Dual 8-bit Breakthrough in AI

IBM Research launched the reduced-precision approach to AI model training and inference with a landmark paper describing <u>a novel dataflow approach for</u> <u>conventional CMOS technologies</u> to rev up hardware platforms by dramatically reducing the bit precision of data and computations. [24]

Recent successful applications of deep learning include medical image analysis, speech recognition, language translation, image classification, as well as addressing more specific tasks, such as solving inverse imaging problems. [23]

Researchers at Caltech have developed an artificial neural network made out of DNA that can solve a classic machine learning problem: correctly identifying handwritten numbers. [22]

Researchers have devised a magnetic control system to make tiny DNA-based robots move on demand—and much faster than recently possible. [21]

Humans have 46 chromosomes, and each one is capped at either end by repetitive sequences called telomeres. [20]

Just like any long polymer chain, DNA tends to form knots. Using technology that allows them to stretch DNA molecules and image the behavior of these knots, MIT researchers have discovered, for the first time, the factors that determine whether a knot moves along the strand or "jams" in place. [19]

Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18]

An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17]

Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16]

What makes particles self-assemble into complex biological structures? [15]

Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14]

Researchers from Tokyo Metropolitan University used a light-sensitive iridiumpalladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13]

Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12]

UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11]

Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10]

Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9]

A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8]

This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7]

The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.

The accelerating electrons explain not only the Maxwell Equations and the

Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories.

The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.

Contents

Preface5
Dual 8-bit breakthroughs bring AI to the edge5
Into the post-GPU era6
Digital AI accelerators with reduced precision6
The next industry standard for AI training6
Analog chips for in-memory computing7
Phase-change memory7
3D-printed artificial intelligence running at the speed of light—from object classification to optical component design
Test tube artificial neural network recognizes 'molecular handwriting'9
Breakthrough in controlling DNA-based robots11
Mitochondria and the art of DNA maintenance12
Chemical engineers discover how to control knots that form in DNA molecules15
Knots in motion15
Knot removal16
Researchers build DNA replication in a model synthetic cell16
Closing the cycle17
Composing DNA17
Combining machinery17
Building a synthetic cell18
Study reveals the inner workings of a molecular motor that packs and unpacks DNA18
Biomimetic chemistry—DNA mimic outwits viral enzyme19

Simulations document self-assembly of proteins and DNA	20
Scientists explore the structure of a key region of longevity protein telomerase	21
Custom sequences for polymers using visible light	22
Artificial and biological cells work together as mini chemical factories	23
New interaction mechanism of proteins discovered	24
Particles in charged solution form clusters that reproduce	26
Experiment demonstrates quantum mechanical effects from biological systems	26
Quantum biology: Algae evolved to switch quantum coherence on and off	28
Photoactive Prebiotic Systems	29
Significance Statement	29
Figure legend	31
Quantum Biology	32
Quantum Consciousness	32
Creating quantum technology	33
Quantum Entanglement	33
The Bridge	34
Accelerating charges	34
Relativistic effect	34
Heisenberg Uncertainty Relation	34
Wave – Particle Duality	34
Atomic model	34
The Relativistic Bridge	35
The weak interaction	35
The General Weak Interaction	36
Fermions and Bosons	37
Van Der Waals force	37
Electromagnetic inertia and mass	37
Electromagnetic Induction	37
Relativistic change of mass	37
The frequency dependence of mass	37
Electron – Proton mass rate	38
Gravity from the point of view of quantum physics	38
The Gravitational force	38
The Higgs boson	
Higgs mechanism and Quantum Gravity	

What is the Spin?	40
The Graviton	40
Conclusions	40
References	41

Author: George Rajna

Preface

We define our modeled self-assembled supramolecular photoactive centers, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel system. [7]

The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. [5]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. [4]

I think that we have a simple bridge between the classical and quantum mechanics by understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a dx and dp uncertainty.

Dual 8-bit breakthroughs bring AI to the edge

This week, at the International Electron Devices Meeting (IEDM) and the Conference on Neural Information Processing Systems (NeurIPS), IBM researchers will showcase new hardware that will take AI further than it's been before: right to the edge. Our novel approaches for digital and analog AI chips boost speed and slash energy demand for deep learning, without sacrificing accuracy. On the digital side, we're setting the stage for a new industry standard in AI training with an approach that achieves full accuracy with eight-bit precision, accelerating training time by two to four times over today's systems. On the analog side, we report eight-bit precision—the highest yet—for an analog chip, roughly doubling accuracy compared with previous analog chips while consuming 33x less energy than a digital architecture of similar precision. These achievements herald a new era of computing hardware designed to unleash the full potential of AI.

Into the post-GPU era

Innovations in software and AI hardware have largely powered a 2.5x per year improvement in computing performance for AI since 2009, when GPUs were first adopted to accelerate <u>deep</u> <u>learning</u>. But we are reaching the limits of what GPUs and software can do. To solve our toughest problems, hardware needs to scale up. The coming generation of AI applications will need faster response times, bigger AI workloads, and multimodal data from numerous streams. To unleash the full potential of AI, we are <u>redesigning hardware with AI in mind</u>: from accelerators to purpose-built hardware for AI workloads, like our new chips, and eventually quantum computing for AI. Scaling AI with new hardware solutions is part of a wider effort at IBM Research to move from narrow AI, often used to solve specific, well-defined tasks, to broad AI, which reaches across disciplines to help humans solve our most pressing problems.

Digital AI accelerators with reduced precision

IBM Research launched the reduced-precision approach to AI model training and inference with a landmark paper describing <u>a novel dataflow approach for conventional CMOS technologies</u> to rev up hardware platforms by dramatically reducing the bit precision of data and computations. Models trained with 16-bit precision were shown, for the very first time, to exhibit no loss of accuracy in comparison to models trained with 32-bit precision. In the ensuing years, the reduced-precision approach was quickly adopted as the industry standard, with 16-bit training and eight-bit inferencing now commonplace, and spurred an explosion of <u>startups and venture capital for reduced precision-based digital AI chips</u>.

The next industry standard for AI training

The next major landmark in reduced-precision training will be presented at NeurIPS in a paper titled "Training Deep Neural Networks with eight-bit Floating Point Numbers" (authors: Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, Kailash Gopalakrishnan). In this paper, <u>a number of new ideas have been proposed to overcome previous challenges (and orthodoxies) associated with reducing training precision below 16 bits</u>. Using these newly proposed approaches, we've demonstrated, for the first time, the ability to train deep learning models with eight-bit precision while fully preserving model accuracy across all major AI dataset categories: image, speech, and text. The techniques accelerate training time for deep neural networks (DNNs) by two to four times over today's 16-bit systems. Although it was previously considered impossible to further reduce precision for training, we expect this eight-bit training platform to become a widely adopted industry standard in the coming years.

Credit: IBM

Reducing bit precision is a strategy that's expected to contribute towards more efficient large-scale machine learning platforms, and these results mark a significant step forward in scaling AI. Combining this approach with a customized dataflow architecture, a single chip architecture can be used to <u>efficiently execute training and inferencing across a range of workloads and networks large and small</u>. This approach can also accommodate "mini-batches" of data, required for critical broad AI capabilities without compromising performance. Realizing all of these capabilities with eight-bit precision for training also opens the realm of energy-efficient broad AI at the edge.

Analog chips for in-memory computing

Thanks to its low power requirements, high energy efficiency, and high reliability, analog technology is a natural fit for AI at the edge. Analog accelerators will fuel a roadmap of AI hardware acceleration beyond the limits of conventional digital approaches. However, whereas digital AI hardware is in a race to reduce precision, analog has thus far been limited by its relatively low intrinsic precision, impacting model accuracy. We developed a new technique to compensate for this, achieving the highest precision yet for an analog chip. Our paper at IEDM, "8-bit Precision In-Memory Multiplication with Projected Phase-Change Memory" (authors: Iason Giannopoulos, Abu Sebastian, Manuel Le Gallo, V. P. Jonnalagadda, M. Sousa, M. N. Boon, Evangelos Eleftheriou), shows this technique achieved eight-bit precision in a scalar multiplication operation, roughly doubling the accuracy of previous analog chips, and consumed 33x less energy than a digital architecture of similar precision.

The key to reducing energy consumption is changing the architecture of computing. With today's computing hardware, data must be moved from memory to processors to be used in calculations, which takes a lot of time and energy. An alternative is <u>in-memory computing</u>, in which memory units moonlight as processors, effectively doing double duty of both storage and computation. This avoids the need to shuttle data between memory and processor, saving time and reducing energy demand by 90 percent or more.

Phase-change memory

Our device uses <u>phase-change memory</u> (PCM) for in-memory computing. PCM records synaptic weights in its physical state along a gradient between amorphous and crystalline. The conductance of the material changes along with its physical state and can be modified using electrical pulses. This is how PCM is able to perform calculations. Because the state can be anywhere along the continuum between zero and one, it is considered an analog value, as opposed to a digital value, which is either a zero or a one, nothing in between.

We have enhanced the precision and stability of the PCM-stored weights with a novel approach, called projected PCM (Proj-PCM), in which we insert a non-insulating projection segment in parallel to the phase-change segment. During the write process, the projection segment has minimal impact on the operation of the device. However, during read, conductance values of programmed states are mostly determined by the projection segment, which is remarkably immune to conductance variations. This allows Proj-PCM devices to achieve much higher precision than previous PCM devices.

The improved precision achieved by our research team indicates in-memory computing may be able to achieve high-performance deep learning in low-power environments, such as IoT and edge applications. As with our digital accelerators, our analog chips are designed to scale for AI <u>training</u> and inferencing across visual, speech, and text datasets and extending to emerging broad AI. We'll be demonstrating a previously published PCM chip all week at NeurIPS, using it to classify hand-written digits in real time via the cloud. [24]

3D-printed artificial intelligence running at the speed of light—from object classification to optical component design

Deep learning is one of the fastest-growing machine learning methods that relies on multi-layered artificial neural networks. Traditionally, deep learning systems are implemented to be executed on a computer to digitally learn data representation and abstraction, and perform advanced tasks, comparable to or even superior than the performance of human experts. Recent successful applications of deep learning include medical image analysis, speech recognition, language translation, image classification, as well as addressing more specific tasks, such as solving inverse imaging problems.

In contrast to the traditional implementations of <u>deep learning</u>, in a recent article published in *Science*, UCLA researchers have introduced a physical mechanism to implement deep learning using an all-optical Diffractive Deep Neural Network (D2NN). This new framework results in 3D-printed structures, designed by deep learning, that were shown to successfully perform different kinds of classification and imaging tasks without the use of any power, except the input light beam. This alloptical <u>deep neural network</u> can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that can learn to perform unique tasks.

This research was led by Dr. Aydogan Ozcan, the Chancellor's Professor of electrical and computer engineering at UCLA and an HHMI Professor with the Howard Hughes Medical Institute.

The authors validated the effectiveness of this approach by creating 3D-printed diffractive networks that were successful in solving sample problems, such as the classification of the images of handwritten digits (from 0 to 9) and fashion products as well as performing the function of an imaging lens at terahertz spectrum.

"Using passive components that are fabricated <u>layer</u> by layer, and connecting these layers to each other via light diffraction created a unique all-optical platform to perform machine learning tasks at the speed of light," said Dr. Ozcan. By using image data, the authors designed tens of thousands of pixels at each layer that, together with the other layers, collectively perform the <u>task</u> the network was trained for. After its training, which is done using a computer, the design is 3D-printed or fabricated to form a stack of layers that use optical diffraction to execute the learned task.

In addition to image classification tasks that the authors have demonstrated using handwritten digits and fashion products, this diffractive neural network architecture was also used to design a multilayered lens that operates at terahertz spectrum, creating an image of an arbitrary input object at the output of the network, without any understanding of the physical laws associated with image formation. Such a design was created using only image data that were used to train the pixel values across different layers to form an imaging system in the form of a diffractive <u>network</u>.

This proof of concept work highlights some unique opportunities that deep learning enables for optical component design based on <u>image data</u>, rather than physical principles or engineering

intuition. Based on this new approach, more advanced optical components can be designed based on data, potentially surpassing the performance of traditional components.

The other authors of this work, all from the UCLA Samueli School of Engineering, include postdoctoral scholars Xing Lin; Yair Rivenson, and Nezih T. Yardimci; graduate students Muhammed Veli and Yi Luo; and Mona Jarrahi, UCLA professor of electrical and computer engineering.

This work was supported by NSF and HHMI. [23]

Test tube artificial neural network recognizes 'molecular handwriting'

Researchers at Caltech have developed an artificial neural network made out of DNA that can solve a classic machine learning problem: correctly identifying handwritten numbers. The work is a significant step in demonstrating the capacity to program artificial intelligence into synthetic biomolecular circuits.

The work was done in the laboratory of Lulu Qian, assistant professor of bioengineering. A paper describing the research appears online on July 4 and in the July 19 print issue of the journal *Nature*.

"Though scientists have only just begun to explore creating artificial intelligence in molecular machines, its potential is already undeniable," says Qian. "Similar to how electronic computers and smart phones have made humans more capable than a hundred years ago, artificial molecular machines could make all things made of <u>molecules</u>, perhaps including even paint and bandages, more capable and more responsive to the environment in the hundred years to come."

Artificial neural networks are mathematical models inspired by the human brain. Despite being much simplified compared to their biological counterparts, artificial neural networks function like networks of neurons and are capable of processing complex information. The Qian laboratory's ultimate goal for this work is to program intelligent behaviors (the ability to compute, make choices, and more) with artificial neural networks made out of DNA.

"Humans each have over 80 billion neurons in the brain, with which they make highly sophisticated decisions. Smaller animals such as roundworms can make simpler decisions using just a few hundred neurons. In this work, we have designed and created biochemical circuits that function like a small <u>network</u> of neurons to classify molecular information substantially more complex than previously possible," says Qian.

To illustrate the capability of DNA-based neural networks, Qian laboratory graduate student Kevin Cherry chose a task that is a classic challenge for electronic artificial neural networks: recognizing handwriting.

Human handwriting can vary widely, and so when a person scrutinizes a scribbled sequence of numbers, the brain performs complex computational tasks in order to identify them. Because it can be difficult even for humans to recognize others' sloppy handwriting, identifying handwritten numbers is a common test for programming intelligence into artificial neural networks. These

networks must be "taught" how to recognize numbers, account for variations in handwriting, then compare an unknown number to their so-called memories and decide the number's identity.

In the work described in the *Nature* paper, Cherry, who is the first author on the paper, demonstrated that a neural network made out of carefully designed DNA sequences could carry out prescribed chemical reactions to accurately identify "molecular handwriting." Unlike visual handwriting that varies in geometrical shape, each example of molecular handwriting does not actually take the shape of a number. Instead, each molecular number is made up of 20 unique DNA strands chosen from 100 molecules, each assigned to represent an individual pixel in any 10 by 10 pattern. These DNA strands are mixed together in a test tube.

"The lack of geometry is not uncommon in natural molecular signatures yet still requires sophisticated biological neural networks to identify them: for example, a mixture of unique odor molecules comprises a smell," says Qian.

Given a particular example of molecular <u>handwriting</u>, the DNA neural network can classify it into up to nine categories, each representing one of the nine possible handwritten digits from 1 to 9.

First, Cherry built a DNA neural network to distinguish between handwritten 6s and 7s. He tested 36 handwritten numbers and the test tube neural network correctly identified all of them. His system theoretically has the capability of classifying over 12,000 handwritten 6s and 7s—90 percent of those numbers taken from a database of handwritten numbers used widely for machine learning—into the two possibilities.

Crucial to this process was encoding a "winner take all" competitive strategy using DNA molecules, developed by Qian and Cherry. In this strategy, a particular type of DNA molecule dubbed the annihilator was used to select a winner when determining the identity of an unknown number.

"The annihilator forms a complex with one molecule from one competitor and one molecule from a different competitor and reacts to form inert, unreactive species," says Cherry. "The annihilator quickly eats up all of the competitor molecules until only a single competitor species remains. The winning competitor is then restored to a high concentration and produces a fluorescent signal indicating the networks' decision."

Next, Cherry built upon the principles of his first DNA neural network to develop one even more complex, one that could classify single digit numbers 1 through 9. When given an unknown number, this "smart soup" would undergo a series of reactions and output two fluorescent signals, for example, green and yellow to represent a 5, or green and red to represent a 9.

Qian and Cherry plan to develop artificial neural networks that can learn, forming "memories" from examples added to the test tube. This way, Qian says, the same smart soup can be trained to perform different tasks.

"Common medical diagnostics detect the presence of a few biomolecules, for example cholesterol or blood glucose." says Cherry. "Using more sophisticated biomolecular circuits like ours, diagnostic testing could one day include hundreds of biomolecules, with the analysis and response conducted directly in the molecular environment."

The paper is titled "Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks." [22]

Breakthrough in controlling DNA-based robots

Researchers have devised a magnetic control system to make tiny DNA-based robots move on demand—and much faster than recently possible.

In the journal *Nature Communications*, Carlos Castro and Ratnasingham Sooryakumar and their colleagues from The Ohio State University report that the control system reduced the response time of prototype nano-robot components from several minutes to less than a second.

Not only does the discovery represent a significant improvement in speed, this work and one other recent study herald the first direct, real-time control of DNA-based molecular machines.

The discovery could one day enable nano-robots to manufacture objects—such as drug-delivery devices—as quickly and reliably as their full-size counterparts. Previously, researchers could only move DNA indirectly, by inducing chemical reactions to coax it to move certain ways, or introducing molecules that reconfigure the DNA by binding with it. Those processes take time.

"Imagine telling a robot in a factory to do something and having to wait five minutes for it to perform a single step of a task. That was the case with earlier methods for controlling DNA nano-machines," said Castro, associate professor of mechanical and aerospace engineering.

"Real-time manipulation methods like our magnetic approach enable the possibility for scientists to interact with DNA nano-devices, and in turn interact with molecules and molecular systems that could be coupled to those nano-devices in real-time with direct visual feedback."

In earlier work, Castro's team used a technique called DNA origami to fold individual strands of DNA to form simple microscopic tools like rotors and hinges. They even built a "Trojan horse" out of DNA for delivering drugs to cancer cells.

For this new study, the researchers joined with Ratnasingham Sooryakumar, professor of physics. He previously developed microscopic magnetic "tweezers" for moving biological cells in biomedical applications such as gene therapy. The tweezers were actually made of groups of magnetic particles that moved in sync to nudge the cells where people wanted them to go.

Those <u>magnetic particles</u>, while invisible to the naked eye, were still many times bigger than one of Castro's nano-machines, Sooryakumar explained.

"We had discovered a way to harness the power of magnetic forces to probe the microscopic world a hidden world of astounding complexity," he said. "But we wanted to transition from the microworld to the nano-world. This led to the collaboration with Dr. Castro. The challenges were to shrink the functionality of our particles a thousand-fold, couple them to precise locations on the moving parts of the machines and incorporate fluorescent molecules as beacons to monitor the machines as they moved." For this study, the team built rods, rotors and hinges using DNA origami. Then they used stiff DNA levers to connect the nanoscopic components to miniature beads made from polystyrene impregnated with magnetic material. By adjusting a magnetic field, they found they could command the particles to swing components back and forth or rotate them. The components executed the instructed movements in less than a second.

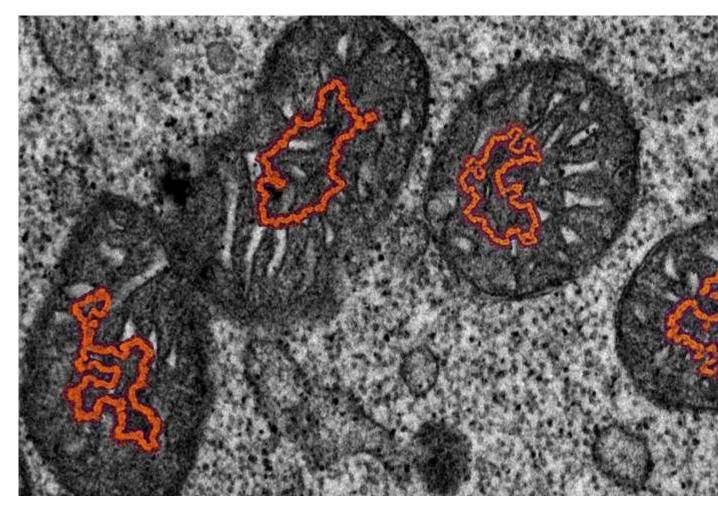
For example, the nano-rotor was able to spin a full 360 degrees in about one second with continuously controlled motion driven by a rotating magnetic field. The nano-hinge was able to be closed or opened in 0.4 seconds, or held at a specific angle with a precision of 8 degrees.

These movements could have taken several minutes if executed with traditional methods, Castro said. He envisions that complex nano-materials or biomolecular complexes could one day be fabricated in DNA-based nano-factories that detect and respond to their local environment.

The study was long in coming: The researchers decided to merge Sooryakumar's magnetic platform with Castro's DNA devices years ago. "It took a lot of dedicated work from several students to realize that idea, and we are excited to continue building on that. This study demonstrates an exciting advance that was only possible with this inter-disciplinary collaboration." Castro said. [21]

Mitochondria and the art of DNA maintenance

Humans have 46 chromosomes, and each one is capped at either end by repetitive sequences called telomeres. If you ask a biologist if humans have circular DNA, they are likely to say 'no.' That is because eukaryotic cell nuclei have linear chromosomes, while prokaryotes have circular nucleoids and plasmids. However, biologists also know that most of our cells have mitochondria that do, in fact, retain the circular DNA, the chromosome 'M,' which they inherited from their prokaryotic ancestors.


One might then ask: Do mitochondria contain linear DNA? The correct answer to this second, and somewhat sneaky question is, again, affirmative. Nucleoids in mitochondria do need to be circular in order for the machinery that copies their DNA to work. Transcription in mitochondria is directly coupled to replication, and also requires circularized nucleoids. However, linear nucleoids exist in a healthy state of equilibrium with circular nucleoids within the mitochondria network. This provides a way for the cell or tissue to control the abundance of mtDNA directly, and by implication, the state and abundance of mitochondria.

What is the fate of linear mtDNA? Double-strand breaks (DSBs) are continually generated as a byproduct of replication stalling, or from failed DNA repair of damaged and incorrectly replicated nucleotides. Although nucleoids can normally replicate themselves in about 90 minutes, DNA polymerases are hung out to dry when nucleotide stores are insufficient or become improperly balanced. When that happens, things break down; essential factors begin to leave the replication-transcription complex, and proper proofreading becomes a frequent casualty.

Complete double-strand breaks are generally considered to be the worst of the worst when it comes to DNA damage. Loose ends are basically live wires that can readily recombine in dangerous ways to wreak transgenerational havoc. Linear chromosomes in the nucleus use telomeres to guard their loose ends from degradation by ubiquitous nucleases. Replication of these special protective features requires a different process from replicating the rest of the chromosome. While mitochondria are shown to be <u>capable of repairing</u> some DSBs using homologous recombination and DNA ligases, the more common way of dealing with DSBs is to chomp up with exonucleases.

Until recently, it was not understood how linear mtDNA was degraded. Authors of a new paper in *Nature* have now shown that the same exact machinery responsible for replicating mtDNA also polices it for breaks. The three main proteins involved, the helicase TWNK, the polymerase POLG, and the exonuclease MGME1, were found to bind together into a functional unit. TWNK first acts to unwind the DNA so that the individual strands can be accessed. MGME1, which has a strong bias for operation in the 5' to 3' direction of single-stranded DNA then begins to digest one strand.

The key insight the authors made is that the other strand is simultaneously processed by the native 3' to 5' exonuclease activity built into the primary subunit of the POLG polymerase. Introducing specific mutations to eliminate the exonuclease action resulted in a compromised ability to degrade linear mtDNA. POLG mutations are a frequent cause of mitochondrial disease, especially in mtDNA depletion and deletion disorders. Sizeable databases now exist just to keep track of newly reported <u>POLG variants</u> and all their known effects.

Mitochondria with nucleoids Credit: msu.edu

Since the subunits of POLG are encoded in the nucleus (within the <u>mitonuclear genome</u>) it may be possible to correct buggy versions of POLG using CRISPR gene editing techniques. Mutations within

the mtDNA itself frequently result in other kinds of mitochondrial disorders. Sometimes, specific combinations of normally benign mtDNA variants can even create disease states. Unfortunately, CRISPR doesn't make much sense for editing the minimal, compact genomes of mitochondria. There are very few candidate sites where CRISPR would even be physically possible in mtDNA. For these kinds of issues, new designer nucleases like TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) that can cut DNA at specific locations have recently become available.

The beauty of the so-called <u>disposable genome</u> of mitochondria, is that full-blown gene editing isn't necessary to fix disease. All one need do is crack open any offending nucleoids, and then let the endogenous degradation systems do their thing. The main difficulty, here, is figuring out where the bad nucleoids are predominantly located, and how to exclusively target them. It is widely appreciated that different tissues can be preferentially depleted of healthy mitochondria, or selectively accumulate damaged mtDNA. For example, fibroblasts and skeletal muscle are associated with specific bodily pathologies, while the retina and cerebellum with specific insults to nerve function.

Assuming one can replenish mtDNA via direct injection at key access points in the body, it would be possible to improve stocks across the board by alternate cycles of mitochondrial binging and purging. In other words, good mitochondria, in suitably encapsulated from, could be periodically transplanted into blood, CSF, or muscle. Then, after some delay, nuclease therapy could alternately introduce DSBs and a period of subsequent degradation. This would have the effect of diluting away the bad mitochondria to any arbitrarily small concentration, at least in theory. Such a strategy would not even require the nucleases to be perfectly selective in targeting the mutated portions of mtDNA.

Another approach, which we might call "<u>mitochondria</u> immunotherapies," could also be a way to apply more power to the problem of clonally expanding mutant mtDNA. This would operate similarly to the now very successful cancer immunotherapies. In certain disease conditions, such as primary biliary cirrhosis, the immune system mistakenly interprets native mitochondrially localized antigens as foreign enemies. In this case, it is the E2 subunit of the pyruvate dehydrogenase complex found in the mitochondrial matrix that is the culprit. The immune system can also recognize particular de-novo mutated mitochondrial products, as well as prokaryotic features of bare mtDNA. For example, hypomethylated CpG sites or oxidative damaged mtDNA can be highly immunogenic if presented by white blood cells in blood or tissue.

Some additional insights (and warnings) into how double-strand breaks might occur and resolve have been provided by researchers Doug Turnbill and Robert Taylor from the Wellcome Center for Mitochondrial Research. In <u>one particular paper</u>, they proposed that mtDNA deletions are most commonly generated during repair of DNA damage as opposed to replication errors. More specifically, they offer that characteristic deletions are initiated by single-stranded segments of mtDNA that were, in turn, generated by exonucleases attacking double-strand breaks. The free single strands would be able to anneal with microhomology or repeat sequences on other single-stranded mtDNA, and undergo repair to an intact but partially deleted state.

In a <u>later paper</u>, these researchers reported that patients with mitochondrial disease who showed considerable neuronal loss in the substantia nigra all had POLG mutations. Considering the fact that in completely normal and healthy people, about half of all the mtDNA found in neurons of their

substantia nigra harbors at least one deletion, developing treatments to fix these predictable insults should be a critical focus of the rapidly developing field of mitochondrial medicine. [20]

Chemical engineers discover how to control knots that form in DNA molecules

Just like any long polymer chain, DNA tends to form knots. Using technology that allows them to stretch DNA molecules and image the behavior of these knots, MIT researchers have discovered, for the first time, the factors that determine whether a knot moves along the strand or "jams" in place.

"People who study polymer physics have suggested that knots might be able to jam, but there haven't been good model systems to test it," says Patrick Doyle, the Robert T. Haslam Professor of Chemical Engineering and the senior author of the study. "We showed the same knot could go from being jammed to being mobile along the same molecule. You change conditions and it suddenly stops, and then change them again and it suddenly moves."

The findings could help researchers develop ways to untie DNA knots, which would help improve the accuracy of some genome sequencing technologies, or to promote knot formation. Inducing knot formation could enhance some types of sequencing by slowing down the DNA <u>molecules</u>' passage through the system, the researchers say.

MIT postdoc Alexander Klotz is the first author of the paper, which appears in the May 3 issue of *Physical Review Letters*.

Knots in motion

Doyle and his students have been studying the physics of polymer knots such as DNA for many years. DNA is well-suited for such studies because it is a relatively large molecule, making it simple to image with a microscope, and it can be easily induced to form knots.

"We have a mechanism that causes DNA molecules to collapse into a tiny ball, which when we stretch out contains very big knots," Klotz says. "It's like sticking your headphones in your pocket and pulling them out full of knots."

Once the knots form, the researchers can study them using a special microfluidic system that they designed. The channel is shaped like a T, with an electric field that diverges at the top of the T. A DNA molecule located at the top of the T will be pulled equally toward each arm, forcing it to stay in place.

The MIT team found that they could manipulate knots in these pinned DNA molecules by varying the strength of the electric field. When the field is weak, knots tend to move along the molecule toward the closer end. When they reach the end, they unravel.

A knot near the end of a stretched DNA molecule is driven toward the end and unties, leaving an unknotted molecule. Credit: Alex Klotz

"When the tension isn't too strong, they look like they're moving around randomly. But if you watch them for long enough, they tend to move in one direction, toward the closer end of the molecule," Klotz says.

When the field is stronger, forcing the DNA to fully stretch out, the knots become jammed in place. This phenomenon is similar to what happens to a knot in a bead necklace as the necklace is pulled more tightly, the researchers say. When the necklace is slack, a knot can move along it, but when it is pulled taut, the beads of the necklace come closer together and the knot gets stuck.

"When you tighten the <u>knot</u> by stretching the DNA molecule more, it brings the strands closer to each other, and this ramps up the friction," Klotz says. "That can overwhelm the driving force caused by the electric field."

Knot removal

DNA knots also occur in living cells, but cells have specialized enzymes called topoisomerases that can untangle such knots. The MIT team's findings suggest a possible way to remove knots from DNA outside of cells relatively easily by applying an <u>electric field</u> until the knots travel all the way to the end of the molecule.

This could be useful for a type of DNA sequencing known as nanochannel mapping, which involves stretching DNA along a narrow tube and measuring the distance between two genetic sequences. This technique is used to reveal large-scale genome changes such as gene duplication or genes moving from one chromosome to another, but knots in the DNA can make it harder to get accurate data.

For another type of DNA sequencing known as nanopore sequencing, it could be beneficial to induce knots in DNA because the knots make the molecules slow down as they travel through the sequencer. This could help researchers get more accurate sequence information.

Using this approach to remove knots from other types of polymers such as those used to make plastics could also be useful, because knots can weaken materials.

The researchers are now studying other phenomena related to knots, including the process of untying more complex knots than those they studied in this paper, as well as the interactions between two knots in a molecule. [19]

Researchers build DNA replication in a model synthetic cell

Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. Creating such a complex biological module is an important step towards an even more ambitious goal: building a complete and functioning synthetic cell from the bottom up.

Copying DNA is an essential function of living <u>cells</u>. It allows for cell division and propagation of <u>genetic information</u> to the offspring. The mechanism underlying DNA <u>replication</u> consists of three

important steps. First, DNA is transcribed into messenger RNA. Messenger RNA is then translated into proteins—the workhorses of the cell that carry out many of its vital functions. The job of some of these proteins, finally, is to perform the last step in the cycle: the replication (or copying) of DNA. After a cell has replicated its DNA, it can divide into two <u>daughter cells</u>, each containing a copy of the original genetic material.

Closing the cycle

Researchers had already realized all of the separate steps mentioned above. Japanese scientists, for instance, created a minimal, stand-alone system for messenger RNA and <u>protein</u> synthesis by taking the relevant components from *E. coli* and tweaking them. But no one had yet been able to combine this system with autonomous DNA replication. "We wanted to close the cycle and be the first to reconstruct the entire flow of genetic information inside a cell-like structure called a liposome," said group leader Christophe Danelon.

Combining the Japanese system with a module for DNA replication proved difficult. "We tried a few approaches, but none seemed to work convincingly," said Danelon. Then, Ph.D. student Pauline van Nies came up with the idea to use the DNA replication machinery of a virus called $\Phi 29$. "Viruses are very intriguing from a molecular biology point of view," said Van Nies. "They are extremely efficient in encoding proteins in a small genome and in robustly replicating their genetic information." In human cells, DNA replication is managed by hundreds of proteins. $\Phi 29$ only needs four.

Composing DNA

Many years ago, researchers working at the Autonomous University of Madrid discovered the DNA replication mechanism of the Φ 29 virus and managed to isolate it. Van Nies and Danelon worked with these researchers to combine the genes that encode for the replication mechanism with the genetic code that is necessary to operate the Japanese module for transcription and translation.

Van Nies composed a unique DNA blueprint that took into account a number of different factors related to the flow of genetic information, such as a suitable binding site for the ribosome, an element that is essential for the production of proteins.

Combining machinery

A goal that now comes into view is combining the new module that regulates the flow of genetic information with other essential cellular functions such as growth and division. Last year, the Danelon group <u>created a way to synthesize the phospholipids</u> that make up liposomes, such as the ones the researchers used in this project. The yield of phospholipids was still too small to sustain growth, but Danelon is confident his group can optimize this process.

Cell division may be a tougher nut to crack. In modern cells, it requires a streamlined process in which copied DNA is neatly packed and then evenly distributed towards the poles of the cell. Concurrently, specialized proteins squeeze the mother cell into two daughter cells. Danelon thinks a simple 'budding' mechanism could also do the trick. "I think we can create liposomes that grow until they start budding. If enough DNA is being produced, hopefully enough of these primitive daughter cells will contain the new DNA to sustain a cell population." This may well be how the very first cells self-reproduced, before evolution equipped them with a more elegant and robust solution.

Building a synthetic cell

The mission that ties together all of the fundamental research described above is the construction of a synthetic cell that can grow, divide and sustain itself. Scientists at Delft University of Technology play a leading role in this exciting new research direction that may ultimately lead to intimate understanding of the inner workings of a cell. Research supporting the initiative could lead to advances in biotechnology, health and energy. [18]

Study reveals the inner workings of a molecular motor that packs and unpacks DNA

DNA is tightly packed into the nucleus of a cell. Nevertheless, the cellular machinery needs to constantly access the genomic information. An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA.

The genomic DNA of higher organisms is compacted in a highly condensed form known as chromatin. The DNA is tightly wound around a myriad of tiny histone spools called nucleosomes. A single human cell, for instance, accommodates in this manner about two meters of DNA. However, genes must be constantly transcribed into messenger RNAs to direct protein synthesis. Moreover, the entire DNA must be replicated before cell division and DNA damage needs to be repaired. Thus, there must be way to actively grant access to the genome.

This is when chromatin remodelers come into play. Chromatin remodelers have an essential role as they are molecular machines: they unpick and unpack segments of the DNA by sliding <u>nucleosome</u> spools back and forth, replacing individual histones, freeing up the DNA for transcription, and finally compacting it again, when the job is done. Since all of this happens in a highly dynamic fashion, chromatin remodelers enable <u>cells</u> to react rapidly to alterations in their environment – and this holds for brewer's yeast as well as for human cells. In mediating gene accessibility, chromatin remodelers are vital for development and cell differentiation; cell types are defined by the sets of genes they express, remodelers help to determine cell identity.

So far, however, very little is known about what remodeling proteins look like and how they go about doing what they do. In molecular terms, functional remodelers are often very large complexes comprising many different protein components, whose coordinated action makes them akin to molecular machines. These features also make it very difficult to determine their detailed structure. But a team led by Professor Karl-Peter Hopfner, who holds a Chair in Structural Molecular Biology at LMU's Gene Center, has now used cryo-electron microscopy to reconstruct the three-dimensional structure of the nucleosome-sliding remodeler INO80 (which itself consists of 15 subunits) bound to a single nucleosome. "Even with innovative approaches, the best available technology and intensive teamwork, we were always working at the cutting edge," says Dr. Sebastian Eustermann, who worked out the molecular structure of the complex on the basis of <u>electron micrographs</u> of thousands of individual complexes.

By analyzing images of randomly oriented views of the complex formed between INO80 and a nucleosome in the electron micrographs, Hopfner and his team have pieced together its structure at a resolution which has seldom been achieved for a chromatin complex of comparable size. This allowed

the researchers to unravel the intricate interaction of the remodeler with its substrate DNA spooled around histones and dissect how the whole machinery works.

From a biochemical point of view, remodelers are responsible for heavy-duty reorganizational tasks. To perform these tasks, they must execute "large-scale conformational changes, which are carried out with astounding precision," says Eustermann. In order to alter the relative positions of nucleosomes, the INO80 complex must first weaken the contacts between the nucleosomal histones and the DNA. A molecular motor which is part of the INO80 complex segmentally detaches the double-stranded DNA from the nucleosome. In doing so, it progressively breaks the contacts that normally keep the DNA tightly wound around the histone particle.

The motor subunit feeds DNA it into the nucleosome. This results in the transient formation of a double-stranded DNA loop that is likely an important intermediate in complex remodeling reactions on the nucleosome. On one hand, the loop exposes some histone proteins that could be replaced by other histones to form a different type of nucleosome. On the other hand, the loop is eventually passed over another subunit and the machine then acts as a ratchet, allowing the nucleosome to "move" on the DNA. Throughout this unpacking process, other subunits in the complex serve to support and stabilize the partially 'denuded' nucleosome itself.

The structure of the complex revealed in the new study sheds new light on the function and mode of action of chromatin remodelers in general. These <u>molecular machines</u> play an essential part in the workings of the cell by maintaining the flexibility of the <u>chromatin</u>, thus enabling the genetic apparatus to respond dynamically to changing metabolic demands. "Our results provide the first well-founded picture of how they do that," says Hopfner. "Moreover, it has recently become clear that remodelers play a central role in tumorigenesis, because they often misregulated in tumor tissue. So structural and mechanistic insights into their functions will be vital for the future development of new therapies for cancer," he adds. [17]

Biomimetic chemistry—DNA mimic outwits viral enzyme

Not only can synthetic molecules mimic the structures of their biological models, they can also take on their functions and may even successfully compete with them, as an artificial DNA sequence designed by Ludwig-Maximilians-Universitaet (LMU) in Munich chemist Ivan Huc now shows.

Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. As the leader of a research group devoted to biomimetic supramolecular chemistry, he creates 'unnatural' molecules with defined, predetermined shapes that closely resemble the major biological polymers, proteins and DNA found in cells. The backbones of these molecules are referred to as 'foldamers' because, like origami patterns, they adopt predictable shapes and can be easily modified. Having moved to LMU from his previous position at Bordeaux University last summer, Huc has synthesized a helical molecule that mimics surface features of the DNA double helix so closely that bona fide DNA-binding proteins interact with it.

This work is described in a paper published in *Nature Chemistry*. The new study shows that the synthetic compound is capable of inhibiting the activities of several DNA-processing enzymes, including the 'integrase' used by the <u>human immunodeficiency virus</u> (HIV) to insert its genome into that of its host cell. The successful demonstration of the efficacy of the synthetic DNA mimic might lead to a new approach to the treatment of AIDS and other retroviral diseases.

The new paper builds on advances described in two previous publications in *Nature Chemistry* published earlier this year. In the first of these papers, Huc and his colleagues developed a pattern of binding interactions required to enable synthetic <u>molecules</u> to assume stable forms similar to the helical backbones of proteins. In the second, they worked out the conditions required to append their synthetic helix to natural proteins during synthesis by cellular ribosomes. "As always in biology, shape determines function," he explains. In the new study, he introduces a synthetic molecule that folds into a helical structure that mimics surface features of the DNA double helix, and whose precise shape can be altered in a modular fashion by the attachment of various substituents. This enables the experimenter to imitate in detail the shape of natural DNA double helix, in particular the position of negative charges. The imitation is so convincing that it acts as a decoy for two DNAbinding enzymes, including the HIV integrase, which readily bind to it and are essentially inactivated.

However, the crucial question is whether or not the foldamer can effectively compete for the enzymes in the presence of their normal DNA substrate. "If the enzymes still bind to the foldamer under competitive conditions, then the mimic must be a better binder than the natural DNA itself," Huc says. And indeed, the study demonstrates that the HIV integrase binds more strongly to the foldamer than to natural DNA. "Furthermore, although initially designed to resemble DNA, the foldamer owes its most useful and valuable properties to the features that differentiate it from DNA," Huc points out.

Thanks to the modular nature of foldamer design, the structures of these artificial DNA mimics can be readily altered, which enables a broad range of variants to be produced using the same basic platform. In the current study, Huc and his colleagues have focused on enzymes that are generically capable of binding to DNA, irrespective of its base sequence. However, it may also be possible to use the foldamer approach to develop DNA mimics that can block the action of the many important DNA-binding proteins whose functions depend on the recognition of specific nucleotide sequences. [16]

Simulations document self-assembly of proteins and DNA

What makes particles self-assemble into complex biological structures? Often, this phenomenon is due to the competition between forces of attraction and repulsion, produced by electric charges in various sections of the particles. In nature, these phenomena often occur in particles that are suspended in a medium—referred to as colloidal particles—such as proteins, DNA and RNA. To facilitate self-assembly, it is possible to "decorate" various sites on the surface of such particles with different charges, called patches.

In a new study published in *EPJE*, physicists have developed an algorithm to simulate the molecular dynamics of these patchy <u>particles</u>. The findings published by Silvano Ferrari and colleagues from the

TU Vienna and the Centre for Computational Materials Science (CMS), Austria, will improve our understanding of what makes self-assembly in biological systems possible.

In this study, the authors model charged patchy particles, which are made up of a rigid body with only two charged patches, located at opposite poles. They then develop the equations governing the dynamics of an ensemble of such colloidal patchy particles.

Based on an existing approach originally developed for molecular particles, their simulation includes additional constraints to guarantee that the electrical charge "decorations" are preserved over time. In this regard, they develop equations for describing the particles' motion; the solutions to these equations describe the trajectories of these colloidal particles. Such <u>molecular dynamics</u> simulations lend themselves to being run in parallel on a huge number of particles.

With these findings, the authors complement the lessons learned from experimental observations of similar particles recently synthesised in the lab. Recent experiments have demonstrated that <u>colloidal</u> <u>particles</u> decorated at two interaction sites display a remarkable propensity for self-organising into highly unusual structures that remain stable over a broad temperature range. [15]

Scientists explore the structure of a key region of longevity protein telomerase

Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. Structural and functional studies on this protein are important for the development of potential anticancer drugs. The results of the study have been published in *Nucleic Acids Research*.

Each cell goes through a DNA replication process before division. This is a precise, fine-tuned process controlled by the coordinated work of a sophisticated enzymatic machinery. However, due to the nature of the copying process, the termini of DNA molecules are left uncopied, and DNA becomes shorter with each replication. However, no important data is lost in the process, as the termini of DNA molecules (telomeres) consist of thousands of small, repeated regions that do not carry hereditary information. When the reserve of telomere repetitions is exhausted, the cell ceases to divide, and eventually, it can die. Scientists believe that this is the mechanism of cellular aging, which is necessary for the renewal of cells and tissues of the body.

But how do "immortal" strains and stem cells that give life to a huge number of offspring cope with this? This is where the enzyme <u>telomerase</u> comes into play. It can restore telomeric termini of chromosomes and therefore compensate for their shortening during mitosis. The telomerase protein catalytic subunit works together with the RNA molecule, and its short fragment is used as a template to synthesize telomeric repetitions. MSU-based scientists discovered the structure of the telomerase fragment that is in charge of this process.

"Our work is aimed at the structural characterization of the telomerase complex. In a living cell, it includes a catalytic subunit, an RNA molecule, a segment of telomeric DNA, and several auxiliary components. Anomalously low activity of telomerase caused by genetics can result in serious pathogenic conditions (telomeropathy), while its anomalous activation is the reason for the cellular "immortality" of most known cancers. Information on the structure of telomerase and the relationships between its components is necessary for understanding the function and regulation of this enzyme, and in the future, for directed control of its activity," said Elena Rodina, assistant professor of the Department for the Chemistry of Natural Products, Faculty of Chemistry, MSU.

Working with thermotolerant yeast, a model eukaryotic organism, the researchers determined the structure of one of the major domains of the telomerase catalytic subunit (the so-called TEN-domain) and determined which parts of it are responsible for the interaction of the enzyme with the RNA molecule and the synthesized DNA. Based on the experimental data obtained, the scientists constructed a theoretical model of the catalytic core of telomerase.

The activity of the enzyme may be described in a simplified way: Telomerase can be represented as a molecular machine containing an RNA molecule. This machine, with the help of a template part of RNA, binds to the end of a long chain of DNA, and synthesizes a fragment of a new DNA chain along the remaining template fragment. After that, the telomerase machine has to move to the newly synthesized end of the DNA in order to continue to build up the chain. The scientists assume that the TEN-domain allows telomerase to synthesize DNA fragments of strictly defined length, after which the RNA template should be detached from the DNA strand to move closer to its edge. Thus, the TEN domain facilitates the movement of the enzyme to building up a new region, i.e. the next telomeric fragment, and this is how the synthesis cycle is repeated.

In addition, the researchers identified the structural core of the TEN domain that remained unchanged in a variety of organisms, despite all the evolutionary vicissitudes, which indicates the important role of this core in the function of the enzyme. The team also revealed the elements specific for different groups of organisms, which interact with own proteins of individual telomerase complex.

"The data obtained bring us closer to an understanding of the structure, function and regulation of telomerase. In the future, this knowledge can be used to create drugs aimed at regulating telomerase activity—either to increase it (for example, to increase the cell life span in biomaterials for transplantology) or to reduce (for instance, for immortal cancer cells to lose their immortality)," concludes Elena Rodina. [14]

Custom sequences for polymers using visible light

Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. By simply switching the light on or off, they were able to realize different compositions along the polymer chain, allowing precise control over physical properties and material

function. This may drastically simplify existing polymer production methods, and help overcome fundamental limits in creating new polymers.

The world is full of long, chain-like molecules known as polymers. Famous examples of "sequential" copolymers, i.e. polymers made of multiple <u>building blocks</u> (or "monomers") arranged in a specific order, include DNA, RNA and proteins; their specific structure imparts the vast range of molecular functionality that underpins biological activity. However, making sequential polymers from scratch is a tricky business. We can design special monomers that assemble in different ways, but the complex syntheses that are required limit their availability, scope and functionality.

To overcome these limits, a team led by Associate Professor Akiko Inagaki from the Department of Chemistry, Tokyo Metropolitan University, applied a light-sensitive catalyst containing iridium and palladium. By switching a light on and off, they were able to control the speed at which two different monomers, styrene and vinyl ether, become part of a <u>polymer chain</u>. When exposed to light, the styrene monomer was found to be incorporated into the copolymer structure much more rapidly than in the dark, resulting in a single copolymer chain with different compositions along its length. Parts that are rich in styrene are more rigid than those rich in vinyl ether; by using different on/off <u>light</u> sequences, they could create polymers with a range of <u>physical properties</u> e.g. different "glass transition" temperatures, above which the <u>polymer</u> becomes softer.

The newly developed process is significantly simpler than existing methods. The team also found that both types of monomer were built into the polymer via a mechanism known as non-radical coordination-insertion; this is a generic mechanism, meaning that this new method might be applied to make polymers using a wide range of catalysts and monomers, with the potential to overcome the limited availability of <u>monomer</u> candidates. [13]

Artificial and biological cells work together as mini chemical factories

Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications.

The system, created by a team from Imperial College London, encapsulates biological cells within an <u>artificial cell</u>. Using this, researchers can harness the natural ability of biological cells to process chemicals while protecting them from the environment.

This system could lead to applications such as cellular 'batteries' powered by photosynthesis, synthesis of drugs inside the body, and biological sensors that can withstand harsh conditions.

Previous artificial cell design has involved taking parts of biological cell 'machinery' - such as enzymes that support <u>chemical</u> reactions - and putting them into artificial casings. The new study, published today in *Scientific Reports*, goes one step further and encapsulates entire cells in artificial casings.

The artificial cells also contain enzymes that work in concert with the biological cell to produce new chemicals. In the proof-of-concept experiment, the artificial cell systems produced a fluorescent chemical that allowed the researchers to confirm all was working as expected.

Lead researcher Professor Oscar Ces, from the Department of Chemistry at Imperial, said: "Biological cells can perform extremely complex functions, but can be difficult to control when trying to harness one aspect. Artificial cells can be programmed more easily but we cannot yet build in much complexity.

"Our new system bridges the gap between these two approaches by fusing whole biological cells with artificial ones, so that the machinery of both works in concert to produce what we need. This is a paradigm shift in thinking about the way we design artificial cells, which will help accelerate research on applications in healthcare and beyond."

To create the system, the team used microfluidics: directing liquids through small channels. Using water and oil, which do not mix, they were able to make droplets of a defined size that contained the biological cells and enzymes. They then applied an artificial coating to the droplets to provide protection, creating an artificial cell environment.

They tested these artificial cells in a solution high in copper, which is usually highly toxic to biological cells. The team were still able to detect fluorescent chemicals in the majority of the artificial cells, meaning the biological cells were still alive and functioning inside. This ability would be useful in the human body, where the artificial cell casing would protect the foreign <u>biological cells</u> from attack by the body's immune system.

First author of the study Dr Yuval Elani, an EPSRC Research Fellow also from the Department of Chemistry, said: "The system we designed is controllable and customisable. You can create different sizes of artificial <u>cells</u> in a reproducible manner, and there is the potential to add in all kinds of cell machinery, such as chloroplasts for performing photosynthesis or engineered microbes that act as sensors."

To improve the functionality of these artificial cell systems, the next step is to engineer the artificial coating to act more like a biological membrane, but with special functions.

For example, if the membrane could be designed to open and release the chemicals produced within only in response to certain signals, they could be used to deliver drugs to specific areas of the body. This would be useful for example in cancer treatment to release targeted drugs only at the site of a tumour, reducing side effects.

While a system like that may be a way off yet, the team say this is a promising leap in the right direction. The work is the first example of fusing living and non-living components to emerge from Imperial and King's College's new FABRICELL centre for artificial cell science. [12]

New interaction mechanism of proteins discovered

UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. This new mechanism involves two fully unstructured proteins forming an ultra-high-affinity complex due to their opposite net charge. Proteins usually bind one another as a result of perfectly matching shapes in their three-dimensional structures. Proteins are among the most important biomolecules and are the key mediators of molecular communication between and within cells. For two proteins to bind, specific regions of their <u>three-dimensional structures</u> have to match one another exactly, as a key fits into a lock. The structure of proteins is extremely important for their functioning and for triggering the required responses in cells. Now, researchers at the University of Zurich, together with colleagues from Denmark and the U.S., have discovered that unstructured proteins can also have ultra-high-affinity interactions.

One of these proteins is histone H1, which, as a component of chromatin, is responsible for DNA packaging. Its binding partner, prothymosin α , acts as a kind of shuttle that deposits and removes the histone from the DNA. This process determines whether or not genes in specific parts of the DNA can be read. Both proteins are involved in several regulatory processes in the body, such as cell division and proliferation, and therefore also play a role when it comes to a number of diseases, including cancer. Ben Schuler, professor at the Department of Biochemistry at UZH and head of the research project published in *Nature*, says, "The interesting thing about these proteins is that they're completely unstructured—like boiled noodles in water." How such disordered proteins should be able to interact according to the key/lock principle had puzzled the team of researchers.

Notably, the two proteins bind to one another much more strongly than the average <u>protein</u> partners. The research team used single-molecule fluorescence and <u>nuclear magnetic</u> <u>resonance</u> spectroscopy to determine the arrangement of the proteins. Observed in isolation, they show extended unstructured protein chains. The chains become more compact as soon as both binding partners come together and form a complex. The strong interaction is caused by the strong electrostatic attraction, since histone H1 is highly positively charged while prothymosin α is highly negatively charged. Even more surprising was the discovery that the <u>protein complex</u> was also fully unstructured, as several analyses confirmed.

To investigate the shape of the protein complex, the researchers labeled both proteins with fluorescent probes, which they then added to selected sites on the proteins. Together with computer simulations, this molecular map yielded the following results: Histone 1 interacts with prothymosin α preferably in its central region, which is the region with the highest charge density. Moreover, it emerged that the complex is highly dynamic: The proteins' position in the complex changes extremely quickly—in a matter of approx. 100 nanoseconds.

The interaction behavior is likely to be fairly common. Cells have many proteins that contain highly charged sequences and may be able to form such protein complexes. There are hundreds of such proteins in the human body alone. "It's likely that the interaction between disordered, highly charged proteins is a basic mechanism for how <u>cells</u> function and organize themselves," concludes Ben Schuler. According to the biophysicist, textbooks will need revision to account for this new way of binding. The discovery is also relevant for developing new therapies, since unstructured proteins are largely unresponsive to traditional drugs, which bind to specific structures on the protein surface. [11]

Particles in charged solution form clusters that reproduce

Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. He has shown that particles that become charged in solution, like many biological <u>molecules</u>, can form giant clusters that can reproduce. Reproduction is shown to be driven by simple physics—a balance of forces between short-range attraction and long-range repulsion. Once cluster <u>reproduction</u> begins, he suggests chemical evolution of clusters could follow, leading eventually to life.

Many <u>biological molecules</u>, like DNA and proteins, might show this behaviour. Even the building blocks of life, amino acids and nucleobases, might show this behaviour. Reproduction in modern cells might even be driven by this simple physical mechanism, i.e. chemistry is not so important.

Dr Sweatman's research uses theoretical methods and computer simulations of simple particles. They clearly show giant clusters of molecules with the right balance of forces can reproduce. No chemistry is involved. However, these theoretical predictions have yet to be confirmed by experiment.

Dr Sweatman said, "Although it will be difficult to see this behaviour for solutions of small biomolecules, it should be possible to confirm this behaviour experimentally with much larger particles that can be seen under a microscope, like charged colloids.

"If this <u>behaviour</u> is confirmed, then we take another step towards Darwin's idea of life beginning in a warm little pond. A simple evaporation and condensation cycle in a pond might be sufficient to drive <u>cluster</u> reproduction initially. Survival of the fittest clusters of chemicals might then eventually lead to life."

The research has been published in the international journal Molecular Physics.

Experiment demonstrates quantum mechanical effects from biological systems

Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. Kumar and his team have, for the first time, created quantum entanglement from a biological system. This finding could advance scientists' fundamental understanding of biology and potentially open doors to exploit biological tools to enable new functions by harnessing <u>quantum</u> <u>mechanics</u>. "Can we apply quantum tools to learn about biology?" said Kumar, professor of electrical engineering and computer science in Northwestern's McCormick School of Engineering and of physics and astronomy in the Weinberg College of Arts and Sciences. "People have asked this question for many, many years—dating back to the dawn of quantum mechanics. The reason we are interested in these new quantum states is because they allow applications that are otherwise impossible."

Partially supported by the Defense Advanced Research Projects Agency, the research was published Dec. 5 in *Nature Communications*.

Quantum entanglement is one of quantum mechanics' most mystifying phenomena. When two <u>particles</u>—such as atoms, photons, or electrons—are entangled, they experience an inexplicable link that is maintained even if the particles are on opposite sides of the universe. While entangled, the particles' behavior is tied one another. If one particle is found spinning in one direction, for example, then the other particle instantaneously changes its spin in a corresponding manner dictated by the entanglement. Researchers, including Kumar, have been interested in harnessing quantum entanglement for several applications, including quantum communications. Because the particles can communicate without wires or cables, they could be used to send secure messages or help build an extremely fast "quantum Internet."

"Researchers have been trying to entangle a larger and larger set of atoms or photons to develop substrates on which to design and build a quantum machine," Kumar said. "My laboratory is asking if we can build these machines on a biological substrate."

In the study, Kumar's team used green fluorescent proteins, which are responsible for bioluminescence and commonly used in biomedical research. The team attempted to entangle the photons generated from the fluorescing molecules within the algae's barrel-shaped protein structure by exposing them to spontaneous four-wave mixing, a process in which multiple wavelengths interact with one another to produce new wavelengths.

Through a series of these experiments, Kumar and his team successfully demonstrated a type of entanglement, called <u>polarization</u> entanglement, between photon pairs. The same feature used to make glasses for viewing 3D movies, polarization is the orientation of oscillations in light waves. A wave can oscillate vertically, horizontally, or at different angles. In Kumar's entangled pairs, the photons' polarizations are entangled, meaning that the oscillation directions of light waves are linked. Kumar also noticed that the barrel-shaped structure surrounding the fluorescing molecules protected the <u>entanglement</u> from being disrupted.

"When I measured the vertical polarization of one particle, we knew it would be the same in the other," he said. "If we measured the horizontal polarization of one particle, we could predict the horizontal polarization in the other particle. We created an entangled state that correlated in all possibilities simultaneously."

Now that they have demonstrated that it's possible to create <u>quantum entanglement</u> from biological particles, next Kumar and his team plan to make a biological substrate of <u>entangled</u> <u>particles</u>, which could be used to build a <u>quantum</u> machine. Then, they will seek to understand if a biological substrate works more efficiently than a synthetic one. [9]

Quantum biology: Algae evolved to switch quantum coherence on and off

A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis.

The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently. Working out its role in a living organism could lead to technological advances, such as better organic solar cells and quantum-based electronic devices.

The research is published in the journal Proceedings of the National Academy of Sciences.

It is part of an emerging field called quantum biology, in which evidence is growing that quantum phenomena are operating in nature, not just the laboratory, and may even account for how birds can navigate using the earth's magnetic field.

"We studied tiny single-celled algae called cryptophytes that thrive in the bottom of pools of water, or under thick ice, where very little light reaches them," says senior author, Professor Paul Curmi, of the UNSW School of Physics.

"Most cryptophytes have a light-harvesting system where quantum coherence is present. But we have found a class of cryptophytes where it is switched off because of a genetic mutation that alters the shape of a light-harvesting protein.

"This is a very exciting find. It means we will be able to uncover the role of quantum coherence in photosynthesis by comparing organisms with the two different types of proteins."

In the weird world of quantum physics, a system that is coherent – with all quantum waves in step with each other – can exist in many different states simultaneously, an effect known as superposition. This phenomenon is usually only observed under tightly controlled laboratory conditions.

So the team, which includes Professor Gregory Scholes from the University of Toronto in Canada, was surprised to discover in 2010 that the transfer of energy between molecules in the light harvesting systems from two different cryptophyte species was coherent.

The same effect has been found in green sulphur bacteria that also survive in very low light levels.

"The assumption is that this could increase the efficiency of photosynthesis, allowing the algae and bacteria to exist on almost no light," says Professor Curmi.

"Once a light-harvesting protein has captured sunlight, it needs to get that trapped energy to the reaction centre in the cell as quickly as possible, where the energy is converted into chemical energy for the organism.

"It was assumed the energy gets to the reaction centre in a random fashion, like a drunk staggering home. But quantum coherence would allow the energy to test every possible pathway simultaneously before travelling via the quickest route."

In the new study, the team used x-ray crystallography to work out the crystal structure of the lightharvesting complexes from three different species of cryptophytes.

They found that in two species a genetic mutation has led to the insertion of an extra amino acid that changes the structure of the protein complex, disrupting coherence.

"This shows cryptophytes have evolved an elegant but powerful genetic switch to control coherence and change the mechanisms used for light harvesting," says Professor Curmi.

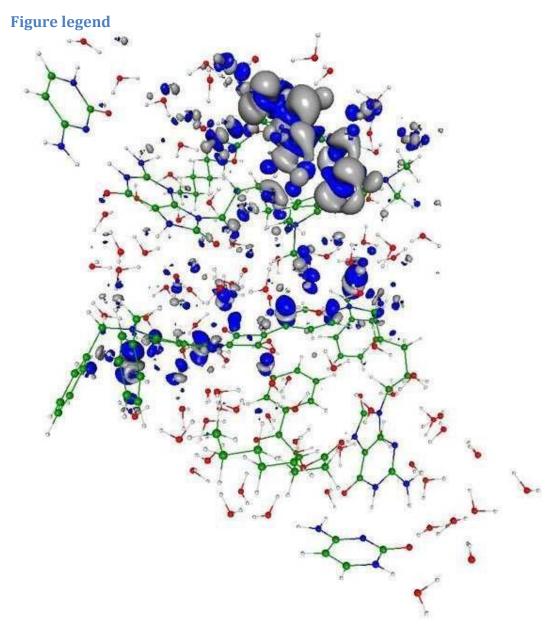
The next step will be to compare the biology of different cryptophytes, such as whether they inhabit different environmental niches, to work out whether the quantum coherence effect is assisting their survival. [8]

Photoactive Prebiotic Systems

We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modeled possibility of synthesizing artificial selfreproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of photocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modeled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

Significance Statement

Our investigated self-assembly of molecules towards supramolecular bioorganic and minimal cellular systems depends on the quantum mechanics laws which induce hydrogen and Van der Waals bindings (Tamulis A, Grigalavicius, M, Orig Life Evol Biosph 41:51-71, 2011).


In the work presented here, quantum entanglement takes the form of a quantum superposition of the active components in synthesized self-assembling and self-replicating living systems. When a quantum calculation of an entangled system is made that causes one photoactive biomolecule of such a pair to take on a definite value (e.g., electron density transfer or electron spin density transfer), the other member of this entangled pair will be found to have taken the appropriately correlated value (e.g., electron density transfer or electron spin density transfer). In our simulations, the separation distance of supramolecular bio systems changes took place during geometry optimization procedures, which mimic real-world intermolecular interaction processes.

Our discovered phenomenon of the quantum entanglement in the prebiotic systems enhance the photosynthesis in the proposed systems because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states (Tamulis A, Grigalavicius M, Baltrusaitis J, Orig Life Evol Biosph 43:49-66, 2013; Tamulis A, Grigalavicius M, Krisciukaitis S (2014), J Comput Theor Nanos, 11, 1597-1608, 2014; Tamulis A, Grigalavicius M, 8:117-140, 2014.). We can propose that quantum entanglement enhanced the emergence of photosynthetic prebiotic kernels and accelerated the evolution of photosynthetic life because of additional absorbed light energy, leading to faster growth and self-replication of minimal living cells.

We can state that: Livings are self-assembled and self-replicating wet and warm stochastically moving supramolecular systems where quantum entanglement can be continuously generated and destroyed by non-equilibrium effects in an environment where no static entanglement exists; quantum entanglement involve the biomolecule inside one living or between other neighboring livings.

This warm quantum coherence is basic for the explanation of DNA stability and for the understanding of brain magnetic orientation during migration in more than 50 species of birds, fishes and insects. Exists experimental evidence for quantum-coherent is used for more efficient light-harvesting in plant photosynthesis. Quantum entanglement exists in supramolecules determining the sense of smell and in the brain neurons microtubules due to quantum vibrations.

In the work presented here, we started to design and quantum mechanical investigations of the molecular logical devices which are useful for construction of nano medicine biorobots against the molecular diseases such a cancer tumors, and against the new kinds of synthesized microorganisms and nano guns.

You can see in the enclosed figure the quantum entanglement phenomenon in the closely selfassembled two synthesized protocell system due to the photo excited electron charge transfer from one protocell to another that leads to closer self-assembly and exchange of energy and information.

Visualization of the electron charge tunneling associated with the 6th (467.3 nm) excited state. The transition is mainly from squarine molecule of the first protocell situated in the bottom of this bi cellular system to precursor of fatty acid (pFA) molecule of the second subsystem (in the top) and little from the 1,4-bis(N,N-dimethylamino)naphthalene molecule (in the top-right) to the same pFA molecule of the second subsystem (in the top). The electron cloud hole is indicated by the dark blue color while the transferred electron cloud location is designated by the gray color.

As a result, these nonlinear quantum interactions compressed the overall molecular system resulting in a smaller gap between the HOMO and LUMO electron energy levels which allows

enhanced tunneling of photo excited electrons from the sensitizer squarine and (1,4bis(N,Ndimethylamino)naphthalene) to the pFA molecule resulting in its cleavage. The new fatty acid joins the existing minimal cell thus increasing it in size. After reaching some critical size, the minimal cell should divide (i.e. self-replicate) into two separate smaller minimal cells. [7]

Quantum Biology

Researchers have long suspected that something unusual is afoot in photosynthesis. Particles of light called photons, streaming down from the Sun; arrive randomly at the chlorophyll molecules and other light-absorbing 'antenna' pigments that cluster inside the cells of every leaf, and within every photosynthetic bacterium. But once the photons' energy is deposited, it doesn't stay random. Somehow, it gets channeled into a steady flow towards the cell's photosynthetic reaction centre, which can then use it at maximum efficiency to convert carbon dioxide into sugars. Quantum coherence in photosynthesis seems to be beneficial to the organisms using it. But did their ability to exploit quantum effects evolve through natural selection? Or is quantum coherence just an accidental side effect of the way certain molecules are structured? [6]

Quantum Consciousness

Extensive scientific investigation has found that a form of quantum coherence operates within living biological systems through what is known as biological excitations and biophoton emission. What this means is that metabolic energy is stored as a form of electromechanical and electromagnetic excitations. These coherent excitations are considered responsible for generating and maintaining long-range order via the transformation of energy and very weak electromagnetic signals. After nearly twenty years of experimental research, Fritz-Albert Popp put forward the hypothesis that biophotons are emitted from a coherent electrodynamics field within the living system.

What this means is that each living cell is giving off, or resonating, a biophoton field of coherent energy. If each cell is emitting this field, then the whole living system is, in effect, a resonating field-a ubiquitous nonlocal field. And since biophotons are the entities through which the living system communicates, there is near-instantaneous intercommunication throughout. And this, claims Popp, is the basis for coherent biological organization -- referred to as quantum coherence. This discovery led Popp to state that the capacity for evolution rests not on aggressive struggle and rivalry but on the capacity for communication and cooperation. In this sense the built-in capacity for species evolution is not based on the individual but rather living systems that are interlinked within a coherent whole: Living systems are thus neither the subjects alone, nor objects isolated, but both subjects and objects in a mutually communicating universe of meaning. . . . Just as the cells in an organism take on different tasks for the whole, different populations enfold information not only for themselves, but for all other organisms, expanding the consciousness of the whole, while at the same time becoming more and more aware of this collective consciousness. Biophysicist Mae-Wan Ho describes how the living organism, including the human body, is coordinated throughout and is "coherent beyond our wildest dreams." It appears that every part of our body is "in communication with every other part through a dynamic, tunable, responsive, liquid crystalline medium that pervades the whole body, from organs and tissues to the interior of every cell."

What this tells us is that the medium of our bodies is a form of liquid crystal, an ideal transmitter of communication, resonance, and coherence. These relatively new developments in biophysics have discovered that all biological organisms are constituted of a liquid crystalline medium. Further, DNA is a liquid-crystal, lattice-type structure (which some refer to as a liquid crystal gel), whereby body cells are involved in a holographic instantaneous communication via the emitting of biophotons (a source based on light). This implies that all living biological organisms continuously emit radiations of light that form a field of coherence and communication. Moreover, biophysics has discovered that living organisms are permeated by quantum wave forms. [5]

Creating quantum technology

Another area of potential application is in quantum computing. The long-standing goal of the physicists and engineers working in this area is to manipulate data encoded in quantum bits (qubits) of information, such as the spin-up and spin-down states of an electron or of an atomic nucleus. Qubits can exist in both states at once, thus permitting the simultaneous exploration of all possible answers to the computation that they encode. In principle, this would give quantum computers the power to find the best solution far more quickly than today's computers can — but only if the qubits can maintain their coherence, without the noise of the surrounding environment, such as the jostling of neighboring atoms, destroying the synchrony of the waves. [6]

Quantum Entanglement

Measurements of physical properties such as position, momentum, spin, polarization, etc. performed on entangled particles are found to be appropriately correlated. For example, if a pair of particles is generated in such a way that their total spin is known to be zero, and one particle is found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the same axis, will be found to be counterclockwise. Because of the nature of quantum measurement, however, this behavior gives rise to effects that can appear paradoxical: any measurement of a property of a particle can be seen as acting on that particle (e.g. by collapsing a number of superimposed states); and in the case of entangled particles, such action must be on the entangled system as a whole. It thus appears that one particle of an entangled pair "knows" what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separated by arbitrarily large distances. [4]

The Bridge

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. [1]

Accelerating charges

The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion. The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference between the different part of the not point like particles.

Relativistic effect

Another bridge between the classical and quantum mechanics in the realm of relativity is that the charge distribution is lowering in the reference frame of the accelerating charges linearly: ds/dt = at (time coordinate), but in the reference frame of the current it is parabolic: $s = a/2 t^2$ (geometric coordinate).

Heisenberg Uncertainty Relation

In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the greater proton mass.

This means that the electron and proton are not point like particles, but has a real charge distribution.

Wave - Particle Duality

The accelerating electrons explains the wave – particle duality of the electrons and photons, since the elementary charges are distributed on delta x position with delta p impulse and creating a wave packet of the electron. The photon gives the electromagnetic particle of the mediating force of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model

The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of the proton and it's kinetic and potential energy will be constant. Its energy will change only when it

is changing its way to another equipotential line with another value of potential energy or getting free with enough kinetic energy. This means that the Rutherford-Bohr atomic model is right and only that changing acceleration of the electric charge causes radiation, not the steady acceleration. The steady acceleration of the charges only creates a centric parabolic steady electric field around the charge, the magnetic field. This gives the magnetic moment of the atoms, summing up the proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge

Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin another unresolved problem in the classical concepts. If the electric charges can move only with accelerated motions in the self maintaining electromagnetic field, once upon a time they would reach the velocity of the electromagnetic field. The resolution of this problem is the spinning particle, constantly accelerating and not reaching the velocity of light because the acceleration is radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two wavelengths will give equal intensity diffraction patterns, building different asymmetric constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles are centers of diffraction patterns they also have particle – wave duality as the electromagnetic waves have. [2]

The weak interaction

The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic in nature. The arrow of time shows the entropy grows by changing the temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This kind of change in the oscillation mode requires not only parity change, but also charge and time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the quark flavor could happen only in reverse, because they are different geometrical constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged particles, since the accelerated charges are self maintaining locally the accelerating electric force. The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is the time coordinate not works as in the electromagnetic interactions, consequently the speed of neutrinos is not limited by the speed of light.

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the

weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional oscillation by changing d to u quark and creating anti neutrino going back in time relative to the proton and electron created from the neutron, it seems that the anti neutrino fastest then the velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and Tsymmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher level such as atoms, molecules, probably big biological significant molecules and responsible on the aging of the life.

Important to mention that the weak interaction is always contains particles and antiparticles, where the neutrinos (antineutrinos) present the opposite side. It means by Feynman's interpretation that these particles present the backward time and probably because this they seem to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the velocity of the electromagnetic wave, so the neutrino's velocity cannot exceed the velocity of light.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them.

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures. We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the 'general neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change.

There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also.

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction.

Fermions and Bosons

The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing.

Van Der Waals force

Named after the Dutch scientist Johannes Diderik van der Waals – who first proposed it in 1873 to explain the behaviour of gases – it is a very weak force that only becomes relevant when atoms and molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the result being an attractive dipole–dipole interaction.

Electromagnetic inertia and mass

Electromagnetic Induction

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass

The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass

Since E = hv and $E = mc^2$, $m = hv/c^2$ that is the m depends only on the v frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_o inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

Electron – Proton mass rate

The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Gravity from the point of view of quantum physics

The Gravitational force

The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate Mp=1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass.

The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces!?

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy. There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Higgs boson

By March 2013, the particle had been proven to behave, interact and decay in many of the expected ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be discovered in nature, although a number of other properties were not fully proven and some partial results do not yet precisely match those expected; in some cases data is also still awaited or being analyzed.

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien law is also important to explain the Weak interaction, since it describes the T_{max} change and the diffraction patterns change. [2]

Higgs mechanism and Quantum Gravity

The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon as an electron-positron pair, they have mass. The neutral particles are built from negative and positive charges, for example the neutron, decaying to proton and electron. The wave – particle duality makes sure that the particles are oscillating and creating magnetic induction as an inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic induction is the secret of the Higgs field.

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that gives mass to elementary particles. According to this theory, particles gain mass by interacting with the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The spontaneous symmetry breaking of the underlying local symmetry triggers conversion of components of this Higgs field to Goldstone bosons which interact with (at least some of) the other fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W[±], and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed that further testing is needed to confirm the Standard Model.

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

Conclusions

Exists experimental evidence for quantum-coherent is used for more efficient light-harvesting in plant photosynthesis. Quantum entanglement exists in supramolecules determining the sense of smell and in the brain neurons microtubules due to quantum vibrations.

In the work presented here, we started to design and quantum mechanical investigations of the molecular logical devices which are useful for construction of nano medicine biorobots against the molecular diseases such a cancer tumors, and against the new kinds of synthesized microorganisms and nano guns. [7]

One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement . The accelerated charges self-maintaining potential shows the locality of the relativity, working on the quantum level also. [1]

The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric charges and the photon makes certain that they are both sides of the same thing. The

Secret of Quantum Entanglement that the particles are diffraction patterns of the

electromagnetic waves and this way their quantum states every time is the result of the quantum state of the intermediate electromagnetic waves. [2]

These relatively new developments in biophysics have discovered that all biological organisms are constituted of a liquid crystalline medium. Further, DNA is a liquid-crystal, lattice-type structure (which some refer to as a liquid crystal gel), whereby body cells are involved in a holographic instantaneous communication via the emitting of biophotons (a source based on light). This implies that all living biological organisms continuously emit radiations of light that form a field of coherence and communication. Moreover, biophysics has discovered that living organisms are permeated by quantum wave forms. [5]

Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions also.

References

[1] The Magnetic field of the Electric current and the Magnetic induction

http://academia.edu/3833335/The Magnetic field of the Electric current

- [2] 3 Dimensional String Theory http://academia.edu/3834454/3_Dimensional_String_Theory
- [3] Graviton Production By Two Photon and Electron-Photon Processes In Kaluza-Klein Theories With

Large Extra Dimensions http://arxiv.org/abs/hep-ph/9909392

[4] Quantum Entanglement

http://en.wikipedia.org/wiki/Quantum_entanglemen

- <u>t</u>
- [5] Quantum Consciousness

https://realitysandwich.com/155783/quantum_consciousness_0/

[6] Quantum Biology <u>http://www.nature.com/news/2011/110615/pdf/474272a.pdf</u> [7]

Quantum entanglement in photoactive prebiotic systems

https://globalmedicaldiscovery.com/key-drug-discovery-articles/quantumentanglementphotoactive-prebiotic-systems/

[8] Quantum biology: Algae evolved to switch quantum coherence on and off

http://phys.org/news/2014-06-quantum-biology-algae-evolved-coherence.html

[9] Experiment demonstrates quantum mechanical effects from biological systems https://phys.org/news/2017-12-quantum-mechanical-effects-biological.html

[10] Particles in charged solution form clusters that reproduce

https://phys.org/news/2017-12-particles-solution-clusters.html

[11] New interaction mechanism of proteins discovered

https://phys.org/news/2018-02-interaction-mechanism-proteins.html

[12] Artificial and biological cells work together as mini chemical factories

https://phys.org/news/2018-03-artificial-biological-cells-mini-chemical.html

[13] Custom sequences for polymers using visible light

https://phys.org/news/2018-03-custom-sequences-polymers-visible.html

[14] Scientists explore the structure of a key region of longevity protein telomerase

https://phys.org/news/2018-03-scientists-explore-key-region-longevity.html

[15] Simulations document self-assembly of proteins and DNA

https://phys.org/news/2018-03-simulations-document-self-assembly-proteins-dna.html

[16] Biomimetic chemistry—DNA mimic outwits viral enzyme

https://phys.org/news/2018-04-biomimetic-chemistrydna-mimic-outwits-viral.html

[17] Study reveals the inner workings of a molecular motor that packs and unpacks DNA

https://phys.org/news/2018-04-reveals-molecular-motor-dna.html

[18] Researchers build DNA replication in a model synthetic cell

https://phys.org/news/2018-04-dna-replication-synthetic-cell.html

[19] Chemical engineers discover how to control knots that form in DNA molecules

https://phys.org/news/2018-05-chemical-dna-molecules.html

[20] Mitochondria and the art of DNA maintenance

https://phys.org/news/2018-05-mitochondria-art-dna-maintenance.html

[21] Breakthrough in controlling DNA-based robots

https://phys.org/news/2018-06-breakthrough-dna-based-robots.html

[22] Test tube artificial neural network recognizes 'molecular handwriting'

https://techxplore.com/news/2018-07-tube-artificial-neural-network-molecular.html

[23] 3D-printed artificial intelligence running at the speed of light—from object classification to optical component design

https://phys.org/news/2018-07-3d-printed-artificial-intelligence-lightfrom-classification.html

[24] Dual 8-bit breakthroughs bring AI to the edge

https://phys.org/news/2018-12-dual-bit-breakthroughs-ai-edge.html