that ox + py + q = 0. In any event, we have ox + py + q = 0, and consequently *SING* is the line ox + py + q = 0. We now imagine (16) and its *SING* overlap like the line s in Fig. 3 and/or Fig. 4. And like (11), (16) is classified into the category **IT** ³³. Again, we note that such categorization is immutable following a certain generalization. What about deduction, then? We can deduce the double line $(x+y)^2 = 0$ and the corresponding 1-form $\omega = 2(x+y)dx + 2(x+$ y)dy, together with the *SING* x + y = 0 ³⁴, from plugging o = 1, p = 1, and q = 0into (16) and (17). This means that (11) intended as a sheer example has generalized at least slightly ³⁵. Taken together, we could generalize two cases at least

³⁴Ditto.

³²See **3.7** and **4**.

³³See **3.7** and **4**.

³⁵ In **7.2.3**, we deal with the two parallel lines $(x + y)^2 = 1$. This is a special case of $(ox + py + q)^2 = r^2$, $o, p, q, r \in \mathbb{R}$, which is a further generalization of (16) and will be discussed elsewhere.

slightly, while keeping intact the *SING*-based categories to which they belong, and deduce such cases from something more general.

6 Discussion

At the outset, we note that for a point to be called a *SING*, we need not restrict ourselves to homogeneous polynomial s such as $x^2 + 2xy + y^2$, $x^2 + xz$, and so on, though such polynomial s have been known to play a certain role in the field of algebraic geometry ³⁶. Actually, we were able to derive the *SING* (4, 4) from $x^2 + y^2 - 8x - 8y + 31$, an inhomogeneous polynomial ³⁷.

Next, we deform some shape s in **Table** of **4** in order to know whether/how such deformations affect *SING*'s. We try doubling the radius 1 in (6) to obtain $\phi = (x-4)^2 + (y-4)^2 - (1 \cdot 2)^2 = (x-4)^2 + (y-4)^2 - 4 = 0$. Then, we note that both $\frac{d\phi}{dx} = \frac{d}{dx}\{(x-4)^2 + (y-4)^2 - 4\} = \frac{d}{dx}(x^2 - 8x + y^2 - 8y + 28) = 2x - 8 + 2y\frac{dy}{dx} - 8\frac{dy}{dx} = 2x + 2y\frac{dy}{dx} - 8 - 8\frac{dy}{dx}$ and the resultant 1-form $\omega = d\phi = 2(x-4)dx + 2(y-4)dy$ remain the same, so does the *SING* (4, 4) ³⁸. Furthermore, we deform the ellipse (7) by replacing its term $(y-4)^2$ with $4(y-4)^2$ to get the circle $4(x+4)^2 + 4(y-4)^2 - 1^2 = 0^{-39}$. Likewise, we get the 1-form $\omega = 8(x+4)dx + 8(y-4)dy$, which proves different from 8(x+4)dx + 2(y-4)dy, the original one ⁴⁰, and the *SING* (-4, 4), which remains the same ⁴¹. We thus notice at least in these two cases, deformation *can* affect the 1-form $\omega = d\phi$, but not the whereabouts of *SING*'s, which makes *SING*'s look like fixed point s⁴².

Thirdly, we wish to mention geometric interpretation of *SING*. In general, a point (x, y) on a Cartesian coordinate plane can be regarded as a column vector

³⁶*Cf.* **Definition 1.10.2** and **Exercise 1.10.8** in [8].

³⁷See, *e.g.*, **3.1**.

³⁸*Cf.* **3.1**, **3.6**, and **4**.

³⁹This is not so surprising, since the circle is a special case of the ellipse.

⁴⁰See **3.2** and **4**.

⁴¹See **3.2**, **3.6**, and **4**.

⁴²However, we can 'move' *SING*'s and apply them to a problem on merging black holes , which will be discussed elsewhere.

 $\begin{pmatrix} x \\ y \end{pmatrix}$ ⁴³, which we rewrite as the following linear combination :

$$x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x \mathbf{e_1} + y \mathbf{e_2}.$$
 (18)

By the way, a 2×2 matrix *B* acts on such a column vector like this:

$$B\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} r & s\\ t & u \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} rx + sy\\ tx + uy \end{pmatrix} = \begin{pmatrix} rx\\ tx \end{pmatrix} + \begin{pmatrix} sy\\ uy \end{pmatrix} = x\begin{pmatrix} r\\ t \end{pmatrix} + y\begin{pmatrix} s\\ u \end{pmatrix}$$
$$= x\mathbf{e_3} + y\mathbf{e_4}, \qquad r, s, t, u \in \mathbb{R}.$$
(19)

Comparing (18) with (19), we observe that *B* acts on the standard bases $\mathbf{e_1}$, $\mathbf{e_2}$, which form a unit square, by transforming them into bases $\mathbf{e_3}$, $\mathbf{e_4}$, which now form a parallelogram ⁴⁴, ⁴⁵. We relate the above comparison to (4) as follows:

Equating the RHS of (4) with 0, one gets

$$\begin{cases} 2ax + by + e = 0, \\ bx + 2cy + f = 0. \end{cases}$$

In matrix notation, we have

$$\begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
 (20)

We rewrite the above as $C\vec{x} + \vec{b} = \vec{0}$ and recall affine transformation on a unit square [9]. Then, we have

⁴³See, *e.g.*, footnote 25.

⁴⁴We take it for granted that $\mathbf{e_3}$, $\mathbf{e_4} \neq \vec{0}$. And we assume $\mathbf{e_3} \not\parallel \mathbf{e_4}$, *i.e.*, $ru - st \neq 0$. See here . In other words, we assume that *B* is invertible . A concrete example is here .

Under the assumptions that $\mathbf{e_3}$, $\mathbf{e_4} \neq \vec{0}$ and $\mathbf{e_3} \not\parallel \mathbf{e_4}$, if $\mathbf{e_3} \perp \mathbf{e_4}$, we get a rectangle or a square . On the other hand, if $\mathbf{e_3} \not\perp \mathbf{e_4}$ and the length of $\mathbf{e_3}$ equals that of $\mathbf{e_4}$, we get a rhombus . We regard these three as derivable from (deforming) a parallelogram . See, *e.g.*, here .

$$\begin{cases} C\begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} 2a & b\\b & 2c \end{pmatrix} \begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix} = \vec{0}, \\ C\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 2a & b\\b & 2c \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 2a\\b \end{pmatrix} = \vec{c}, \\ C\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 2a & b\\b & 2c \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} b\\2c \end{pmatrix} = \vec{d}, \\ C\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 2a & b\\b & 2c \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 2a+b\\b+2c \end{pmatrix} = \vec{e}. \end{cases}$$

Since $\vec{c} + \vec{d} = \vec{e}$, the parallelogram rule reminds us of a parallelogram *P*, in which $\vec{c} \not\parallel \vec{d}^{46}$. And the 'transition' from the LHS of (20) to $\vec{0}$, or the RHS of (20), leads us to imagine *P* (dwindling and) ending up with the origin O(0, 0) subsequent to translation. So geometrically, to get a *SING* seems a bit analogous to managing to efface such a parallelogram.

Having thus far discussed *SING*'s in 2D, we touch on their 3D version. We consider, *e.g.*, $\phi = x^3 + y^3 + z^3 - 3xyz + 2 = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(x^3 + y^3 + z^3 - 3xyz + 2) = 3x^2 + 3y^2\frac{dy}{dx} + 3z^2\frac{dz}{dx} - 3yz - 3zx\frac{dy}{dx} - 3xy\frac{dz}{dx}$, and we get the 1-form $\omega = d\phi = 3x^2dx + 3y^2dy + 3z^2dz - 3yzdx - 3zxdy - 3xydz = 3(x^2 - yz)dx + 3(y^2 - zx)dy + 3(z^2 - xy)dz$, which we equate with 0 to obtain

$$\int x^2 - yz = 0,$$
 (21)

$$y^2 - zx = 0,$$
 (22)

$$\int z^2 - xy = 0. (23)$$

Manipulating $2 \times \{(21) + (22) + (23)\}$ yields $x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 0$, which becomes $(x - y)^2 + (y - z)^2 + (z - x)^2 = 0$, and we have x - y = y - z = z - x = 0. Thus, *SING* is x = y = z, or the line $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$. Although we encountered *SING* as a line before ⁴⁷, there may well be the following question:

⁴⁶We take it for granted that \vec{c} , $\vec{d} \neq \vec{0}$. *Cf.* footnote 44. Again, a rectangle , a rhombus , and a square are regarded as special cases of a parallelogram . See footnote 45. ⁴⁷See **3.7** and **4**.

Question 6.1. Does at least one singularity remain a point subsequent to a slightly different definition?

We answer this question in the affirmative ⁴⁸. Indeed, even the *SING* x + y = 0 ⁴⁹ can be interpreted as point s on a line ⁵⁰. But since intersection of lines *does* yield a point ⁵¹, it seems possible for proper combination(s) of *SING*'s to work behind the scenes of the so-called singularities, and another (insidious) question arises:

Question 6.2. What if we perceive the intersection of *SING* curve s 52 in, *e.g.*, a plane, a 2D object , as a (usual) singularity ?

At any rate, we wish to propose the notion of *SING*, which is able to vanish 1–form s such as (4), (5), and so forth, although we put aside, *e.g.*, whether a ring singularity seen in a certain field of physics should be thought of as actually composed of aggregated point singularities and won't try to answer *Question* 6.2 and those raised in footnotes 79 and 82 for the time being.

Acknowledgment. We wish to thank the developers of elementary OS, SageMath, and so on for their indirect help which enabled us to prepare this preprint for submission.

References

- [1] Dickson, L. E., "History of the theory of numbers. vol. III: quadratic and higher forms," Dover Publications 2005 p2.
- [2] *Idem*, "History of the theory of numbers. vol. II: diophantine analysis," Dover Publications 2005 p416.

⁴⁸See **7.1**, in which we deal with the case where singularity is identical to *SING*.

⁴⁹ See **3.7** and **4**. By the way, this is a special case of the line ox + py + q = 0. See **5**. ⁵⁰ *Cf*. **Exercise 1.10.7** in [8].

⁵¹See, *e.g.*, left part of Fig. 8.1 in [10].

⁵²As mentioned in footnote 15, line s are regarded as curve s.

- [3] Suzuki, K., "Multifaceted approaches to a Berkeley problem: part 1," viXra:1706.0542 [v1].
- [4] Idem, "Answering math problems," viXra:1605.0003 [v1].
- [5] Fulton, W., "Algebraic topology: a first course," Springer 1995 p10.
- [6] Renteln, P., "Manifolds, tensors, and forms: an introduction for mathematicians and physicists," Cambridge University Press 2014 p116.
- [7] Lovelock, D. and Rund, H., "Tensors, differential forms, and variational principles," Dover Publications 1989 p176.
- [8] Garrity, T., Belshoff, R., Boos, L., Brown, R., Lienert, C., Murphy, D., Navarra-Madsen, J., Poitevin, P., Robinson, S., Snyder, B., and Werner, C., "Algebraic geometry: a problem solving approach," American Mathematical Society 2013 p44.
- [9] Firk, F. W. K., "Introduction to groups, invariants and particles," Createspace Independent Publishing 2014 p15.
- [10] Bruce, J. W. and Giblin, P. J., "Curves and singularities. 2nd ed.," Cambridge University Press 1992 p206.

7 Appendix

7.1 What about the (celebrated) cusp (0, 0) of the semicubical parabola $y^2 = x^3$?

We consider $\phi = y^2 - x^3 = 0$. So $\frac{d\phi}{dx} = 2y\frac{dy}{dx} - 3x^2$, and we get the 1-form $\omega = d\phi = -3x^2dx + 2ydy$. Thus, *SING* is the point (0, 0) on the curve . The curve is therefore classified into the category **ON** ⁵³. In this case, *SING* coincides with the singularity on the curve ⁵⁴, and we now learn that the curve is a 'close rela-

⁵³See **3.5** and **4**. *Cf.* footnote 16.

⁵⁴See footnote 48.

tive' of the two intersecting lines $x^2 - (y+2)^2 = 0^{55}$ in terms of SING ⁵⁶.

What about, *e.g.*, $x^2 + y^2 = 0$, x + y - 1 = 0, and so forth? 7.2

In this subsection, we deal with a few equation s we failed to mention.

7.2.1 $x^2 + y^2 = 0$: a point

This is obtained by plugging into (1) a = 1, b = 0, c = 1, e = 0, f = 0, and g = 0, and we consider $\phi = x^2 + y^2 = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(x^2 + y^2) = 2x + 2y\frac{dy}{dx}$, and we get the 1-form $\omega = d\phi = 2xdx + 2ydy$. Thus, SING is the point (0, 0), which is also $x^2 + d\phi = 2xdx + 2ydy$. $y^2 = 0$ itself ⁵⁷. The equation $x^2 + y^2 = 0$ is therefore classified into the category IT 58 , 59 , and we now learn such a point is a 'close relative' of the double line $(x+y)^2 = 0^{60}$ in terms of SING⁶¹.

7.2.2 x + y - 1 = 0: a line

This is obtained by plugging into (1) a = 0, b = 0, c = 0, e = 1, f = 1, and g = -1,and we consider $\phi = x + y - 1 = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(x + y - 1) = 1 + \frac{dy}{dx}$, and we get the 1-form $\omega = d\phi = dx + dy$, which means ω doesn't vanish. The equation x + y - 1 =0 is therefore classified into the category NO 62 , and we now learn such a line is a 'close relative' of the parabola $y = x^2 + 1^{63}$ in terms of SING⁶⁴.

⁵⁵See **3.5**, **3.6**, and **4**.

 $^{^{56}}$ By the way, a hyperbola can degenerate into two lines crossing at a point .

We neglect (1, i), (-i, -1), etc satisfying the equation $x^2 + y^2 = 0$. See also here. ⁵⁸See **3.7** and **4**.

⁵⁹By the way, $x^2 + y^2 = r^2$ falls into the category **IN**, if r > 0, which is because computing $\frac{d}{dx}(x^2 + y^2 - r^2) = 2x + 2y\frac{dy}{dx}$ results in the 1-form $\omega = 2xdx + 2ydy$ and the point (0, 0), or the *SING* lying inside the circle $x^2 + y^2 = r^2$. *Cf.* **3.1**.

⁶⁰See **3.7** and **4**.

⁶¹By the way, a circle and an ellipse can degenerate into a point .

⁶²See **3.3**, **3.6**, and **4**.

⁶³Ditto.

⁶⁴By the way, a circle or a parabola can degenerate into a line.

7.2.3 $(x+y)^2 - 1 = 0$: two parallel lines

Replacing *a*, *b*, *c*, *e*, *f*, and *g* in (1) by 1, 2, 1, 0, 0, and -1, respectively, we get $x^2 + 2xy + y^2 - 1$, for which we complete the square to obtain $(x + y)^2 - 1 = 0^{65}$. This can be rewritten as (x + y + 1)(x + y - 1) = 0, the product of the following equation s:

$$\begin{cases} x + y + 1 = 0, \\ x + y - 1 = 0. \end{cases}$$

These are parallel to each other. Now we consider $\phi = x^2 + 2xy + y^2 - 1 = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(x^2 + 2xy + y^2 - 1) = 2x + 2y + 2x\frac{dy}{dx} + 2y\frac{dy}{dx} = 2(x + y) + 2(x + y)\frac{dy}{dx}$, and we get the 1-form $\omega = d\phi = 2(x + y)dx + 2(x + y)dy$. Thus, *SING* is the line x + y = 0. The *SING* lies between those parallel lines , which are therefore classified into the category **OUT**⁶⁶. We now learn that such two parallel lines are a 'close relative' of the hyperbola $x^2 - y^2 - 61 = 0$ ⁶⁷ in terms of *SING*⁶⁸.

7.3 Two kinds of rational function s

By plugging into (1) a = 0, b = 1, c = 0, e = -1, f = 0, and g = -1, we get xy - x - 1 = 0, *i.e.*, xy = x + 1. Dividing both sides of it by x yields the explicit function $y = \frac{x+1}{x} = 6^{69}$, and henceforth, we call such stuff a rational function in explicit form (RFE). We now consider $\phi = y - \frac{x+1}{x} = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(y - \frac{x+1}{x}) = \frac{dy}{dx} + \frac{1}{x^2}$, and we get the 1-form $\omega = d\phi = \frac{dx}{x^2} + dy^{70}$. Even if we let $x \to +\infty$ (or $-\infty$) to vanish dx, dy remains, which means that ω doesn't vanish. The RFE $y = \frac{x+1}{x}$ is therefore classified into the category **NO**⁷¹, and we now learn that such an RFE is a 'close

⁶⁵See footnote 35.

⁶⁶See **3.4** and **4**.

⁶⁷See **3.4**, **3.6**, and **4**.

⁶⁸ The pencil of ellipses of equations $ax^2 + b(y^2 - 1) = 0$ can degenerate into two parallel lines . ⁶⁹ This has a (conventional) singularity at x = 0.

 $[\]frac{1}{x^2}$ cannot be defined at x = 0. *Cf.* here .

⁷¹See **3.3**, **3.6**, and **4**.

relative' of the parabola $x^2 - y + 1 = 0^{72}$ in terms of SING. On the other hand, what if we regard the equation xy - x - 1 = 0 as defining an implicit function ? Hereafter, we call such stuff a rational function in implicit form (RFI) and consider $\phi = xy - x - 1 = 0$. So $\frac{d\phi}{dx} = \frac{d}{dx}(xy - x - 1) = y + x\frac{dy}{dx} - 1$, and we get the 1-form $\omega = d\phi = (y-1)dx + xdy$. Contrary to the aforementioned RFE case, SING is identified as the point (0, 1), which coincides with the center of the hyperbola $x(y-1) = 1^{73}$. The RFI xy - x - 1 = 0 is therefore classified into the category **OUT** ⁷⁴. We now learn such an RFI is a 'close relative' of the hyperbola x^2 $y^2 - 61 = 0^{75}$ in terms of *SING*. We have thus dealt with two kinds of rational function s discernible by the presence (or absence) of SING.

7.4 **Relationship between hyperbola and RFI**

Inspired by the abovementioned presence of **OUT** which relates the hyperbola x^2 $-y^2 - 61 = 0$ to the RFI xy - x - 1 = 0, we try to know whether we can transform the hyperbola into RFI (or vice versa). To be specific, we seek the following transformation:

$$\frac{(x-h)^2}{j^2} - \frac{(y-k)^2}{\ell^2} = 1, \qquad h, j, k, \ell \in \mathbb{R}, \qquad j, \ell \neq 0^{-76}$$
(24)

Some transformation $(mX-n)(oY-p) = 1, m, n, o, p \in \mathbb{R}, m, o \neq 0.$ (25)

Eliminating 1 between (24) and (25) yields

$$\frac{(x-h)^2}{j^2} - \frac{(y-k)^2}{\ell^2} = (mX - n)(oY - p).$$
(26)

Applying the identity $\frac{(q+r)^2 - (q-r)^2}{4} = qr$ to the RHS of (26), we get

⁷²Ditto.

⁷³Relevance of hyperbola to RFI will be discussed in the next subsection.

⁷⁴ See **3.4** and **4**.

⁷⁵See **3.4**, **3.6**, and **4**.

⁷⁶Again, we substituted '*j*' for '*i*' lest '*i*' should be confused with the imaginary unit i. See footnote 24.

$$\frac{1}{4} \cdot \left[\{ (mX - n) + (oY - p) \}^2 - \{ (mX - n) - (oY - p) \}^2 \right] = (mX - n)(oY - p).$$
(27)

Eliminating (mX - n)(oY - p) between (26) and (27), one gets

$$\frac{1}{4} \cdot \left[\left\{ (mX - n) + (oY - p) \right\}^2 - \left\{ (mX - n) - (oY - p) \right\}^2 \right] = \frac{(x - h)^2}{j^2} - \frac{(y - k)^2}{\ell^2}.$$
 (28)

We thus write

$$\begin{cases} \frac{x-h}{j} = \frac{1}{2} \cdot (mX - n + oY - p), \\ \frac{y-k}{\ell} = \frac{1}{2} \cdot (mX - n - oY + p), \end{cases}$$
(29)⁷⁷

which we rewrite as

$$\begin{cases} x = \frac{j}{2}(mX - n + oY - p) + h = \frac{jmX + joY - jn - jp + 2h}{2}, \\ y = \frac{\ell}{2}(mX - n - oY + p) + k = \frac{\ell mX - \ell oY - \ell n + \ell p + 2k}{2}. \end{cases}$$
(30)

In matrix language, we have

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{jm}{2} & \frac{jo}{2} \\ \frac{\ell m}{2} & -\frac{\ell o}{2} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} + \begin{pmatrix} \frac{-jn-jp+2h}{2} \\ \frac{-\ell n+\ell p+2k}{2} \end{pmatrix},$$
(31)

an affine transformation . Incidentally, solving (31) for X, Y gives

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \frac{jm}{2} & \frac{jo}{2} \\ \frac{\ell m}{2} & -\frac{\ell o}{2} \end{pmatrix}^{-1} \left\{ \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \frac{-jn-jp+2h}{2} \\ \frac{-\ell n+\ell p+2k}{2} \end{pmatrix} \right\}$$

⁷⁷For simplicity's sake, we let the pair (29) represent pairs satisfying (28). Other ones than (29) include:

$$\begin{cases} \frac{x-h}{j} = \frac{1}{2} \cdot (mX - n + oY - p), \\ \frac{y-k}{\ell} = -\frac{1}{2} \cdot (mX - n - oY + p), \end{cases} \begin{cases} \frac{x-h}{j} = -\frac{1}{2} \cdot (mX - n + oY - p), \\ \frac{y-k}{\ell} = \frac{1}{2} \cdot (mX - n - oY + p), \end{cases}$$

and

$$\begin{cases} \frac{x-h}{j} = -\frac{1}{2} \cdot (mX - n + oY - p), \\ \frac{y-k}{\ell} = -\frac{1}{2} \cdot (mX - n - oY + p). \end{cases}$$

The interested reader is invited to substitute the LHS 's of these into the RHS of (28) and check.

$$= \begin{pmatrix} \frac{1}{jm} & \frac{1}{\ell m} \\ \frac{1}{jo} & -\frac{1}{\ell o} \end{pmatrix} \left\{ \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \frac{-jn-jp+2h}{2} \\ \frac{-\ell n+\ell p+2k}{2} \end{pmatrix} \right\}$$

$$= \begin{pmatrix} \frac{1}{jm} & \frac{1}{\ell m} \\ \frac{1}{jo} & -\frac{1}{\ell o} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} \frac{1}{jm} & \frac{1}{\ell m} \\ \frac{1}{jo} & -\frac{1}{\ell o} \end{pmatrix} \begin{pmatrix} \frac{-jn-jp+2h}{2} \\ \frac{-\ell n+\ell p+2k}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{jm} & \frac{1}{\ell m} \\ \frac{1}{jo} & -\frac{1}{\ell o} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{j\ell n-h\ell-jk}{j\ell m} \\ \frac{j\ell p-h\ell+jk}{j\ell o} \end{pmatrix},$$

which is an affine transformation , too. Rewriting the above yields

$$\left\{ \begin{array}{l} X = \frac{\ell x + j y + j \ell n - h \ell - j k}{j \ell m}, \\ Y = \frac{\ell x - j y + j \ell p - h \ell + j k}{j \ell o} \end{array} \right.^{78}. \end{array} \right.$$

7.5 Some 4D cases

We touch on the following:

Example 7.5.1.
$$\phi = 3w^2 - x^2 - y^2 - z^2 - 2w(x+y+z) = 0.$$
 (32)

Since

$$\begin{split} \frac{d\phi}{dw} &= \frac{d}{dw} \{ 3w^2 - x^2 - y^2 - z^2 - 2w(x+y+z) \} \\ &= 6w - 2x\frac{dx}{dw} - 2y\frac{dy}{dw} - 2z\frac{dz}{dw} - 2(x+y+z) - 2w(\frac{dx}{dw} + \frac{dy}{dw} + \frac{dz}{dw}), \end{split}$$

we get the 1-form

$$\begin{split} \omega &= d\phi = 6wdw - 2xdx - 2ydy - 2zdz - 2xdw - 2ydw - 2zdw - 2wdx \\ &- 2wdy - 2wdz \\ &= (6w - 2x - 2y - 2z)dw - 2(w + x)dx - 2(w + y)dy - 2(w + z)dz. \end{split}$$

So we have

$$6w - 2(x + y + z) = 0,$$
(33)

$$-2(w+x) = 0, (34)$$

$$-2(w+y) = 0, (35)$$

$$-2(w+z) = 0.$$
 (36)

⁷⁸*Cf.* (30).

It follows from (34) - (36) that x = -w, y = -w, and z = -w, which we plug into the LHS of (33) to get 12w = 0. Hence, we have w = 0, from which it follows that w = x = y = z = 0. Thus, *SING* is the origin *O* (0, 0, 0, 0)⁷⁹ on (32), which is therefore classified into the category **ON**⁸⁰.

Example 7.5.2.
$$\phi = 3w^2 + x^2 + y^2 + z^2 - 2w(x+y+z) = 0.$$
 (37)

Likewise,

$$\frac{d\phi}{dw} = \frac{d}{dw} \{ 3w^2 + x^2 + y^2 + z^2 - 2w(x+y+z) \}$$

= $6w + 2x\frac{dx}{dw} + 2y\frac{dy}{dw} + 2z\frac{dz}{dw} - 2(x+y+z) - 2w(\frac{dx}{dw} + \frac{dy}{dw} + \frac{dz}{dw}),$

and we get the 1-form

$$\omega = d\phi = 6wdw + 2xdx + 2ydy + 2zdz - 2xdw - 2ydw - 2zdw - 2wdx -2wdy - 2wdz = (6w - 2x - 2y - 2z)dw + 2(x - w)dx + 2(y - w)dy + 2(z - w)dz.$$

we have

So we have

$$6w - 2(x + y + z) = 0, (38)$$

$$2(x - w) = 0, (39)$$

$$2(y - w) = 0, (40)$$

$$2(z - w) = 0. (41)$$

It follows from (39) – (41) that w = x, w = y, and $w = z^{81}$, and we have w = x = y= z. Thus, *SING* is the line $\frac{w}{1} = \frac{x}{1} = \frac{y}{1} = \frac{z}{1}^{82}$. Now we rewrite (37) as $(w - x)^2 + (w - y)^2 + (w - z)^2 = 0$, from which it follows that w - x = w - y = w - z = 0. Hence, we have w = x = y = z, which proves to be the same as the *SING*. (37) is therefore classified into the category **IT** ⁸³.

⁸³See **3.7** and **4**.

⁷⁹But what if such a point comes from the intersection of lines ? *Cf. Question* 6.2 in **6**.

⁸⁰See **3.5** and **4**.

⁸¹ If we plug the RHS 's of these equation s into the LHS of (38), we get 6w - 2(w + w + w) = 0, the trivial.

 $^{^{82}}$ But what if this line came from the intersection of planes ? See 6.