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Abstract

As a generation of fuzzy sets, the intuitionistic fuzzy sets (IFSs) have more

powerful ability to represent and deal with the uncertainty of information. The

distance measure between the IFSs is still an open question. In this paper, we

propose a new distance measure between the IFSs on the basis of the Jensen–

Shannon divergence. The new distance measure of IFSs not only can satisfy the

axiomatic definition of distance measure, but also can discriminate the diference

between the IFSs more better. As a result, the new distance measure can

generate more reasonable results.

Keywords: Intuitionistic fuzzy sets, Distance measure, Jensen–Shannon

divergence

1. Introduction

In order to deal with the imprecision and uncertainty of information, various

efficient methodologies have been developed in the decision-making theory [1–3].

They mainly consist of the modified fuzzy sets theory [4, 5], evidence theory [6,
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7], etc. As a generation of fuzzy set, the intuitionistic fuzzy sets (IFSs) presented

by Atanassov [8] could handle the uncertainty of information more accurately.

Hence, the IFS theory has been widely investigated and utilized in a variety of

fields [9, 10].

The distance measure or the similarity measure of IFSs, as an important math

tool for decision-making, has already caught great attention of researcher in the

past few years. Up to now, various kinds of distance measures or similarity

measures have been exploited for the IFSs. In this paper, a new distance mea-

sure between the IFSs is defined from divergence perspective. The proposed

distance measure is based on the Jensen–Shannon divergence, which considers

the divergence between two IFSs in terms of the three dimensional representa-

tion of IFSs, i.e., the membership function, the non-membership function and

the hesitation function. In this study, it has been proven that the new distance

measure between the IFSs satisfy the properties of the axiomatic definition of

distance measure. Furthermore, numerical examples reveal that the new dis-

tance measure can better distinguish the IFSs and generate reasonable results.

The remainder of this paper is structured as follows. Section 2 shortly in-

troduces the preliminaries of this paper. In Section 3, a new distance measure

of IFSs is defined and investigated. Section 4 illustrates the proposed distance

measure. Finally, Section 5 provides a conclusion.
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2. Preliminaries

2.1. Intuitionistic fuzzy sets

Definition 2.1 [8] Let X be a finite universe of discourse. An intuitionistic

fuzzy set (IFS) E in the finite universe of discourse X is defined by

E = {⟨x, µE(x), νE(x)⟩|x ∈ X}, (1)

in which

µE(x) : X → [0, 1] and νE(x) : X → [0, 1] (2)

with the condition

0 ≤ µE(x) + νE(x) ≤ 1 ∀x ∈ X. (3)

The µE(x) and νE(x) represent the grade of membership and non-membership

of x to E, respectively.

For the IFS A in X, the intuitionistic index of x to E is defined by

πE(x) = 1− µE(x)− νE(x), (4)

which is a hesitancy grade of x to E.

2.2. Jensen–Shannon divergence measure

For the Jensen–Shannon divergence measure, its square root is a true metric in

the space of probability distributions [11]. It was regarded as an useful distance

measure which was applied in many fields [12].

Definition 2.2 [11] Let E and F be two probability distributions of a discrete

random variable U , where E = {e1, e2, . . . , en} and F = {f1, f2, . . . , fn}. The

Jensen-Shannon divergence between E and F is defined by

JS(E,F ) =
1

2

[
KL

(
E,

E + F

2

)
+KL

(
F,

E + F

2

)]
, (5)
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where KL(E,F ) =
∑

i ei log
ei
fi

(1 ≤ i ≤ n) is the Kullback-Leibler divergence

and
∑

i ei =
∑

i fi = 1.

JS(E,F ) can also be formed as

JS(E,F ) = H

(
E + F

2

)
− 1

2
H(E)− 1

2
H(F ),

=
1

2

[∑
i

ei log

(
2ei

ei + fi

)
+

∑
i

fi log

(
2fi

ei + fi

)]
,

(6)

where H(E) = −
∑

i ei log ei and H(F ) = −
∑

i fi log fi (1 ≤ i ≤ n) are the

Shannon entropy.

The square root of Jensen-Shannon divergence is defined by

SRJS =
√
JS(E,F ). (7)

3. A new distance measure of IFSs

Definition 3.1 Given a finite universe of discourse X, and two intuitionistic

fuzzy sets P = {⟨x, µP (x), νP (x)⟩|x ∈ X} and Q = {⟨x, µQ(x), νQ(x)⟩|x ∈ X},

where πP (x) = 1− µP (x)− νP (x) and πQ(x) = 1− µQ(x)− νQ(x) are the hes-

itancy grades of x to P and Q, respectively. The intuitionistic fuzzy divergence

measure, denoted as JSIFS(P,Q) between two IFSs P and Q is defined by

JSIFS(P,Q) =
1

2

[
KL

(
P,

P +Q

2

)
+KL

(
Q,

P +Q

2

)]
, (8)

with

KL(P,Q) = µP (x) log
µP (x)

µQ(x)
+ νP (x) log

νP (x)

νQ(x)
+ πP (x) log

πP (x)

πQ(x)
, (9)

where KL(P,Q) is the Kullback-Leibler divergence.
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JSIFS(P,Q) can also be expressed by the following formula

JSIFS(P,Q) = H

(
P +Q

2

)
− 1

2
H(P )− 1

2
H(Q),

=
1

2

[
µP (x) log

2µP (x)

µP (x) + µQ(x)
+ µQ(x) log

2µQ(x)

µP (x) + µQ(x)

+νP (x) log
2νP (x)

νP (x) + νQ(x)
+ νQ(x) log

2νQ(x)

νP (x) + νQ(x)

+πP (x) log
2πP (x)

πP (x) + πQ(x)
+ πQ(x) log

2πQ(x)

πP (x) + πQ(x)

]
,

(10)

with

H(P ) = − (µP (x) log µP (x) + νP (x) log νP (x) + πP (x) log πP (x)) , (11)

and

H(Q) = − (µQ(x) log µQ(x) + νQ(x) log νQ(x) + πQ(x) log πQ(x)) , (12)

where H(P ) and H(Q) are the Shannon entropy.

Then, we define a new distance measure for the IFSs in accordance with the

intuitionistic fuzzy divergence.

Definition 3.2 Let P and Q be two intuitionistic fuzzy sets in the finite uni-

verse of discourse X. A new distance measure for the IFSs, denoted as dχ(P,Q)

between the IFSs P and Q is defined by

dχ(P,Q) =
√
JSIFS(P,Q). (13)

The properties of the new distance measure for the IFSs are deduced as fol-

lows:

Property 1 Let P , Q and K be three IFSs in X, then

P1. dχ(P,Q) = 0 iff P = Q, for P,Q ∈ X,
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P2. dχ(P,Q) = dχ(Q,P ), for P,Q ∈ X,

P3. dχ(K,P ) + dχ(P,Q) ≥ dχ(K,Q), for K,P,Q ∈ X,

P4. 0 ≤ dχ(P,Q) ≤ 1, for P,Q ∈ X.

Definition 3.3 Let P and Q be two IFSs in a finite universe of discourse X =

{x1, x2, ..., xn}, where P = {⟨xi, µP (x), νP (x)⟩|xi ∈ X} and Q = {⟨xi, µQ(x), νQ(x)⟩|xi ∈

X}. The normalized dχ distance measure between P and Q is defined by

dχ̃(P,Q) =
1

n

n∑
i=1

dχ(P,Q)

=
1

n

[
1

2

(
µP (xi) log

2µP (xi)

µP (xi) + µQ(xi)
+ µQ(xi) log

2µQ(xi)

µP (xi) + µQ(xi)

+νP (xi) log
2νP (xi)

νP (xi) + νQ(xi)
+ νQ(xi) log

2νQ(xi)

νP (xi) + νQ(xi)

+πP (xi) log
2πP (xi)

πP (xi) + πQ(xi)
+ πQ(xi) log

2πQ(xi)

πP (xi) + πQ(xi)

)] 1
2

.

(14)

4. Numerical example

Example 1 Assume there are three IFSs A, B and C in the universe of dis-

course X:

A = {⟨x, 0.30, 0.20⟩ ⟨x, 0.40, 0.30⟩};

B = {⟨x, 0.30, 0.20⟩ ⟨x, 0.40, 0.30⟩};

C = {⟨x, 0.15, 0.25⟩ ⟨x, 0.25, 0.35⟩}.
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By Eq. (14), the distances between the IFSs A, B and C are measured as

dχ̃(A,B) = 0.0000, dχ̃(B,A) = 0.0000;

dχ̃(A,C) = 0.1463, dχ̃(C,A) = 0.1463;

dχ̃(C,B) = 0.1463, dχ̃(B,C) = 0.1463.

We can see that dχ̃(A,B) is equal to zero, and dχ̃(A,C) = dχ̃(B,C) = 0.1463,

since the IFS A is the same as the IFS B. Moreover, it can be also seen that

dχ̃(A,B) = dχ̃(B,A) = 0.0000, dχ̃(A,C) = dχ̃(C,A) = 0.1463 and dχ̃(C,B) =

dχ̃(B,C) = 0.1463.

5. Conclusion

In this paper, a new distance measure of IFSs was proposed to deal with

the problem of decision-making. The main contribution of this study is to

measure the difference between the IFSs by taking advantage of Jensen–Shannon

divergence. The new method has the promising aspects in inference problem

with IFSs.
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