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ABSTRACT 

This paper presents a new view of logical variables which helps solving efficiently the 

#P complete #2SAT problem. Variables are considered to be more than mere place 

holders of information, namely: Entities exhibiting repetitive patterns of logical truth 

values. Using this insight, a canonical order between literals and clauses of an arbitrary 

2CNF Clause Set S is shown to be always achievable. It is also shown that resolving 

clauses respecting this order enables the construction of small Free Binary Decision 

Diagrams (FBDDs) for S with unique node counts in O(M4) or O(M6) in case a particular 

shown Lemma is relaxed, where M is number of clauses. Efficiently counting solutions 

generated in such FBDDs is then proven to be O(M9) or O(M13) by first running the 

proposed practical Pattern-Algorithm 2SAT-FGPRA and then the counting Algorithm 

Count2SATSolutions, so that the overall complexity of counting 2SAT solutions is in P. 

Relaxing the specific Lemma enables a uniform description of kSAT-Pattern-Algorithms 

in terms of (k-1)SAT- ones opening up yet another way for showing the main result. This 

second way demonstrates that avoiding certain types of copies of sub-trees in FBDDs 

constructed for arbitrary 1CNF and 2CNF Clause Sets, while uniformly expressing kSAT 

Pattern-Algorithms for any k>0, is a sufficient condition for an efficient solution of kSAT 

as well. Exponential lower bounds known for the construction of deterministic and non-

deterministic FBDDs of some Boolean functions are seen to be inapplicable to the 

methods described here. 
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1 There is no loss of generality in giving 

examples from the monotone 2CNF case, 

because properties of logical variables, relevant 

for this work, are already applicable in this 

simplest case.  
2 Formal definitions and illustrations of BDDs 

are seen below, but can also be found in, e.g., 

[Wegener 2000]. 

I INTRODUCTION 

The current work aims at applying a 

new view of logical variables to the 

solution of #2SAT. This view 

considers variables to be more than 

mere place holders of information, 

namely: Entities exhibiting 

repetitive patterns of logical truth 

values. The ideas are materialized in 

novel Algorithms imposing 

universally applicable structural 

criteria on 2CNF Clause Sets, 

according to which clauses are 

ordered by their pattern lengths and 

least literals are always chosen for 

instantiation without prior trials. 

This enables efficient construction 

of small FBDDs upon which simple 

and equally efficient counting 

Algorithms can then be applied. To 

informally illustrate the basic ideas 

we start first with a concrete 

example.  

Let be S={{x0,x4}{x1,x2}{x2,x3}}. 

w.l.o.g., a monotone 2CNF formula1 for 

which we would like to find a validating 

Truth Assignment by instantiating 

literals. Our instantiations result 

ultimately in a decision tree, which may 

be abstracted into a Binary Decision 

Diagram (BDD)2. Let PR, the used 

procedure, be described in pseudo-code3 

as follows. 
 

PR: 

Inputs: Arbitrary 2CNF Clause Set S 

Output: BDD 

Data Structure: Store of resolved Sets and their 

BDDs (ST)  

Steps:  

3 Functions used in all pseudo-codes given in this 

work, except those of the theory section, have 

commonly used meanings and don’t need any 

further specification as the procedures they are 

embedded in intend to give the reader only a 

sketch of the ideas under investigation, details 

and formalizations of which are found only in the 

Theory section. 
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1- Select any Literal x from a Clause C S 

2- Put x=TRUE in S forming S’ 

3- If (S’ evaluates to TRUE)  

leftResult=TRUE-Node 

Else  

if (any C’ S’ Evaluates to 

FALSE)  

leftResult=FALSE-Node 

4- Put x=FALSE in S forming S’’ 

5- If (S’’ evaluates to TRUE)  

rightResult=TRUE-Node 

Else  

if (any C’’ S’’ Evaluates to 

FALSE)  

rightResult=FALSE-Node 

6- Search for S’ in ST if not 

TRUE/FALSE  

If found  

Put leftResult =BDD of S’ 

Else  

- Put leftResult=PR(S’) 

- Store S’ as well as leftResult 

in ST 

7- Search for S’’ in ST if not 

TRUE/FALSE 

If found  

Put rightResult =BDD of S’’ 

Else  

- rightResult=PR(S’’) 

- Store S’’ as well as 

rightResult in ST 

8- Create node Result such that: S is 

Clause Set of Result and: 

 a- leftNode(Result)=leftResult 

 b- rightNode(Result)=rightResult 

9- Store S as well as Result in ST 

10- Return Result 
 

This procedure does not instruct us how 

to choose literals for instantiation. Such 

a choice is crucial for the size of resulting 

BDDs as can be seen in Figures (1-a) and 

(1-b) in which non-terminal node counts 

are 5 and 10 respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Let us call the content of a stack which 

registers the Literal choices made by PR 

in step 1 (while solving a problem p 

expressed in a 2CNF Clause Set): A 

Variable Ordering (to be précised in 

Section III, Notation: ∏p). (Figure 1-a) 

shows an ordering ∏p = 2<1<3<0<4 

which makes the number of nodes 

generated in the final BDD half the 

number needed if we chose ∏’p = 

0<1<2<3<4 of (Figure 1-b). We call ∏’p 

Canonical Ordering (Notation: ∏p
c), 

because it represents the order in which 

variables are listed from left to right in 

the Truth Table: 
 

x0 x1 x2 x3 x4 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 0 

0 0 0 1 1 

0 0 1 0 0 

0 0 1 0 1 

0 0 1 1 0 

…..     
 

Since the number of possible orderings 

may be very large even for a reasonable 

number of variables: Finding for a 

problem p an optimal ordering ∏p, i.e., 

one which enables the construction of 

minimal BDDs, is in general NP-

complete (c.f. [Bolling 1996]). The first 

trivial, but important observation we can 

make, however, is the following: 
 

Observation-1: It is possible to change 

any ordering ∏p to a canonical one ∏p
c 

Algorithm – A1 

Figure 1-b 

Figure 1-a 

Truth Table – T1 



Abdelwahab, N. 
 

 

 

6 

6 

by renaming variables in the Truth 

Table.  

In the above example: Renaming 

x2>x0,x3>x2,x0>x3 makes the smaller 

BDD achievable via a Canonical 

Ordering for S’={{x0,x1}{x0,x2}{x3,x4}} 

which is equivalent, via renaming, to S. 

An important consequence of 

Observation-1 is that we can focus our 

attention on the study of conditions 

under which a Canonical Ordering 

produces BDDs with small node counts, 

instead of searching in all Ordering 

possibilities for suitable choices. This 

idea leads to the following central 

Conjecture: 

 

Conjecture: If during the resolution 

process in which PR recursively 

processes any 2CNF Clause Set S: 
 

1- It always uses Canonical 

Orderings to instantiate literals in S 

2- It makes sure S that respects the 

conditions under which Canonical 

Orderings produce small BDDs, 

transforming S into an equivalent S’ if 

necessary, Then the BDD produced by 

PR is small. 
 

Therefore, this work has two main 

objectives: 
 

a- First understand and then formalize 

the conditions under which Canonical 

Orderings produce small BDDs 

b- Prove the Conjecture. 
 

To get an intuitive understanding of what 

those conditions may be, we focus our 

attention on constructing BDDs for S in 

the above example only using Canonical 

Orderings. More particularly: We would 

like to investigate node counts whenever 

one single clause is resolved against a 

                                                 
4 To do so: PR has to be changed to allow 

sequential processing of clauses. To avoid 

unnecessary complication and length: This is 

only done in the formal part starting with Section 

BDD constructed for the beginning of a 

Clause Set4. (Figure 1-c) shows two 

starting alternatives for S: 

S’’={{x1,x2}{x2,x3}} and 

S”’={{x0,x4}{x1,x2}}. Node counts are 

clearly different. Remembering that 

(Figure 1-b) depicts the BDD for the 

whole S, we have therefore two 

possibilities of node-count-growth from 

M=2 to M=3, where M is the number of 

clauses in S: From 4 (S’’) to 10 or from 

6 (S’’’) to 10. In both cases we notice a 

blow-up of the number of nodes resulting 

from “copying” almost all of previously 

constructed nodes. 

 
 

What about S’ ? (Figure 1-d) shows a 

node-count-growth from 3 to only 5 in 

the BDDs constructed for 

Siv={{x0,x1}{x0,x2}} and S’, 

respectively.  

III (the 2SAT-GSPRA Procedure of Definition 

2). The reader may wish in this section to 

consider PR capable of sequential processing of 

clauses and continue reading under this 

assumption.  

Figure 1-c: Starting alternatives 
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Obviously, the nature of growth in the 

case of S’, the formula in which we 

renamed variables to obtain a Canonical 

Ordering, is different: The full BDD is 

constructed from the previous one by just 

adding two additional nodes to the 

lowest BDD-level.  

 

How can we explain this?  

 

A second intuitive observation helps in 

understanding this phenomenon:  

 

Observation-2: Any variable xi 

represents in the canonical Truth Table 

a repetitive pattern of 0s and 1s whose 

length is 2N-i and which is given by the 

formula:  

2N-i-1(0)2N-i-1(1) 
 

where N is the total number of variables. 

 

To fully appreciate this observation: A 

graph may be drawn in which the x-axis 

represents rows of a Truth Table and the 

y-axis Boolean values given for a 

particular 2CNF formula f. We call this 

graph: Pattern-Domain of f (PDf). 

(Figure 1-e) shows for Truth Table T1 

PD{x0,x4}, PD{x2,x3}, PD{x2}, respectively. 

A Pattern Length Repetition of a variable 

v (PLRv) is the number of times a truth 

pattern of v is repeated within the 2N 

rows of the truth table. We call the 

Pattern Length Repetition of the variable 

with the least index in a clause C/Clause 

Set S: Pattern Length Repetition of C/S 

(PLRS/PLRC). 

 

 
 

 

 

Using PDs, let’s try to explain what 

happens when we go from the BDD of 

Clause Set S’’={{x1,x2}{x2,x3}} (Figure 

1-c, top) to the one of 

S={{x1,x2}{x2,x3}{x0,x4}} (Figure 1-b). 

(Figure 1-f) shows PDS’’ and PD{x0,x4}. 

0

1

1 3 5 7 9 1113151719212325272931

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x2,x3}

0

1

1 3 5 7 9 1113151719212325272931

{x2}

Figure 1-e: Example PDs of different clauses 

Figure 1-d: Smaller growth rate 



Abdelwahab, N. 
 

 

 

8 

8 

 
 

 

 
 

As seen: PDS’’ consists of one self- 

repeating pattern 

P1=“0000111100111111”, where 

PLRS’’=2 (i.e., PDS’’=2 x P1), P1 

representing the concatenation between 

sub-patterns for Clause Sets: 

{2}{2,3}=”00001111”& 

{2,3}=”00111111” in (Figure 1-c, top) . 

When we want to resolve5 this pattern 

with PD{x0,x4}=P2&P3, which has 

PLR{x0,x4}=1, where 

P2=”0101010101010101”, 

P3=“1111111111111111” as seen in 

(Figure 1-f, bottom), it is clear that we 

need P1 to be bit-ANDed against each 

one of P2 and P3. This explains why all 

nodes of the BDD for S’’ had to be 

copied once as can be seen in (Figure 1-

b). Clause {4} is appended there to all 

                                                 
5 Resolving PDf with PDg means: Producing PDh 

such that h=AND(f,g).  

copies of such nodes representing the 

result of bit-AND operation between P1 

and P2.  

 

Obviously: Because PLR{x0,x4} < PLR S’’ 

this Copy-Operation (which we also 

call: Split-Operation or just Split) was 

necessary.  

What about PDs of (Figure 1-d)? They 

are shown in the following (Figure 1-g):  

 

 
 

 

 

 
 

Here the new, to-be-resolved clause 

C={x3,x4} has PDC=8x”0111”, PLRC=4 

0

1

1 4 7 10 13 16 19 22 25 28 31

{{x1,x2}{x2,x3}}

0

1

1 4 7 10 13 16 19 22 25 28 31

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x3,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}{x3,x4}

Figure 1-f: PD of an already processed 

Clause Set S’’ (top) compared to the PD of a 

new clause (bottom) 

Figure 1-g: PD of an already processed 

Clause Set {{x0,x1}{x0,x2}} is bit-ANDed 

with PD of {x3,x4} to form PD of 

{{x0,x1}{x0,x2}{x3,x4}} 
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while PD{0,1}{0,2}=(8x”0”) & (24x”1”) is 

a pattern which repeats itself only once, 

i.e., PLR{0,1}{0,2}=1. This gives us the 

opportunity to resolve the new incoming 

pattern of C with sub-patterns of 

PD{0,1}{0,2} only once and then refer to the 

result of this resolution whenever 

needed. This is reflected in the BDD by 

including node {3,4} (Figure 1-d, 

bottom) as a common sink between two 

constructed branches, thus reducing 

drastically the total amount of unique 

nodes. 

Resuming this motivation example: We 

can use the Pattern Domain of a 2CNF 

formula f (PDf) to explain blow-ups in 

the number of nodes generated by 

sequential resolution procedures which 

use Canonical Orderings to produce 

BDDs. It turns out that resolving a 

clause C with a Clause Set S, where 

PLRC<PLRS necessitates Split-

Operations. Such Operations are 

important causes of BDD blow-ups. In 

the case of S’ above we have also seen 

that sequentially resolving Clause Sets S 

with a clause C does not induce Splits 

when PLRC>PLRS. We call this 

condition: Linear Order (l.o.). The core 

of this work is formally showing that 

Algorithms observing the l.o. condition 

always produce small FBDDs.  

Are there any sources of BDD blow-ups 

other than Split Operations caused by 

procedures not observing l.o. 

conditions? An important part of this 

work is also dedicated to showing that 

nodes which are sinks between branches 

(also called: Common Nodes (CNs)) 

may also cause Splits. Fortunately and 

precisely because of the l.o. condition: 

Those Splits are benign, i.e., they do not 

cost, for each CN, more than a constant 

number of additional nodes per inductive 

resolution step.  

                                                 
6 Algorithm 2SAT-FGPRA in the Theory section 

is the concrete, detailed counterpart. 

II USED METHODS 

This work is a second application of 

ideas presented in [Abdelwahab 2016-1] 

for solving hard problems, the first being 

published in [Abdelwahab 2016-2] 

related to 3SAT. At the core of those two 

publications is a 3SAT-Solver producing 

small FBDDs by enforcing l.o. 

conditions on all resolved Clause Sets. In 

the present work, this Solver is modified 

to be applicable to the 2CNF case and 

may informally be described as per the 

following high-level pseudo-code and 

Flowchart of (Figure 1-h)6: 

PR+: 

Inputs: Arbitrary 2CNF Clause Set S 

Output: FBDD 

Steps: 

1- Use the Renaming and Sorting 

Algorithm (CRA+, Definition 9) to 

convert S to an equivalent l.o. Clause 

Set S’, i.e., Set S’=CRA+(S). 

2- Select the least Literal x from the first 

clause C S’. 

3- Instantiate S’ using partial 

Assignments:{x=TRUE}, {x=FALSE} 

forming left- and right-Clause Sets S1, 

S2, respectively 

4- If either S1 or S2 are evaluated to 

TRUE or FALSE, create left/right 

TRUE/FALSE-nodes in the respective 

case. 

6- If neither S1 nor S2 are TRUE/FALSE 

and are found in a Resolved-ClauseSet-

Store: Call yourself recursively first 

with S1, then with S2, forming leftResult 

and rightResult, respectively. 

Otherwise: Call yourself only for the 

Clause Set is new and not 

TRUE/FALSE and return the BDD 

stored for the other. 

7- Form the finalResult from Clause Set 

S’, leftResult and rightResult. 

 

 

(Figure 1-i) shows the actual resolution 

of F={{x1,x3}{x2,x4}{x0,x2}{x1,x4}{x2,x4}} 

using 2SAT-FGPRA after it is converted 

in to a l.o. Set S=CRA+(F)). 

Algorithm – A2 
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Before going into a discussion of the 

mentioned publications, showing 

differences between methods described 

therein and modifications/adaptations 

used in this work, known state-of-the-art 

literature is briefly described. From the 

vast literature around #2SAT, 

BDDs/FBDDs and NP-completeness, 

we have chosen only those research 

findings which relate to our work or bear 

possible challenges to our results.  

 

FBDD for S 

PRA+: 

2CNF-Clause Set S 

S’=CRA+(S) 

FBDD already exists? Call yourself 

recursively 

forming left and 

right Result 

Return Result 

Least Literal 

Instantiation 

Figure 1-h: Flowchart of Algorithm – A2 (PR+) 

 

Creation of left and right 

Clause Sets which may be 

TRUE/FALSE 

yes 
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II-1 Exponential Lower Bounds on 

         FBDD Construction Revisited 

 

Most important BDD/FBDD 

properties are known since the 80s 

and 90s of last century and 

represent well established facts 

which contributed to the commonly 

accepted idea that: Some important 

Boolean Functions can only possess 

large BDDs and/or FBDDs and 

there are no ways to overcome this 

restriction. We discuss the 

seemingly apparent contradiction 

between our findings and this 

consensus, despite of the fact that, 

because of the existence of 

polynomial reductions, exponential 

lower bounds proven in literature 

are targeting mainly Boolean 

Functions expressible in k- or 3CNF 

while the work here concerns 2CNF 

formulas.  

Exponential lower bounds for 

BDDs are known for Ordered 

Binary Decision Diagrams 

(OBDDs), which are the best 

studied forms of BDDs and which 

only need one variable order to 

govern instantiations of Clause Sets. 

Alternatively: An FBDD allows the 

flexibility to choose a different 

order for each branch. There are 

many BDD variable ordering 

heuristics in literature, but the most 

common way to deal with ordering 

is to start with something 

"reasonable" and then swap 

variables around to improve BDD 

size. This dynamic variable 

reordering is called sifting [Rudell 

1993]. The overall idea is: Based on 

a primitive "swap" operation that 

interchanges xi and xi+1, pick a 

                                                 
7 N(f,Y) denoting the number of different sub-

functions obtained under all possible 

assignments to Y. 

variable xi and move it up and down 

the order using swaps until the 

process no longer improves the size. 

The reader may have noticed that 

the above procedure PR+ 

(Algorithm - A2) does not perform 

any Variable/Literal selection-trials 

and just proceeds, after converting 

the Clause Set to a l.o. one, by 

instantiating the least Literal of the 

first clause. 

The first exponential lower bounds 

on the size of FBDDs have been 

proven as early as 1984 by [Zak 

1984] and [Wegener 1988]. In his 

seminal paper Bryant also showed 

[Bryant 1986] that integer 

multiplication is a function which 

cannot have a small OBDD 

irrespective of the variable ordering 

used. Later, this result was also 

extended to the FBDD case. A long 

list of papers, which reported 

similar results for Boolean functions 

such as: Hamiltonian-Circuit, 

Perfect Matching, Clique-Only, 

Triangle-Parity, Blocking Sets in 

finite projective planes etc. 

followed or were published in the 

same period. In [Wegener 2000] a 

lower bound technique which is 

influenced by the algorithmic point 

of view following [Sieling 1995] is 

used to explain the methodology 

behind the majority of results. It 

turns out that variants of the 

following observation were 

constantly used: 
 

"Lemma: Let f be a Boolean function of 

n variables. Assume that m is an integer, 

1 < m < n, if for m any m-element subset 

Y of the variables N(f, Y) = 2m holds7, 

then the size of any read-once branching 

program computing f is at least 2m-1." 
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[Abdelwahab 2016-1, Theorem 3] 

shows that lower bounds related to 

the construction of FBDDs obtained 

using the above Lemma are 

bypassed by Sequential Pattern 

Resolution (SPR)-like Algorithms 

using 3CNF representations. The 

direct reason for that being the fact 

that: While the proof of Lemma 

requires the first m-1 levels of any 

FBDD constructed for such a 

function to constitute a complete 

binary tree, SPR-like Algorithms 

using 3CNF formulations always 

form trees which are bound to reach 

leaves after at most k<=3 

instantiation steps in any tree-level 

(Property 8 [Abdelwahab 2016-2], 

Section II). 

Most of the problems for which 

lower bounds were proven using 

this Lemma (for example: the 

“blocking-sets in projective planes” 

problem shown in [Gal 1997]) are 

described in kCNF formulations 

which reflect/preserve the exact 

problem structure, i.e., in the 

projective planes example: Every 

plane is exactly one clause and 

every point is exactly one variable. 

[Abdelwahab 2016-1] calls such 

descriptions preserving all 

properties of decision structures of a 

problem as well as 

interrelationships between those 

structures: Reserved Descriptions.  

Let f be a Boolean Function for 

which an exponential lower bound 

LB on the size of the FBDD is 

obtained, f’ an equisatisfiable 3CNF 

formulation of f. The reasons why 

                                                 
8 Formalizations of the ideas expressed in the 

points here are not attempted to avoid 

unnecessary length. 
9 Lemma could only be applied to the 

blocking Sets problem, because of the 

following combinatory property shown to 

hold for projective planes [Gal 1997]: 

LB isn’t applicable to f’ can be 

informally summarized in the 

following points8: 

1- If f has a reserved kCNF 

description, it is sometimes the only 

way to guarantee that, for any m-

element subset Y of the input 

variables of f, different sub-

functions obtained under all 

possible assignments to Y are truly 

distinct. For example in the 

projective planes case we quote the 

following part of the lower bound 

proof [Gal 1997], page 15:  

“Proof of the theorem. We 

show that for every q-element 

subset A of the variables, N(fΠ, A) = 

2q holds, i.e., each truth assignment 

to the variables in A yields a 

different sub-function on the 

remaining variables. Since each 

line defines a clause of the 

function fΠ, it follows from the 

Fact9 that for an arbitrary q-

element subset A of the variables 

there exist q clauses such that each 

variable from A appears in exactly 

one of them, and each variable 

appears in a different clause.”  

Obviously: Because f’ is formalized 

in 3CNF, a line for projective 

planes with q>3 cannot be 

represented by only one clause 

making the above Argument 

inapplicable. 

2- From the logical point of view, f 

and f’ are not equivalent. This 

means that Deterministic FBDDs 

constructed for them are not 

expected to be equivalent10. It also 

"Fact: Let J={p1,…,pt} be a set of t<=m 

distinct points of the projective plane P, 

then there exist distinct lines {l1,…lt} such 

that for i>=1, j <=t we have pi ∈lj iff i=j." 
10 Let Gf, Gf’ be FBDDs of f, f’ respectively, then: 

f = f’ iff Gf (a) = Gf’(a) for all a{0, l}n, where 
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means: There may be models for f 

which are not models for f’ and vice 

versa. As f and f’ are equisatisfiable, 

they may disagree for a particular 

choice of variables. As a matter of 

fact: A typical equisatisfiable 

translation from kCNF to 3CNF 

usually looks like: 

(A∨B∨x1)∧(¬x1∨C∨x2)∧(¬x2∨D∨E) 

For a k=5 clause C=(A∨B∨C∨D∨E) 

for example. Note that while C has 

a model in which B=TRUE, 

x2=TRUE and all other variables 

including x1 are FALSE, this is not 

a model for the translated 3CNF 

formula. In such constellations: The 

number of variables in clauses of f’ 

are strictly larger than the number 

of variables in clauses of f and 

consequently: Sub-function 

properties, necessary for the 

application of the above Lemma are 

disturbed by the introduction of new 

variables which have no place in the 

definition of f and must be treated 

as Don’t Cares, i.e., variables 

whose truth values don’t matter for 

the overall truth-value of the 

formula. Treating variables as Don’t 

Cares makes the FBDD Non-

Deterministic, causing all lower 

                                                 
Gf(a) denotes the leaf node value obtained from 

Gf for input string a [Wegener 2000]. 
11 It must be mentioned here that 

introducing new variables is known, since 

the 90s, to disturb exponential lower 

bounds obtained for multiplication-BDDs 

for example. In [Burch 1991] a method for 

using BDDs to verify multipliers while 

avoiding exponential complexity is shown. 

Normally the outputs of an n by n bit 

multiplier circuit are represented by BDDs 

with 2n variables, since the circuit has 2n 

inputs. In the method described there, the 

outputs of the circuit are represented by a 

BDD with 2n2 variables, instead. The size 

of this BDD is cubic in n. 
12 Recall: A Deterministic FBDD is a FBDD in 

which every node is marked with a variable 

bounds for Deterministic FBDDs to 

be inapplicable11. 

3- Let LB be an exponential lower 

bound on the size of any Non-

Deterministic FBDD12 constructed 

for f, as the one given in [Sauerhoff 

2003] for example, not necessarily 

using Lemma. Call an efficiently 

constructed Non-Deterministic 

FBDD: pNFBDD and an efficiently 

constructed Deterministic FBDD: 

pFBDD, then: For LB to be 

applicable on procedures using f’, 

something like: “A pNFBDD exists 

for f iff a pFBDD exists for f’” must 

be true13.  

Although starting with a pFBDD for 

f’, a pNFBDD for f is easily 

constructed by erasing all markings 

which represent variables not in f 

(call a Set containing them: Z), the 

other way around is not obvious. 

Starting with a pNFBDD for f, in 

which some nodes are unmarked 

does not give any clue to how 

markings must be put such that a 

procedure produces a pFBDD for f’. 

Correct markings have to be 

properly “guessed” indicating that 

this translation may be hard14. 

name, while a Non-Deterministic FBDD has 

some unmarked nodes [Wegener 2000] . 
13 Note that if f and f’ are equivalent, agreeing on 

all used variables, this is trivially true. 
14 To see this: Suppose Gf is a pNFBDD 

for f and suppose there exists an input a, 

such that Gf(a)=TRUE. This means that 

there is a path P in Gf leading to a TRUE 

node. P may contain unmarked nodes 

{un1,un2,…uni}. If we attempt, using Gf, to 

construct a pFBDD, say Gf’, for f’, we need 

to mark {un1,un2,…uni} with names of 

variables from Z such that a path P’ in Gf’ 

(corresponding to P) leads to a TRUE leaf. 

There are two ways to do so: Either all 

possibilities of assignments for variables in 

Z must be explicitly extended creating in 

the worst case an exponential sub-tree in 

Gf’ rather than only one single path, or 
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II-2 #2SAT Solution Methodologies 

There are two types of approaches 

related to counting problems: Ones 

which aim at improving known 

exponential bounds on finding exact 

solutions and others which seek better 

approximations. As we are presenting in 

this work a method for exact counting, 

we will focus in this section on 

describing the known state-of-art in this 

category and underline differences to our 

proposed method. We discuss also 

results from parametric complexity 

which use some notion of ‘truth patterns’ 

to reduce the effort needed to bound the 

number of solutions more tightly.  

In exact counting, methods based upon 

DPLL-style exhaustive search and those 

based on what is called knowledge 

compilation are distinguished. The 

method presented here can be classified 

as a knowledge compilation method, in 

which a given CNF formula is converted 

into a FBDD from which the count can 

be deduced easily, i.e., in time 

polynomial with regard to the size of the 

formula. One advantage of this 

methodology is that once resources have 

been spent on compiling the formula into 

this new form, complex queries can 

potentially be answered quickly.  

State-of-the-art methods of this type 

are best represented by the ones 

using deterministic, decomposable 

negation normal forms (d-DNNF) 

as described in [Darwiche 2002], 

which are generated by an 

exhaustive version of the DPLL 

procedure called c2d. Those forms 

were created to provide alternatives 

for BDDs, which could, in 

principle, be constructed and then 

“read off” for the solution count by 

traversing the BDD from the leaf 

labeled “1” to the root. BDDs are 

                                                 
different assignments of those variables are 

deterministically tested against f’. Both 

commonly not used for this 

purpose, because of the consensus 

regarding exponential lower bounds 

discussed in the previous section. 

Compilation of a given CNF 

formula F into d-DNNF is done via 

c2d by first constructing a so-called 

decomposition tree, which is a 

binary tree whose leaves are tagged 

with the clauses of F and each of 

whose non-leaf vertices has a set of 

variables, called the separator, 

associated with it. The separator is 

the set of variables that are shared 

by the left and right branches of the 

node, the motivation being that once 

these variables have been assigned 

truth values, the two resulting sub-

trees will have disjoint sets of 

variables. The resulting components 

can then be easily combined using 

AND nodes [Handbook of 

Satisfiability 2009]. In [Beame 

2013] a special case of d-DNNF 

formulas, called decision-dDNNF, 

is shown to be convertible to 

FBDDs with only a quasi-

polynomial increase in 

representation size in general, 

leveraging known exponential 

lower bounds for FBDDs, to 

exponential lower bounds for 

decision-DNNFs. The power of 

decision-DNNFs is separated from 

d-DNNFs and a generalization of 

decision-DNNFs known as AND-

FBDDs is described as well. This 

implies exponential lower bounds 

for natural problems associated with 

probabilistic databases (c.f. [Beame 

2013]). 

Algorithms for specifically counting 

solutions of 2SAT can be found in, e.g., 

[Fuerer 2007]. The idea is an extension 

of a research direction focusing on 2SAT 

problems, where every variable occurs 

options don’t qualify as ‘efficient 

construction’ procedures.  
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x-times at most, obtaining the best time 

of O(1.246069n) for counting models 

and max-weight models, n number of 

variables, achieved also in polynomial 

space. The decisive parameter 

determining the running time of the 

proposed Algorithm is the number of 

degree x=3 nodes. Progress in 

eliminating those nodes is possible when 

there are many of them, i.e., when the 

average degree is higher. In that case: A 

degree 3 vertex in the constructed graph 

with a neighbor of degree 3 is found 

more frequently and they can both be 

eliminated in the same time. The 

improved time bounds for degree 3 

propagate to formulas of higher degrees, 

because the average degree has a 

tendency to shrink during the iterative 

algorithm’s run (c.f. [Fuerer 2007]). 

In [DeItaLuna 2012] a method is 

described where given a formula F, 

#2SAT(F) can be bounded above by 

considering a binary pattern analysis 

over its set of clauses. For each clause 

Ci = {xj, xk}, Ai is a set of binary strings, 

called: ‘binary pattern’, such that the 

length of each string is n, the number of 

variables. The values at the j-th and k-th 

positions of each string, 1 ≤ j, k ≤ n 

represent the truth value of xj and xk that 

falsifies Ci. E.g., if xj ∈ Ci then the j-th 

element of Ai is set to 0. On the other 

hand, If xj ∈ Ci then the j-th element of 

Ai is set to 1. The same argument applies 

to xk. Using this notion of a ‘pattern’ it 

can be shown that for F = {C1, C2,...,Cm}, 

a 2CNF formula, n variables, m ≥ 2: The 

hard cases to answer whether 

#2SAT(F)=k, are given when m>n. This 

is one of the rare occasions in the 

literature of hard problems, where a 

formalized notion of ‘truth patterns’ is 

used to reveal intrinsic properties of 

logical formulas. 

                                                 
15 Note that a Cook-Levin reduction is actually 

parsimonious. Cook-Levin (Restated): For every 

Before going into the next section, where 

we distinguish this work from 

[Abdelwahab 2016-2], we summarize 

important findings of the previous two 

sections in the following points, 

underlining differences between known 

#SAT solutions and our presented one: 

1- Exact counting of solutions can be 

done using exhaustive knowledge 

compilation methods which avoid BDD 

construction, because of the consensus 

that BDDs possess exponential lower 

bounds for important Boolean Functions 

and may thus become large in the worst 

case. 

2- Using an equisatisfiable 3CNF 

representation f’ of a Boolean 

Function f makes lower bounds 

obtained for Deterministic-FBDDs 

of f inapplicable, because of the 

additional variables in f’. 

Polynomial Non-Deterministic 

FBDDs of f fail to capture 

polynomial Deterministic-FBDDs 

of f’, rendering lower bounds for 

Non-Deterministic FBDDs of f out 

of scope as well. This paves the way 

to the usage of SPR-like methods 

constructing FBDDs like the ones 

published in [Abdelwahab 2016-2] 

to efficiently solve #SAT, 

especially knowing that 

conveniently, many of the known 

reductions between NP-complete 

problems, including those related to 

3SAT, are parsimonious, i.e., they 

preserve the number of solutions 

during the translation15. 

3- Independent of the above points: 

The present work is concerned with 

the construction of FBDDs for 

2CNF formulas. To the best of our 

knowledge: There are no lower 

bounds, susceptible to challenge 

our results, for this special case. 

language L ∈ NP, there is a parsimonious 

reduction from L to SAT. 
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II-3 Similarities and Differences 

between previous and current work 

[Abdelwahab 2016-2] was set up to 

prove two related assertions: 
 

1- That SPR Algorithms described there 

(GSPRA+, FGPRA) always produce 

small FBDDs for 3CNF formulas. 

2- That they are efficient 2-

Approximation Algorithms for 

MinFBDD, an NP-complete problem. 
 

Although the first point was enough to 

demonstrate the main theoretical result, 

it was necessary to provide evidence, 

that the used Algorithms have practical 

value as well. Similar to procedure PR+ 

(Algorithm – A2): GSPRA+ and FGPRA 

apply, using CRA+, the l.o. condition on 

all Clause Sets generated during 

resolution. In the same time: Creation of 

new Clause Sets via instantiation is 

solely done using least literals. The final 

output being a special form of DAGs we 

call also here MSRTs.o, whose main 

features are: 
 

a- Nodes contain Clause Sets 

b- Variables in a Clause Set may be 

renamed one or more times in the same 

branch. Sequences of such renaming 

operations are called: Variable Space. 

c- MSRTs.os can be easily converted to 

FBDDs by abstracting the least 

Variable/Literal index of every Clause 

Set. 
 

The essential difference between this 

work and [Abdelwahab 2016-2] is the 

way in which formal concepts are 

defined, namely: Keeping definitions as 

close as possible to Set- and Graph- 

Theory. This facilitates proofs of 

relevant lemmas and makes them more 

accessible to readers than their 

counterparts in [Abdelwahab 2016-2]. 

New proofs for previously not shown 

properties of MSRTs.os (like the fact that 

no N-Splits can exist in such graphs for 

example) are also important additions. 

Table T2 gives an overview of essential 

formal similarities and differences. 
 

Concept, 

Algorithm, 

Proof 

Previous 

formalization 

Current 

formalization 

Linearly 

Ordered (l.o.), 

Linearly 

Ordered, but 

unsorted 

(l.o.u.) Clause 

Sets 

Structural property 

of Clause Sets 

Same as before 

+ Var/Literal 

Index 

comparison 

Relation “<” is 

characterized by 

the Literal 

precedence 

Relation “|” 

(Definition 8.6) 

N-Splits, CN-

Splits, BigSps 

Copies of nodes  Special forms of 

Clause Sets 

occurring in a 

MSRTs.os 

(Definition 6) 

MSRTs.o Special form of 

DAG 

+SR-DAG 

formally defined 

+ Special form 

of SR-DAG 

(Definition 10) 

Variable 

Space (VS), 

CN/MSCN, 

tCN 

-Variable Space: 

Sequence of CRA+ 

Operations, 

-CN: Sink node 

-MSCN: Sink node 

in a VS 

-tCN/tMSCN: 

CNs/MSCNs 

produced in 

Symmetric Blocks  

Same as before 

CRA,CRA+ Properties shown: 

- Termination 

- Correctness 

- Complexity 

Same as before 

+ (x | y) iff (x<y)  

(Lemma 1-b) 

+ S and CRA+(S) 

are 

equisatisfiable 

+ They are also 

equivalent 

(Lemma 2-b,c) 

Lemma 9-a: 

No BigSps 

Shown using “<” 

Relation and l.o. 

property of Clause 

Sets of parent 

nodes of a 

CN/MSCN 

Shown using “|” 

Relation and l.o. 

property of the 

Base Clause Set 

(BS) 

Lemma 9-b: 

No N-Splits 

Not shown Shown using 

new 

characterization 

of Splits 

Lemma 9-c: 

No size>1 

Splits 

Shown using the 

“<” Relation, 

CNAL properties 

Shown using the 

“|” Relation, 

CNAL 

properties and 

BS l.o. property 

Lemma 14: 

Counting 

Solutions 

Not in the scope Shown using 

DAG properties 
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Theorem 1: 

Sufficient 

conditions 

which 

guarantee the 

efficiency of 

SPR-like 

kSAT-

Algorithms  

Not in the scope Shown using 

induction on k 

and )Lemma 11( 

SPR 

Resolution 

procedures  

GSPRA+,FGPR: 

-produce optimal 

Top-Parts 

-their output is 

equivalent  

- FGPRA is 

efficient, 2-

approximative to 

MinFBDD  

2SAT-GSPRA+, 

2SAT-FGPRA: 

1- Top parts are 

not shown to be 

optimal 

2- 2SAT-

FGPRA 

simulates 2SAT-

GSPRA+ 

correctly 

(Lemma 11-a) 

3- 2SAT-

FGPRA is 

efficient 

(Lemma 11-b) 

 

 

II-4 How to read this paper 

The Conjecture formulated in the 

introduction of this work includes claims 

which bear important consequences 

requiring an extra effort to organize 

formal concepts and/or proofs thereof in 

such a way, that the overview is not lost, 

while readers attempt to check 

correctness. For this purpose the 

following tools are made available for 

use throughout this whole document: 
 

1-All formal Concepts, Algorithms, and 

Proofs are explained with examples 

while expressing them as close as 

possible to Set Theory for formal 

concepts and concrete near-to-C pseudo-

code for Algorithms, highlighting exact 

formal definitions always in bold. Cross-

References to definitions are availed to 

simplify reading.  

2- Lemmas, Figures and References are 

cross-referenced (in pdf-file format). 

                                                 
16It is commonly known that BDDs admit 

efficient Algorithms for counting solutions after 

being built. Therefore: Verifying that node 

3- All Acronyms used are highlighted in 

blue bold when they are defined for the 

first time. 

4- All concepts are listed in a 

comprehensive table in Appendix A, 

where Acronyms, formalizations, their 

place in definitions (including page 

numbers and links), lemmas using them 

as well as their actual purpose are 

included.  

5- Selected lemmas and their 

dependencies on formal concepts are 

listed in Appendix B. 

6- A table of content (first page) is 

provided to facilitate overview as well as 

referencing of content.  

7- (Figure 1-j) below shows 

interdependencies between lemmas and 

links them to Theorem 1. Although all 

lemmas are important, parts marked 

green represent the most crucial pieces 

of information, sufficient alone to 

produce the main result one time, 

followed in importance by blue marked 

parts. Coloring parts intends to help 

readers first find critical flaws in our 

argumentation more easily and second 

distinguish between the two presented 

results in the following way: 

i- In a first quick scan, a reader may wish 

to consider only the green path, where 

one can verify the O(M6) bound of 

(Lemma 10) on the upper size of the 

FBDD/MSRTs.o, shown to hold under 

the assumption that (Lemma 9-c) is 

relaxed, i.e., only N- and BigSps cannot 

be produced, as follows16: 

 

a- Concepts: l.o./l.o.u. 2CNF Clause Sets 

(Definition 1), (Variable Space) , 

(CNs/MSCNs) , Splits (N-, as well as 

counts cannot exceed O(M6) for any 2CNF 

formula is the essential effort a reader may want 

to do in order to accept the second proof of the 

main result of this work, i.e., Theorem 1-b.  

Overview of differences and similarities to our 

previous work – T2 
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CN-Splits), (Alignment MSRTs.os) are 

all well-defined.  

b- Algorithms (CRA), (CRA+), (2SAT-

GSPRA+) and (2SAT-FGPRA) are 

sufficiently detailed and their way of 

work clearly described. 

c- It is always possible to convert an 

arbitrary 2CNF Clause Set to a l.o. one 

using CRA+ (Lemma 2-a). If necessary, 

this is done in each recursive step by 

2SAT-GSPRA+. CRA+ delivers Clause 

Sets which are not only equisatisfiable 

(Lemma 2-b), but also equivalent 

(Lemma 2-c) to the original Clause Set. 

CRA+ is also efficient (Lemma 3). 

d- Mappings produced by CRA are 

monotone and the Literal precedence 

Relation ‘|’ is an exact characterization 

of the trivial Index comparison Relation 

‘>’ (Lemma 1-a, b). This information is 

used in the crucial proof of (Lemma 9-

a). 

e- Splits are the actual causes of 

exponential behavior. While N-Splits are 

taken care of in the definition of the 

Canonical Ordering criteria (especially 

the l.o. condition as has been seen) and 

thus avoided altogether by 2SAT-

GSPRA+ (Lemma 9-b), CN-Splits may 

still occur.  

f- CN-Splits cannot occur for nodes of 

rank>1 (BigSps) (Lemma 9-a). 

g- 2SAT-GSPRA+ repeats the 

construction of sub-trees for Clause Sets 

of sub-problems when they are found to 

be breaching the l.o. condition. This 

makes sure that any CN/MSCN at size-

level j is only a CN/MSCN at size-level 

j-1 augmented by a newly resolved 

clause during re-construction (Lemma 5-

b), i.e., the number of CNs/MSCNs is 

preserved (in the worst case) when they 

move up the hierarchy of size-levels. 

h- No more than O(M2) nodes can be 

created in the lowest j=1 size-level 

during the whole process of resolution 

(Lemma 7) 

i- Rank 1 nodes (i.e., those which have 

only unit clauses) produce only O(M) 

new nodes when they split (trivial) 

j- All this leads to the O(M6) upper 

bound of (Lemma 10, point 4). 

k- 2SAT-GSPRA+’s repetitive 

construction of sub-trees causes 

redundant operations which are avoided 

altogether by 2SAT-FGPRA. 2SAT-

FGPRA is a practical Algorithm in 

which all clauses of a Clause Set are 

instantiated with values of the chosen 

least Literal in the same time. It 

simulates 2SAT-GSPRA+ correctly 

(Lemma 11-a). 

l- The worst implementation of 2SAT-

FGPRA requires comparing all created 

nodes with each other and always using 

CRA+ to rename their Clause Sets, 

making the overall asymptotic 

complexity O(M13), because Lemma 9-c 

is relaxed (Lemma 11-b). 

ii- In a second scan readers may want to 

study (Lemma 9-c) (blue path), which 

shows that CN-Splits cannot occur in 

size-levels j>1. This reduces the upper 

bound of the nodes count of the 

FBDD/MSRTs.o to O(M4): 

a- As before: The only new nodes 

added by 2SAT-GSPRA+ to the lowest, 

size-level j=1 in any step and at any time 

can’t be more than O(M2) nodes. As 

2SAT-GSPRA+ is sequential: Those 

nodes form, at each step, the basis for 

size-j-level nodes, j>1, and may be 

propagated up in the hierarchy of levels, 

making the maximum amount of nodes 

in each such level j during the whole 

resolution process not exceeding the 

upper bound of nodes at level 1 (Lemma 

5-c).  

b- Either trivial- or rank 1, size 1- 

CNs can split (Lemma 8, Lemma 9-b) 
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making the maximum amount of nodes 

added in this way to the lowest level also 

O(M2), since one such Split causes, in 

the worst case, a constant amount of 

nodes to be created on the size-level it 

occurs in.  

c- The final FBDD has in the worst 

case a total unique node count of only 

O(M4) (Lemma 10). 

d-To count Assignment possibilities: 

An Algorithm Count2SATSolutions 

traversing in the worst case all nodes and 

edges of the FBDD/MSRTs.o is used. As 

both 2SAT-GSPRA+ and 2SAT-FGPRA 

are complete, Truth-Table equivalent 

Algorithms (Lemma 12), 

Count2SATSolutions is shown to be 

counting exact solutions correctly 

(Lemma 13). To do so: It requires O(M9) 

or O(M13), in case Lemma 9-c is relaxed 

(Lemma 14). 

e- One main result, (Theorem 1-a) 

shows conditions under which SPR-

Algorithms solving kSAT-problems 

become efficient (green path). It turns 

out that avoiding both N- as well as big 

CN-Splits are sufficient conditions for 

polynomial time performance. In the 

same time: The uniform way of 

expressing node counts and time 

complexity of base case k=2 in terms of 

base case k=1 makes it possible to 

demonstrate P=NP by formulating and 

using the strongest induction hypothesis 

possible. This is what is gained by 

relaxing Lemma 9-c. 

f- Because Count2SATSolutions is in 

P (both green and blue paths), P=NP 

follows also this way (Theorem 1-b). 
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(Lemma 5-b): 

For all M>1: A 

node [q] of size 

M is 

CN/MSCN iff 

there exists 

CN/MSCN [q’] 

of size M-1 

augmented in 

size by a clause 

C such that: 

[q]=[q’] 

Properties of CRA+ 

(Lemma 2): CRA+ translates 

2CNF Clause Sets to equivalent 

Sets 

(Lemma 3): CRA+ is in 

O(M2(log (M+N))) 

(Lemma 4): CRA+ terminates 

always producing stable 2CNF 

Clause Sets 

(Lemma 6): In a 

MSRTs.o: Nodes of sizes 

1,2 are all aligned 

(Theorem 1): 

a- kSAT-GSPRA+/kSAT-

FGPRA uniformly produce 

small MSRTs.os 

b- #2SAT is in P 
(Lemma 14): Counting 

Solutions in a MSRTs.o 

is in P 

(Lemma 11-b): 2SAT-

FGPRA takes a polynomial 

number of primitive 

operations to produce the 

MSRTs.o. of an arbitrary 

2CNF Clause Set S 

(Lemma 10): O(M4) is an 

upper bound of the number of 
unique nodes created by 

2SAT-GSPRA+ for a 2CNF 

Clause Set S. Moreover: This 
bound remains polynomial, 

i.e., O(M6), if Splits are 

admitted which are not 
BigSps. 

 

(Lemma 11-a): 2SAT-

FGPRA simulates 

2SAT-GSPRA+ 

correctly 

(Lemma 9): While 

2SAT-GSPRA+ resolves 

a 2CNF Clause Set S 

a) No big Splits can 

occur  

b) - N-Splits can’t exist. 

 - Rank-1, Size-1 CNs 

can split 

c) Rank-1, Size-1 CNs 

augmented to sizes>1 in 

step k cannot split in 

steps >k. 

 

(Lemma 7): The Upper 

bound of nodes created 

at level 1, without 

counting Splits is 

RCC2-SAT *M2 

(Lemma 1):  

a-CRA produces monotone 

Mappings 

b- (x|y) iff x<y 

c- …. 

(Lemma 5-c): If Splits 

are not counted in any 

size-level j>1 then: 

upj<=up1 

(Lemma 8): tCNs and 

tMSCNs can be avoided 

when DB sorting 

condition is used 

(Lemma 12): 2SAT-

GSPRA+ and 2SAT-

FGPRA are TT-

equivalent 

(Lemma 13):  

Count2SATSolutions is 

correct 

Figure 1-j: Interdependencies of Lemmas 
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III THEORY 

III-1 Definitions 

Definition 0: (Nomenclature and Basic): 

Variable, Literal, Clause, 2CNF 

Formula/Clause Set, Truth 

Assignment, Partial Assignment, 

Restricted Assignment, 2SAT Decision 

Problem, Graphs, Vertices/Nodes, 

Edges, adjacent Vertex, Source, Target, 

reachable, Child, Parent, Base Node, 

Path, Branch, acyclic, Length of 

Path/Branch, Directed Acyclic Graph, 

Source Path of node n, Level of node n 

in a DAG, Level of edge e in a DAG, 

Topological Ordering of a DAG, 

Sequential Resolution DAG, 2CNF 

Clause Set of a node, Base Clause Set of 

a node, TRUE-DAG, FALSE-DAG, 

rankC, rankNode, Size of a node n, Size 

of a 2CNF Clause Set S, Top-Part of a 

SR-DAG, LeftDAG, RightDAG, literals 

in a 2CNF Clause Set S, literals of a 

2CNF Clause Set S to the left of Literal 

x, SortOrder, Head-Literal, Tail-

Literal, Connectivity of a Literal x in 

2CNF Clause Set S, Permutations of a 

Clause, Resolution Complexity 

Coefficient, Instantiations of literals, 

Satisfiability, Derivations of a Clause, 

Linear Derivations of a Clause, 

InstSimple, InstSimpleC, Convert a 

Clause to SR-DAG, First occurrence of 

Literal x in a 2CNF Clause Set S, Select 

a Literal x of a 2CNF Clause Set S 

 

Definition 0.1: Consider a finite Set of 

Boolean variables Var={x1, x2, . . . xn}  

a- A Literal is either a Boolean 

variable xi or its negation ¬xi. Indices 

deduced from enumerations are also 

used to stand for Literal names. The 

relation ‘a<b’ expresses the fact, that 

index a of some Literal is smaller than 

index b of another in a given 

enumeration. 

b- A clause is a disjunction of 

literals. For example, (x1 ∨ x2) is a clause.  

c- A Formula/Clause Set in 

conjunctive normal form (CNF) is a 

propositional formula in which clauses 

are connected using the Boolean AND 

operation. For example: (x1 ∨ x2) ∧  

(x2 ∨ ¬x3) ∧ x5 is a CNF formula.  

d- A formula ϕ is a 2CNF when 

every clause has exactly 2 literals. For 

example (x1∨x2)∧(x2∨¬x3) is a 2CNF 

formula, but (x1∨x2∨¬x4)∧(x2∨¬x3)∧(x5) 

is not. 

e- A Truth Assignment is a total 

Function f:Var =>{0,1}. When f is 

partial, the assignment is called Partial 

Assignment. When f is restricted to only 

one variable it is called Restricted 

Assignment. 
 

Definition 0.2: 2SAT Decision Problem: 

Given a 2CNF formula ϕ, is there a Truth 

Assignment such that ϕ evaluates to 

true? 
 

Definition 0.3: A graph G = (V,E) 

consists of a finite set of Vertices/Nodes, 

V, and a finite set of Edges E. 
 

• Each edge is a pair (v,w) where v, w  V 

• A Directed Graph, or Digraph, is a 

graph in which the edges are ordered 

pairs: (v, w) ≠ (w, v) 

• In the Digraph: b is called adjacent to 

a when there exists an edge (a, b)E, 

also: 

• Node a is not adjacent to node b. 

• Node a is called predecessor of 

node b, node b is a successor of 

node a 

• The Source of the edge is node a, 

the Target is node b.  

• Node b is called reachable from 

node a if b is adjacent to a or there 
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is a non-empty list <e1,e2,…,en>17 

of edges connecting, indirectly, a 

to b. Node b is also called in that 

case Child of node a, a Parent of b. 

Boolean Predicates 

Child(n1:Node, n2:Node), 

Parent(n1:Node,n2:Node) are 

formally used to express this fact 

• Base Node (BN) of G is the source 

of its first edge. 

• A Path/Branch is a list of vertices 

<w1, w2,…wn> such that for all the 

edges:  

(wi, wi+1)E, 1 <= i < n, and each 

vertex is unique except that the 

path may start and end on the same 

vertex if G is cyclic. 

• An acyclic Path is a Path where 

each vertex is unique  

• The length of the Path/Branch is 

the number of edges along the path 

• A directed graph which has no 

cyclic paths is called a DAG 

(Directed Acyclic Graph). 

• Source Path of a node n in a DAG 

(SPn) is a list of edges connecting 

n to the Base Node: SPn=<e1, 

e2,…em>, ei:Edge. A node may 

have several non-empty Source 

Paths and is always reachable from 

the Source. 

• Level of node n (Ln) in a DAG is 

an integer representing the number 

of edges in the longest Source Path 

connecting n to the Base Node. It 

is given by: 
Ln=Max(length(SPn

1)..length(SPn
k)) 

where any SPn
i is a Source Path of 

n.  

• Level of an edge e (Le) in a DAG: 

Le= LSr+1 if Sr is the Source of e.  

                                                 
17 <obj1,obj2,…objn>, where obji:Type is the 

notation used to denote lists of Objects of Type. 

Type shall be omitted when obvious. 

• A Topological Ordering (TO) of a 

DAG is an ordering of its nodes 

such that:  

∀e:Edge, e=(vi,vj), vi,vjV: i< j. 

• A DAG formed for a 2CNF Clause 

Set BS and whose nodes contain 

2CNF Clause Sets is called a 

Sequential Resolution18 DAG 

(SR-DAG or SR-DAGBS), 

i.e.,∀n:Noded:DAG: ∃S, S is 

2CNF Clause Set, S is the Clause Set 

of n (2CNFn). BS is 2CNFBN. 

• A TRUE-DAG is a SR-DAG with 

only one node labeled TRUE and 

whose Clause Set is empty. A 

FALSE-DAG is a SR-DAG whose 

only node is labeled FALSE and 

whose Clause Set is empty as well. 

• rankC: (C:Clause) => N is a 

Function returning the number of 

literals contained in a clause. 

rank2CNF, rankNode are similar 

Functions returning the maximum 

number of literals in any clause in 

the 2CNF Clause Set of a node.  

∀n:Noded:SR-DAG: 

RankS=Rankn=Max{rankC(C1).. 

rankC(Cm)}, C1,..,CmS, S is 2CNFn 

• The size of a node n in a SR-DAG 

(Sizen) is an integer representing 

the number of clauses in the Clause 

Set of that node. The same integer 

is used to denote the size of a 

Clause Set S (SizeS).  

In a SR-DAG of a 2CNF Clause 

Set S of size M the set of all nodes 

containing Clause Sets of sizes M 

or M-1 is called the Top-Part of the 

SR-DAG. Topd:SR-DAG={n:Noded | 

∃S, S is 2CNFn, SizeS=M or 

SizeS=M-1, SizeBNd=M} 

18 The word “Resolution” and/or any of its 

declinations are not referring in any place of this 

work to the classical Resolution procedure used 

in Logics. 



Abdelwahab, N. 
 

 

 

24 

24 

• LeftDAG: (n:Node)=>SR-DAG  

Is a Function which, given any 

node n of a SR-DAG, returns the 

SR-DAG of its left Child if 

existent. RightDAG is defined 

similarly. 

• SubTree: (n:Node)=>SR-DAG  

Is a Function which, given a node 

n of a SR-DAG, returns the portion 

of the SR-DAG starting with n. 

 

Definition 0.4: For a 2CNF Clause Set S 

of the form: 

{{a1,b11}{a1,b12}..{a1,b1i} 

  {a2,b21}{a2,b22}..{a2,b2j}… 

  {am,bm1}{am,bm2}....{am,bmk}}19 
 

a) LIT: (S) => Var  

Is a Function mapping S to the Set of 

all unique Literal Names/Indices in S 
b) LEFT: (x:Literal  C, C:Clause S) => 

Var  

Is a Function mapping Literal x, and 

clause C S to the Set of all variable 

Names/Indices occurring in the 

string representation of S to the left 

of Literal x in clause C. Right(x,C) is 

defined similarly. 

c) SortOrder:(C:Clause S,S)=>int 

Is a Function mapping clause C S 

and S to an integer number 

representing the position of C within 

S. 

d) First Literal in any clause is called 

Head-, last ones is called Tail-literal 

(HL, TL).  
HL={L:Literal | C S,C={L, t}, 

t:Literal} 

TL={L:Literal | C S,C={t, L}, 

t:Literal} 

Connectivity:(x:Literal S,S)=>int 

Is a Function mapping a Literal x in a 

Clause Set S (also: Connectx,S) to the 

                                                 
19 AND and OR connectives are omitted as per 

known convention. 
20 Recall that nPr=n!/(n-r)!  

number of clauses of S in which the 

Literal x appears 

e) For any clause C S the cardinality of 

the Set of all clauses which contain 

permutations of literals in C (permC) 

is called Resolution Complexity 

Coefficient (RCC). Both are formally 

defined as follows: 
- permC={C S | C={a, b} or C={b, a} 

or C={a} or C={b}, a, b:LiteralC} 

-RCCk-SAT=kPk+
kPk-1+

kPk-2….+kP1 

i.e., for 2SAT 

RCC2-SAT= 2P2 + 2P1 = 420 

f) Instantiations of literals, 
Inst:(A:Assignment, S) => 2CNF Clause 

Set are Functions using Total, Partial 

or Restricted Truth Assignments to 

create new 2CNF Clause Sets. They 

substitute the literals in Clause Sets 

by Boolean values given in the 

Assignments. The clause resulting 

from applying an instantiation on any 

C S is called a Derivation of C. It is 

called Linear Derivation if 

consecutive instantiations respect the 

linear order of literals in C21. If 

consecutive instantiations result in a 

clause containing only truth values 

and no literals, the derivation is 

called: Empty Derivation. 

Derivations containing one TRUE 

value are called Positive Derivations, 

those containing only FALSE values 

are called Negative Derivations. 

Empty, Positive and Negative 

Derivations can be directly evaluated 

to TRUE or FALSE. In this work we 

assume that this evaluation is 

embedded in the Inst function. If this 

evaluation results in the TRUE, S is 

said to be satisfiable by A. When 

Partial Assignments used by Inst are 

related to only one variable, Inst is 

21 Examples of derivations of clause C={x, y } 

for any ordered indices x, y are {x} and {y} 

respectively of which only the latter is a linear 

derivation if the order is given by: x<y. 
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called InstSimple. InstSimple can also 

be restricted to only one clause.  
 

Formally: 
1) InstSimpleC:(A:Assignment,C:Cla

use) => Clause  

2) Derivation of a Clause C 

is{C’:Clause | C’ permC}.  

3) Linear Derivation of C is  

{C’:Clause| C’={a,b} or C’={b} , a, 

b:LiteralC, a<b}  

4) Empty Derivation of C is  

{C’:Clause |C’={TRUE} or 

{FALSE} or {TRUE,FALSE} or 

{FALSE,TRUE} or 

{FALSE,FALSE} or 

{TRUE,TRUE}}  

5) Positive Derivation of C is  

{C’:Clause| TRUE C’} 

6) Negative Derivation of C is  

{C’:Clause| C’={FALSE,FALSE} 

or C’={FALSE}} 

7) Every Derivation of C is 

{C’:Clause| C’ permC or C’ 

Empty Derivation of C} 

g) Convert(C:ClauseS)=>SR-DAG. Is 

a Function mapping a 2CNF clause 

C={a1,b11} to a SR-DAG by 

substituting in two subsequent simple 

instantiation steps first a1 with TRUE 

and FALSE creating Clause Sets and 

placing them in the respective left- 

and right-nodes of the SR-DAG and 

then doing the same for b11 as in 

below (Figure 2): 

 

 
 

                                                 
22 Alternatively: Clauses in S can be enumerated 

from left to right. In that case subscripts i,j are 

omitted and only one index is used. This is the 

h) FIRST(L:Literal, S)=>int 

Is a Function mapping a Literal to its 

integer position (starting from the 

left) in the string representation of S. 

FIRSTC is the version of this function 

which returns the index of the clause 

in which L appears for the first time 

in the current enumeration of clauses. 
i) SELECT(S)=>int 

Is a Function selecting a Literal from 

LIT(S). 
 

Definition 1: Almost Arbitrary-, Linearly 

Ordered-, Linearly Ordered, but Unsorted 

Clause Sets, Block, Block-Sequence, Block 

Literal, Symmetric Block, Dissymmetric 

Block, DB Sorting Condition 
 

For a 2CNF formula S of the above form, 

S is called linearly ordered (l.o.) if the 

following Conditions hold: 
 

a) ∀ai,bij∈ Ci,j: ai<bij, i.e., Literal 

Names/Indices are sorted in 

ascending order within clauses22. 

b) S is sorted by ai & bij in 

ascending order taking into 

consideration negation signs23. 

Formally: ∀i,j,x,y: if i<j then 

L2∈Cj,x >= L1∈Ci,y, where L2 is 

HL of Cj,x and L1 HL of Ci,y 

SortOrder(Cj,x,S)> 

SortOrder(Ci,y,S) 

c) ∀xLIT(S),∀Ci,jS: 

if x ∉ LEFT(x,Ci,j) then 

∀y LEFT(x,Ci,j): x>y 

(all new Names/Indices of literals 

occurring for the first time in any 

clause of S are strictly greater 

than all the Literal 

Names/Indices occurring before 

them in S). 

d) S is a Set, i.e., clauses 

appear only once in S.  

way clauses are referred to in the rest of this 

paper.  
23 i.e., {1,2} comes before {1,3} or {¬1,3} and 

{¬1,2} before {1,2} or vice versa. 

Figure 2 
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If S fulfills Conditions a), c), d), but not 

b) it is called linearly ordered, but 

unsorted (abbreviated l.o.u.). If S fulfills 

Conditions a), d) only it is called almost 

arbitrary (a.a.). Clause Sets of the form: 

S={{ax,bx1}{ax,bx2} .. {ax,bxi,}} are 

called Blocks and are referred to by the 

name of the leading Literal (in this case 

S is called ax-Block). Clause Sets of the 

form: S={Ba…Bn} are called Block-

Sequences (Bseq). ax is called Block-

Literal. Clauses having ax as leading 

Literal are said to belong to the ax-Block. 

A Block Bx is called Symmetric Block 

(SB) if ∃A: Assignment such that:  
instSimple(A:{X=TRUE},Bx}= 

instSimple(A:{X =FALSE}, Bx} 

i.e., -ve and/or +ve instantiations of 

Block Literal x result in the same Clause 

Set. It is called Dissymmetric Block 

(DB) if ∃A:Assignment such that: 

instSimple(A:{X=TRUE},Bx}=S1, 

instSimple(A:{X =FALSE}, Bx}=S2 and 

either S1 ⊆ S2 or S2⊆ S1.  

i.e., -ve and/or +ve instantiations of 

Block Literal x result in Sets S1, S2 and 

one of them is included in the other. If a 

DB Bx is sorted such that all clauses 

containing –ve instances of Literal x are 

placed before all those containing +ve 

instances or vice versa, this condition is 

called: DB Sorting Condition.  

 

Definition 2: 2SAT-GSPRA Procedure, 

Align Procedure, Name Literal, Least Literal 

Rule, Edge Literal, Branch Literal, Base 

Clause Set, Variable Ordering, Canonical 

Ordering 
 

The 2SAT-Generic Sequential Patterns 

Resolution Algorithm (2SAT-GSPRA) 

applied to an arbitrary Set S of 2CNF 

clauses consists of the following 

procedure: 
 

2SAT-GSPRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 

Output: SR-DAG 

Steps: -  

1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  

2- choose a clause C0  S 

3- convert C0 to a SR-DAG using Convert(C0)  

4- set IRT (Intermediate Resolution Tree) = 

SR-DAG produced in 3 

5- ∀ Ci  S (one by one) 

  IRT=Align(IRT , Ci) 

6- return IRT 
 

Align (SR-DAG, C): 

Inputs: An SR-DAG with base-node n and S 

2CNFn, an a.a. 2CNF clause C 

Outputs: SR-DAG 

Steps: - 

If (SR-DAG=FALSE-DAG)  

Return FALSE-DAG 

else 

  If (SR-DAG=TRUE-DAG) 

  Return Convert (C) 

else 

{ <bracket-1> 

Update S in node n with C: S=S ∪ C 

X=SELECT(S) such that X is the least 

Literal of S 

leftC=instSimpleC({X=TRUE},C) 

rightC= instSimpleC({X=FALSE},C) 

if (leftC=empty)  

(i..e. C evaluated to TRUE via 

InstSimple)  

leftResult=LeftDAG(n) 

   else 

  If (leftC=Nil) 

(i..e., C evaluated to FALSE 

via InstSimple)  

leftResult=FALSE-DAG 

else  

 

{<bracket-2> 

leftResult= 

align(LeftDAG(n), leftC) 

}<bracket-2> 

if (rightC=empty)  

rightResult=RightDAG(n) 

   else 

  If (rightC=Nil) 

rightResult=FALSE-DAG 

else  

{<bracket-2> 

rightResult= 

align(RightDAG(n), rightC) 

}<bracket-2> 

Result=SR-DAG formed from node n, left- and 

rightResult 

Return SubTree(Result) 

}<bracket-1>  
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1. A node in a SR-DAG is symbolized 

by [x] if the lead clause in its Clause 

Set is headed by a least-Literal x. 

Moreover: x is called the Name 

Literal (NL) of this Clause Set/node. 

2. Edges going out of a SR-DAG node 

[x] are marked with x and represent 

instantiations of the NL x of the 

Clause Set S of that node (this fact is 

called the Least-Literal/Head-Clause-

rule of S or just Least-Literal Rule of 

S, LLRS). Formally:  

NL=LLRS={i:Literal |∃BS: 2CNF 

Clause Set, ∃n:NodeSR-DAGBS, S is 

2CNFn, SELECT(S)=i and 

∀xLIT(S): i<x} 

3. Literals on edges of branches leading 

indirectly to a node n are called 

branch-literals of n while literals on 

edges connected directly to n are 

called edge-literals of n. Every edge-

Literal is a branch-Literal, but not 

vice versa. 

4. A variable ordering of a problem p 

(∏p) expressed as a 2CNF Clause Set 

S and resolved by any resolution 

procedure PR is a list of integers 

representing indices of 

Literal/variable names indicating 

priorities of instantiations of 

literals/variables of S used in PR. 

Formally: ∏p=<i,j,k,…> where 

i,j,k,…Var such that i<j<k<…. 

5. If ∏p represents the canonical, truth 

table ordering of variables the 

following notation is used: ∏c
p. As 

the 2SAT-GSPRA procedure 

described above always uses LLRS to 

instantiate Clause Sets S, it obviously 

uses ∏c
p 

 

The following example shows for 

2CNF Clause Set 

BS={{0,1}{2,3}{1,2}} the first steps 

of 2SAT-GSPRA(BS): 

A) C0={0,1} is converted to a SR-DAG 

identical with (Figure 2) (replace a1 

by 0 and b11 by 1) using Convert(C0), 

where node n0 contains Clause Set 

{{0,1}}, n1 is TRUE-DAG, n2 

contains Clause Set {{1}}, n3 is 

TRUE-DAG and n4 is FALSE-DAG 

B) Align(SR-DAG{0,1},{2,3}): 

a) S={{0,1}} ∪ {2,3}={{0,1}{2,3}} 

b) least Literal x=0 

c) leftC={2,3} 

d) rightC={2,3} 

e) IRT=leftDAG(n0)=TRUE-DAG 

    (the DAG of node n1) 

f) leftResult=Align(TRUE-DAG,{2,3}) 

➢ Return Convert({2,3}) 

g) IRT=rightDAG(n0) 

h) rightResult=Align(IRT,{2,3}), node=n2 

i) S={{1}} ∪ {2,3}={{1}{2,3}} 

ii) least Literal x=1 

iii) leftC={2,3} 

iv) rightC={2,3} 

v) IRT=leftDAG(n2)=TRUE-DAG 

    (The DAG of node n3) 

vi) leftResult=Align(TRUE-DAG,{2,3}) 

➢ Return Convert({2,3}) 

vii) IRT=rightDAG(n2)=FALSE-DAG 

viii) rightResult=Align(FALSE-DAG,{2,3}) 

➢ Return FALSE-DAG 

ix) Result=SR-DAG formed from 

      node n2, left- and rightResult 

x) Return SubTree(Result) 

 

i) Result=SR-DAG formed from node n0, 

   left- and rightResult 

j) Return SubTree(Result) 
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Definition 3: Sequentially Ordered SR-

DAG, Strongly Ordered-, Loosely ordered 

2CNF Clause Sets 

 

An SR-DAG of a Set S of 2CNF clauses 

is called sequentially-ordered if  
∀S, n ∈SR-DAG, S is 2CNFn: 

S={Ci,Cj,…CM} for some 

i<j<….<M’, M’<=M. M number of 

clauses in S, Cx’s are clauses or 

derivations of clauses enumerated 

from left to right in S. 

An SR-DAG of a Set S of 2CNF clauses 

is called strongly ordered (s.o.) if ∀S, 

n ∈SR-DAG, S is 2CNFn: S is linearly 

ordered (l.o.) (Figure 3, right). In such 

case the Set S is also called strongly 

ordered. Strongly ordered Sets are 

always linearly ordered, the inverse is 

not always the case, i.e., some l.o. Sets 

may have Clause Sets in their SR-DAGs 

which are not l.o. If a Set S has a base 

Clause Set which is l.o. while some other 

Clause Sets in its generated SR-DAG are 

l.o.u., then S as well as its SR-DAG is 

called loosely ordered (lo.o., Figure 3, 

left), e.g.: Loosely Ordered SR-DAG: 

∀S, n ∈SR-DAG, S is 2CNFn: S is 

either l.o. or l.o.u. 

Figure 3: lo.o. and s.o. Trees 
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X Y Z …….. 

Q 

Definition 4: Common Node, Head-CN, 

Tail-CN, Trivial-CN, Supported CN, 

Supporting Parent, Direct Parent, Direct 

Child, Double-Sided CN from the perspective 

of x, Distinguished Literal, Single-Sided CN 

from the perspective of x, Non-Distinguished 

Literal, CN-Augmenting Literal 

 

A node [q] is called Common Node (CN) 

in a SR-DAG of a Set of 2CNF clauses S 

if ∃n1,n2 ∈SR-DAG: [q] adjacent to both 

n1 and n2, i.e., [q] becomes (in step k of 

the resolution procedure) a common 

child to two or more nodes [x], [y], [z], 

… (Figure 4). This happens when 

x,y,z,… literals are replaced by TRUE or 

FALSE in their respective Clause Sets. 

The common-node [q] contains the first 

appearance of its name Literal (NL) q in 

all branches of the SRT containing 

[x],[y],[z],.. 

 

 

 

 

 
 

Figure 4: Common-node generated in <=k. 
 

Types of common-nodes for 2CNF 

clauses are Head- and Tail Common-

nodes (HCNs, TCNs). 
 

More precisely: 
 

− A CN [q] is called HCN if its Clause 

Set has a leading/head clause C∈S, 

NL q is HL of C 

− A CN [q] is called TCN if its Clause 

Set has a leading/head clause C’ 

which is a derivation of a clause C∈
 S, NL q is TL of C 

 

(Figure 7, upper part) shows nodes n1,n2 

not connected. They both get 

instantiated through their least-literals 

a,b to different directions in the SR-

DAG. Any further clause {x,y} in steps 

>k will keep this situation intact, since a 

and b remain the least-literals in their 

respective Clause Sets and cannot be 

bypassed by clause {x,y} in the new tree. 

(Figure 7, lower part) shows a situation 

where both nodes are merged in steps >k 

(right) as the new clause {i,a} belongs to 

a block Bi parents of both nodes were 

instantiating in steps <=k. The added 

clause makes N1 equivalent to N2 as 

seen. We call those types of CNs: Trivial 

Common Nodes (tCNs). They are 

formed in SBs and are included in the 

Properties/Lemmas dealing with the 

generation of CNs. Formally: A node 

[q] ∈SR-DAG is called Trivial Common 

Node (tCN) if ∃n ∈ SR-DAG, S is 2CNFn, 

S is SB, Child([q],n)=TRUE 

A CN [q] ∈SR-DAG with S=2CNF[q], 

produced in steps <=k, is called 

supported in a step l>k if ∃C:Clause, 

C∈Bx such that: S=S ∪ C in step l>k 

while in steps <=k: ∃n ∈SR-DAG, 

Parent(n,[q])=TRUE, S’ is 2CNFn, S’ is 

Bseq and Bx ∉ S’,  

i.e., its Clause Set S gets clauses 

appended to its head in step l>k which 

don’t belong to any Block instantiated in 

steps <=k by one or more of its parents. 

A parent-set of such a CN is called 

supporting. In (Figure 5) an example is 

shown for the CN {b} which is supported 

by clause {c,d} not belonging to block 

Ba. If a head-clause of a CN is also a 

clause of one of the Clause Sets of its 

parents, then this parent is called direct 

parent of the CN. The CN itself is called 

direct child of this parent (Figure 6): 

 
 

 

 

 

 

 

 

 

 

  

Figure 5 

Figure 6 
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A CN [q] formed within a Block Bx 

through +ve as well as -ve edge- or 

branch-literals x is called: Double-Sided 

CN from the perspective of x, DSCNx. 

Such a x is called distinguished Literal 

for [q]. A CN [q] formed within a Block 

Bx through only +ve or only -ve edge- or 

branch-literals x is called: Single-Sided 

CN from the perspective of x, SSCNx, x 

is called non-distinguished Literal for 

[q]. Formally: 
 

- CN [q] ∈SR-DAGBS is called DSCNx if 

∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1 

2CNFn1, S2 2CNFn2 such that: LLRS1=x, 

LLRS2=y, x=¬y, Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 

- CN [q] ∈SR-DAGBS is called SSCNx if 

∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1 

2CNFn1, S2 2CNFn2 such that: 

LLRS1=LLRS2=x, Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If for a CN [q] there is no distinguished 

Literal x such that the CN is DSCNx, then 

[q] is called simply SSCN. If a non-

distinguished Literal x for a CN [q] 

formed in steps <=k is used to augment 

the size of [q] in step l>k, i.e., x is 

instantiated in a clause whose derivation 

is added to the clauses of [q] in l, then x 

is called: CN-Augmenting Literal 

(CNAL) for [q]. 
CNAL={L:Literal∈C:Clause, [q] is 

CN∈SR-DAGBS formed in steps<=k, L is 

non-distinguished for [q] | Size[q] is 

augmented in steps>k through 

invocations: InstSimpleC ({L=TRUE},C) 

or InstSimpleC ({L=FALSE},C) } 

 

Concepts defined here are used mainly in 

(Lemma 9-a), (Lemma 9-b) and (Lemma 

9-c). 

 

 

 

 

 

i 

Figure 7 

Base-Set/Node 

N1: {a,..}{..}.. 
N2: {b,..}{..}.. 

...... 
...... 

a 
b 

Base-Set/Node + {x,y} 

N1: {a,..}{..}.. {x,y} 
N2: {b,..}{..}.. {x,y} 

...... 
...... 

a 
b 

i 

Base-Set/Node+{i!,a} 

N1: {a} 
N2: TRUE 

TRUE 

a 

FALSE 

Base-Set /Node+{i!,a}+{ ,a} 

N1: {a} 

TRUE 

a 

FALSE 
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Definition 5: Dependency Graph, Leaves of 

Dependency Graphs, Free Binary Decision 

Diagrams 
 

A dependency graph (DG) of a 2CNF 

Clause Set S is a directed, acyclic graph 

<V,E> where V is the Set of all NLs, E 

the Set of ordered pairs <v1,v2>, v1,v2∈
𝑉 representing instantiations of NLs 

produced during resolution. DGs can be 

deduced from SR-DAGs in a canonical, 

straightforward way24 and used as 

practical alternatives for truth tables. 

They are equivalent to Free Binary 

Decision Diagrams (FBDDs)25 as shown 

in [Abdelwahab 2016-2] . The following 

two properties define a DG: 
 

1. Each NL can appear only once in a 

branch. 

2. Branches can have different 

Literal/variable orderings ∏p 

depending on the sub-problem p they 

belong to26. 

 

A leaf of a DG is a node whose value is 

TRUE or FALSE. Positive leaves have 

the value TRUE. (Figure 8) shows an 

example of a DG for the exemplary s.o. 

tree in Definition 3 (Figure 3). 

 
 

                                                 
24 By abstracting in each resolution-step for each 

node of the SR-DAG and Clause Set S the least-

literal of the head-clause used in LLRS and 

building out of it a corresponding node in the 

DG. 
25 FBDDs are normally generated by recording - 

on top of resolution-procedures - variable 

assignment decisions encountered while trying to 

Definition 6: Splits, N-Splits, CN-Splits, 

Split Node, Big-Splits 
 

An SR-DAG is said to possess a Split if 

∃S’:2CNF Clause Set such that: For some 

n1,n2:Node∈SR-DAGBS, S1 is 2CNFn1, S2 is 

2CNFn2, n1≠n2: S’⊆ S1, 

S’⊆S2,∄n:Child(n,n1)=Child(n,n2)=TRUE  

(i.e., n1,n2 possess common sub-

formulas, but don’t possess common 

sub-trees). CN-Splits are characterized 

on top of that by the existence of 

different Derivations of the same clause 

in the non-common parts of the Clause 

Sets of both nodes. Formally: Splits are 

called CN-Splits, if, in addition to the 

condition above: ∃q:Node, ∃C:Clause∈
𝐁𝐒: S’ is 2CNF[q] , [q] is CN/MSCN in step 

k and C is resolved in steps >k such that: 

C1⊆S1, C2⊆S2, C1,C2∉S’, C1,C2∈Every 

Derivation of C, C1≠C2. If a Split is not a 

CN-Split, it is called N-Split. 
 

Splits are thus formed when either node 

n containing Clause Set S constructed in 

step k is duplicated one or more times in 

steps >k together with all or parts of its 

nodes or sub-trees, the cause of this 

duplication being that S is resolved with 

a clause whose least-Literal was new in 

that step and had an index strictly less 

than all or any indices of head-literals in 

S as seen in the introduction (N-Split) Or 

a CN [q] constructed in step k and/or any 

of its nodes or sub-trees are duplicated 

find a solution. The methods described here as 

well as in in [Abdelwahab 2016-2] produce a 

canonically ordered FBDD(=DG) representing 

existent variable alignments in the used clauses. 
26 In contrast to the more common OBDDs in 

which one Literal/variable-ordering is governing 

the whole graph. 

Figure 8 
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with variations27 one or more times in 

steps >k (CN-Split). We focus on CN-

Splits in furtherance, since N-Splits are 

already covered in l.o.u. and l.o. 

conditions imposed by our main 

Algorithms below which both require 

condition c of Definition 1 prohibiting 

the use of new names/indices which are 

< indices of already resolved clauses. 

 

Example of a CN-Split: 

 

The reason why different CN-Splits 

occur is generally that different 

derivations of C get resolved with a CN 

through different branches of the SR-

DAG linked to this CN. New nodes 

[q]'=[q]+C' are formed where C' is a 

possible derivation. [q'] is called: Split-

Node. If rank[q]=rankBN this form of 

Splits is called Big-Split (plural: 

BigSps) This situation is illustrated in 

below (Figure 9) as well as the concrete 

example of (Figure 10). BigSps are 

causes of exponential behavior of 2SAT-

GSPRA when it is applied to a.a. or l.o.u. 

Clause Sets. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: A concrete example for the sequential 

resolution of the ordinary 2-SAT case showing a 

new clause {2!,5} traversing in step k a IRT 

produced in steps < k. CN {3!} (left) is seen to 

split (right) to form nodes {{3!}{2!,5}}} and 

{{3!}{5}} respectively. This Split is not a 

BigSps.  

                                                 
27 Different variations of the duplicated CN 

correspond to the resolution of different 

Concepts defined here are used mainly in 

(Lemma 9-a), (Lemma 9-b) and (Lemma 

9-c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

derivations of a newly resolved clause C with the 

CN. 

X Y Z …….. 

Q 

Base-Node 

C (resolved in step >k) 

C' C'' C''' 

{2!,5} 

{2!,5} 

{5} 

Figure 9 
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Definition 7: Clauses Renaming Algorithm, 

Connection Matrix, Renaming Precedence 

Condition 

 

The Clauses Renaming Algorithm 

(CRA) is a procedure which takes an 

arbitrary Clause Set S as input, renames 

its literals yielding a new, logically 

equivalent S' as output which is 

guaranteed to be l.o.u. This procedure 

consists of the following steps: 
 

CRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 

Output: Clause Set S’ 

Steps: -  

1. Enumerate clauses in S (starting with 0) in 

ascending order. 

2.  For each clause Ci: 

a) Arrange literals in ascending order 

within Ci such that literals which were 

not renamed before and appear more 

often in other clauses become HLs 

before those which appear less often or 

which only appear in Ci. This condition 

shall hereafter be called: Renaming 

Precedence Condition (RPC). RPC uses 

Connectx,S of Definition 0.4. 

b) Create a matrix whose rows represent 

variable/Literal names/indices while 

columns represent clauses. This matrix 

is called: Connection Matrix. 

3. For all clauses Ci and all literals in Ci:  

- Create a new row and write 

column values TRUE or 

FALSE according to whether 

the Literal appears in the 

corresponding clause or not. 

4. Rename all variables in the Connection 

Matrix in ascending order.  

5. Reconstruct the clauses again using the new 

variable names. This reconstruction may be 

done by simply substituting each Literal in 

the original Clause Set with its new Literal 

name/index. 

Example: If S = {{0,5} {0,2} {1,3} 

{1,4} {2,3}}, then the Connection 

Matrix of S is: 

 

 

 C0 C1 C2 C3 C4 

0 True True False False False 

5 True False False False False 

2 False True False False True 

1 False False True True False 

3 False False True False True 

4 False False False True False 
 

Transformed (via step 4 of CRA) to: 
 

 C0 C1 C2 C3 C4 

0 True True False False False 

1 True False False False False 

2 False True False False True 

3 False False True True False 

4 False False True False True 

5 False False False True False 
 

The new clause list for the above reads 

S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}. 

Note that S' is l.o.u. Note also that if we 

would want to convert S' to a l.o. Set by 

sorting clauses via their least-literals (as 

required by Condition b) in Definition 1) 

we would get: S'' = {{0,1} {0,2} {2,4} 

{3,4} {3,5}} which is not fulfilling 

Condition c) because of Literal 3 (i.e., S'' 

is neither l.o. nor even l.o.u.). To convert 

an arbitrary Clause Set to a l.o. Clause 

Set, an extension to CRA is needed, 

introduced hereafter with some 

definitions: 
 

Definition 8: Mapping, Image, Variable 

Space, Node in space-i, Apply, Inverse Apply, 

Equivalence via Mapping, trivial Mapping, 

Stable Set, Stable Clause, Stable Clause Set, 

Mixed Space Node, Single Space Node, Mixed 

Space SR-DAG/Tree, Single Space SR-

DAG/Tree, Literal in space-i, Assignment in 

space-i, Literal x proceeds y in space-i, 

Mapping in space-i, monotone Mapping 

 

Definition 8.1: Mapping: (N) => N is a 

bijective function giving a Literal 

Name/Index in a 2CNF Clause Set S its 

new Name/Index after a renaming 

operation using CRA. The new 

Name/Index is also called: Image of the 

Literal. New Names of literals forming 

single clauses or Clause Sets are called 
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Images of original clauses or Clause 

Sets. Subsequent application of 

mappings starting from a BS is called a 

Variable Space (VS). To express that a 

Clause Set is formed in a space-i the 

notation: S={{..}…{..}}space-i is used. To 

express that a node is formed in a space-

i the notation: Node space-i is used. 
 

Definition 8.2: Apply: (M:Mapping, S: 

2CNF Clause Set) => Clause Set 

Is a function which replaces occurrences 

of literals in a Clause Set S with their 

Names/Indices given by the mapping M. 

InvApply is similarly defined, but 

applies to S: M-1 instead of M. 
 

Definition 8.3: Two 2CNF Clause Sets 

S1, S2 are said to be Equivalent via 

Mapping (Notation: S1 ⇔M S2) if ∃M1, 

M2:Mapping such that: 

Apply(M1,S1)=Apply(M2,S2)=S’. S’ is 

called: Syntactic Image of both S1, S2. 

 

Definition 8.4: If ∃M:Mapping, S 

2CNF Clause Set, ∀xLIT(S): 

M(x)=x, i.e., each Literal index is given 

itself after a renaming operation using 

CRA, M is called trivial Mapping 

(tMapping).  

If ∃M:Mapping produced in step k 

such that: ∀xSub, Sub⊆Lit(S): 

M(x)=x in any step >k, i.e., a subset of 

Literal indices is mapped to itself via 

CRA in step k and remains always 

mapped to itself for any step>k, Sub is 

called a Stable Set of literals. If 

∀x:LiteralCiS, xSub⊆Lit(S), Sub 

is stable, then: Ci is called Stable 

Clause. If ∀CiS, Ci is stable, then: S is 

a Stable Clause Set.  
 

Definition 8.5: If S1, S2 are 2CNF 

Clause Sets of nodes n1,n2SR-DAG, 

respectively, S1≠S2, but n1=n2=n, then: 

n is called Mixed-Space Node (MSN) as 

opposed to Single-Space Nodes (SSN).  
 

Definition 8.6: SR-DAGs with MSN 

nodes are called Mixed-Space Trees 

(MSTs). SR-DAGs with only SSNs are 

called Single-Space Trees (SSTs). A 

Literal index subscribed by space-i 

(Lspace-i) refers to the name L given by a 

mapping M in space-i. An Assignment 

giving literals in space-i truth values is 

called space-i-Assignment (Aspace-i) 
If ∃space-i:VS such that: Sspace-i is a 2CNF 

Clause Set where:  

FIRSTC(x,Sspace-i)<FIRSTC(y, Sspace-i), 

then: x proceeds y in Sspace-i or, if S is 

known from the context, just: x proceeds 

y in space-i (Notation: (x | y) space-i) 

i.e., within space-i the first occurrence of 

Literal x in Clause Set S comes before the 

first occurrence of Literal y. When space-i 

is known, its subscript is omitted. 

Mappings subscribed by space-i: 

(Mspace-i) refer to the mapping created by 

a CRA operation within space-i.  
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Example: 

For S = {{0,5}{0,2}{1,3}{1,4}{2,3}} 

and S' = Apply (M,S) = 

{{0,1}{0,2}{3,4}{3,5}{2,4}} in the 

example of Definition 7, Mapping M is: 

{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}}, 

Stable-Set = {0,2} 
 

Definition 8.7: A mapping Mspace-i is 

called monotone Mapping in space-i 

(mMspace-i), when ∀x,y∈LIT(Sspace-i): 

if (x | y) space-i then also Mspace-i 

(x)<Mspace-i (y) 
 

Definition 9: Clauses Renaming & 

Ordering Algorithm, CRA-Form 
 

The Clauses Renaming & Ordering 

Algorithm (CRA+) is a procedure which 

takes an arbitrary 2CNF Clause Set S in 

a space-i as input and applies CRA 

repetitively generating a new mapping 

and a new space each time. After each 

step the intermediate Clause Set is sorted 

as required by Definition 1b) before 

iterating back. This is done until 

renaming Literal indices in two 

consecutive steps yields tMapping, i.e, 

the Stable Set becomes equivalent with 

the Set LIT(S), while the output Clause 

Set S' becomes l.o.  

The following recursive pseudo-formal 

description of this procedure is used in 

the below proofs: 
 

CRA+: 

Inputs: An arbitrary 2CNF Clause Set S 

Output: l.o. Clause Set S’ 

Steps: 

1- set CurrentMapping = null, CurrentSet=S 

2- while (CurrentMapping != tMapping) 
 

i. currentSet=CRA(CurrentSet) 

ii. sort CurrentSet as instructed in 

Definition 1 b) 

iii. set CurrentMapping=Mapping 

passed by CRA 

3- S’=CurrentSet 

4- return S’, S’ is called the CRA-Form of S. 

Example: Following this procedure for 

the above Set S = {{0,5}{0,2}{1,3} 

{1,4}{2,3}} applying CRA to get S' = 

{{0,1}{0,2}{3,4}{3,5}{2,4}} and a 

sorting step giving the above S''={{0,1} 

{0,2}{2,4}{3,4}{3,5}}. 

A new CRA-iteration will yield the 

following Connection Matrix: 
 
 

 C0 C1 C2 C3 C4 

0 True True False False False 

1 True False False False False 

2 False True True False False 

4 False False True True False 

3 False False False True True 

5 False False False False True 
 

It is then transformed to: 
 

 C0 C1 C2 C3 C4 

0 True True False False False 

1 True False False False False 

2 False True True False False 

3 False False True True False 

4 False False False True True 

5 False False False False True 
 

Mapping: 

{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}}, 

Stable Set: {0,1,2,5} yields 

S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when 

applied on S''. S''' is l.o. already and 

needs no further sorting. Note that in the 

last matrix all literals are forming an 

ordered sequence which means that any 

further renaming would result in 

tMapping. This is the termination 

condition. 
 

Definition 10: Sequentially-Ordered, 

Multi-Space SR-DAG, Multiple Space Block, 

Multi-spaced Symmetric Block, Target Space, 

Multiple Space Common-node 

 

An MST whose Clause Sets are all l.o. is 

called: Sequentially-Ordered, Multi-

Space Resolution Tree/SR-DAG 

(MSRTs.o.), if ∀nspace-i:NodeSR-DAG:- 

(2CNFn)space-i is l.o. A block Bx whose 

Clause Set or derivations thereof (all or 

part of them) belong to more than one VS 

is called a Multiple Space Block, MSB 

(Notation also: Bx
S1,S2,..,S1,S2,.. Variable 

Spaces). Similar to Single Space Blocks: 
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An MSB may be symmetric or 

dissymmetric.  
 

Formally: MSB = {  

(Bx1)space-i:2CNF Clause Set | 

∃space-j, (Bx2)space-j:2CNF Clause Set, 

M: Mapping, where:  

((Bx1)space-i ⇔M (Bx2)space-j ) Or ((B’x1)space-i 

⇔M (B’x2)space-j)), B’x1, B’x2 are Derivations 

of Bx1, Bx2, in respective Spaces} 
 

Definition 10.1: An MSB Bx is called 

Multi-spaced Symmetric Block (MSSB)  
- MSSB = {  

(Bx1)space-i:2CNF Clause Set | 

∃space-j, (Bx2)space-j:2CNF Clause Set, 

M: Mapping, where 

((Bx1)space-i ⇔M (Bx2)space-j 

Or  

(B’x1)space-i ⇔M (B’x2)space-j) 

B’x1, B’x2 are Derivations of Bx1, Bx2, in 

respective Spaces and ∃Aspace-i, Aspace-j: 

Assignment such that:  

instSimple(Aspace-i:{X1=TRUE}, 

(Bx1)space-i) ⇔M  

instSimple(Aspace-j:{X2=FALSE}, 

(Bx2)space-j) 

}  

 

Definition 10.2: A node in a space ST 

(called: Target Space, TS) which is 

target of two or more Variable Spaces is 

called Multiple Space Common Node, 

MSCN (Notation: [q]ST
S1,S2,..,S1,S2,..,ST 

Variable Spaces to which the node 

belongs). Formally: A node is called 

MSCN if ∃n1,n2 ∈ MSRTs.o not 

necessarily of the same space: [q] 

adjacent to both n1 and n2, i.e., in step 

k of the resolution it becomes common 

child/adjacent to two or more nodes, 

possibly of different spaces [x]S1, [y]S2, 

[z]S3, … in (Figure 11)28 generated in 

steps <k. This happens when there exist 

mappings M1,M2,M3…, such that: 

x=M1(x’),y=M2(y’),z=M3(z’),…, where 

x, y, z are literals in ST, and x’, y’, z’ are 

literals replaced by TRUE or FALSE in 

                                                 
28 The notation [x]S1 is read: Node [x] in Variable 

Space S1. 

their respective Clause Sets and 

respective Spaces.  

The common-node [q]ST
S1,S2,.. contains 

the first appearance of its name Literal 

(NL) q in all branches of the MSRTs.o 

containing [x’]S1, [y’]S2, [z’]S3, … etc. 

and there exist literals q’, q’’, q’’’, etc. in 

Spaces S1,S2,S3,… such that: 

q=M1(q’)=M2(q’’)=M3(q’’’)=… etc. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Illustration of Definition 10 where 

ST=Space1,M0 is the trivial Mapping, 

[b]ST
Space1={{b,d}{e,f}} is a 

MSCN,[c]Space1={{¬c}{b,d}{e,f}}, 

[a]Space2={{¬a}{b,c}{d,e}} for M={(c>a), 

(b>b),(d>c){e>d}{f>e}}. Then it is clear that 

[c]Space1=[a]Space2=[q]Space1,Space2,where 

q=M0(c)=M(c). Also: [b]ST
Space2 is obviously 

child to both, [a]ST=BS and [a]Space2 with edge-

literals a=M0(a) and a=M(c) respectively.  

S2 S3 S1 

ST 

X=M1(X’) 

Y=M2(y’) …… 

X’ Y’ Z’ …….. 

Q 
Figure 11: Multiple Space 

                       Common-Node 

           (MSCN) 
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Definition 11: Double-Sided MSCN with 

respect to Literal z, Single-Sided MSCN 

with respect to Literal z, trivial MSCN 
 

An MSCN [q]space-i is called DS-MSCNz 

(Double-Sided MSCN with respect to 

Literal z) if ∃n1,n2 ∈ MSRTs.o of 2CNF 

Clause Set S, ∃xspace-j , yspace-k:Literal, 

∃M1,M2: Mapping, such that: [q]space-i is 

adjacent to both n1 and n2 and  

zspace-i =M1(xspace-j), zspace-i =M2(yspace-k), 

where yspace-k has the opposite sign of 

xspace-j, i.e., there exist at least two edge- 

or branch-literals x, y from Spaces space-

j, space-k respectively and a Literal z 

from the target space-i such that both 

literals are translated to z within their 

respective spaces and have opposite 

signs. Literals x and y are also called 

distinguished (c.f. Definition 4, 

(Distinguished Literal)). 

if ∃n1,n2 ∈ MSRTs.o of 2CNF Clause Set 

S, ∃xspace-j , yspace-k, ∃M1,M2:Mapping, 

such that: [q]space-i is adjacent to both n1 

and n2 and zspace-i =M1(xspace-j), zspace-i 

=M2(yspace-k), where yspace-k has the same 

sign as xspace-j, i.e., a MSCN is formed 

through only +ve or only -ve 

instantiations of edge- or branch-literals 

z or its images in respective spaces, z is 

not distinguished, then the MSCN is 

called SS-MSCNz (Single-Sided MSCN 

with respect to z). [b]ST
Space2 in the 

example above of (Figure 12) is thus a 

SS-MSCNa.  
 

An MSCN [q] is called trivial MSCN, 

(tMSCN), if ∃n ∈ MSRTs.o whose 

Clause Set is a MSSB, Child([q],n)=TRUE, 

i.e., [q] is formed through a newly 

resolved clause in step k, who belongs to 

a MSSB to which one or more of its 

parents belonged in steps <k.  
 

Concepts defined here are used mainly in 

(Lemma 8), (Lemma 9-a), (Lemma 9-b ) 

and (Lemma 9-c) 

Definition 12: Aligned Trees, 

Alignment Clause 
 

A MSRTs.o of a 2CNF Clause Set S is 

said to be aligned if ∃C S, C’ 

derivation of C such that:∀n MSRTs.o., 

S’ is 2CNFn, ∀Cx  S’ the following is 

true: 
a) SortOrder(C’, S’)>SortOrder(Cx,S’) 

b) S’ is l.o. 

In other words: Either C or one of its 

derivations C’ are the last clauses in any 

Clause Set of the MSRTs.o. C is called 

Alignment-Clause.  
 

Definition 13: Aligned Nodes, 

Alignment Clause Set of S, Alignment 

MSRTs.os 
 

A node n of size M is said to be aligned 

if: 

a) For M<=2: n possesses a Clause 

Set with an aligned MSRTs.o 

b) For M>2: 

(i) All nodes or sub-trees of size 

M possesses Clause Sets 

which are l.o. 

(ii) All nodes or sub-trees of size 

<M are aligned 

The Set of all unique clauses and their 

derivations used for the alignment of all 

nodes of a MSRTs.o of an arbitrary 2CNF 

Clause Set S is called Alignment Clause 

Set of S (ACS). It is formally given by: 

ACS=∪ permCiS for all CiS. 

Obviously, ACS cannot have more than 

RCC2-SAT*M elements/clauses 

containing all possible permutations of 

literals in linear- or non-linear sequence. 

An MSRTs.o whose nodes are all aligned 

is called Alignment MSRTs.o 
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Definition 14: Resolution procedures: 

2SAT-GSPRA+, Align 
 

2SAT-GSPRA+: 

Inputs: Arbitrary 2CNF Clause Set S of size M 

Output: MSRTs.o 

Steps: -  

1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  

2- choose a clause C0  S 

3- convert S to a l.o. Set using CRA+ )the 

version with DB-Sorting, c.f. Section III, 

Lemma 8) 

4- convert C0 to a SR-DAG using Convert(C0)  

5- set IRT (Intermediate Resolution Tree) = 

SR-DAG produced in 4 

6- ∀ Ci  S (one by one) 

a. IRT=Align(IRT , Ci) 

7- return IRT 
 

Align (SR-DAG, C): 

Inputs: An MSRTs.o with base-node n and S the 

Clause Set of n, an a.a. 2CNF clause C 

Outputs: MSRTs.o 

Data Structure: List of Tuples: <Clause Set, 

Node index> (called: LCS) initially empty 

Steps: - 

- If (MSRTs.o =FALSE-DAG)  

Return FALSE-DAG 

else 

  If (MSRTs.o =TRUE-DAG) 

 { 

- Result = Convert(C) 

- Store S=C in LCS in its CRA-Form, 

   index is the base node of Result 

 Return Result 

 } 

else 

{ <bracket-1> 

a- Update S in node n with C: S=S ∪ C 

b- If (S is in LCS)  

Return 

SubTree(foundNodeIndex) 

c- If (S is l.o.) 

{<bracket-2> 

- X=least Literal in S 

- leftC=instSimpleC({X=TRUE},C) 

- rightC= instSimpleC({X=FALSE},C) 

- if (leftC=empty)  

(i..e. C evaluated to TRUE via 

InstSimple)  

leftResult=LeftDAG(n) 

   else 

  If (leftC=Nil) 

(i..e. C evaluated to FALSE 

via InstSimple)  

 

 
 

leftResult=FALSE-DAG 

else  

{<bracket-3> 

leftResult= 

Align(LeftDAG(n), leftC) 

}<bracket-3> 

- if (rightC=empty)  

rightResult=RightDAG(n) 

   else 

  If (rightC=Nil) 

rightResult=FALSE-DAG 

else  

{<bracket-3> 

rightResult= 

Align(RightDAG(n), rightC) 

}<bracket-3> 

- Result= MSRTs.o formed from node n, left- and 

rightResult 

- Store S in LCS in its CRA-Form giving it as 

index the node n 

- Return Result 

}<bracket-2> 

else (of step c-) 

If (S is not l.o.) 

{<bracket-2> 

1- Choose a clause C0  S, 

S’=CRA+(S), the version with DB 

Sorting  

2- If S’ has already been stored in LCS, 

erase its entry 

3- C may have changed its place due to 

sorting in CRA+. MSRTs.o for all clauses 

except the last one must be created 

again: Let S’’=S’\A, A is the last clause 

in S’ 

4- NewDAG=2SAT-GSPRA+(S’’), 

Construct all nodes whose Clause Sets 

start with S’’ again, assigning to them 

NewDAG and updating LCS with 

adequate information. 

5- Result=Align(NewDAG,A) 

6- Store S’ in LCS in its CRA-Form 

giving it as index the base node of 

Result 

7- Return Result 

}<bracket-2> 

}<bracket-1> 
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Definition 15: 2SAT Fast Generic 

Pattern Resolution Algorithm  
 

2SAT-FGPRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 

Output: MSRTs.o 

Data Structure: List of Tuples: <Clause Set, 

Node index> (called: LCS) initially empty 

Steps: -  

1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  

2- choose a clause C0  S 

3- convert S to a l.o. Set using CRA+ )the 

version with DB-Sorting, c.f. Section III, 

Lemma 8) 

4- Create base node n, Set S to be the Clause 

Set of n,  

5- Process n as follows: 

- if (size of n > 1) && (clauses are neither 

evaluated all to TRUE nor containing a 

clause evaluated to FALSE)) 

 {<bracket-1> 

(Form left- and right Clause Sets for n 

instantiating the least Literal to TRUE 

and FALSE respectively. Make sure the 

resulting Clause Sets are l.o.) 

a. X=Least Literal of S 

b. leftClauseSet= 

InstSimple({X=TRUE},S) 

c. rightClauseSet= 

InstSimple({X=FALSE},S) 

d. leftClauseSet= 

CRA+(leftClauseSet) 

e. rightClauseSet= 

CRA+(rightClauseSet) 

f. Search for leftClauseSet in LCS 

 if (leftClauseSet found) 

leftResult= 

SubTree(foundIndex) 

 else 

{ 

1-leftResult=2SAT-

FGPRA(leftClauseSet) 

2- Store leftClauseSet in LCS 

in its CRA-Form giving it as 

index the base node of 

leftResult 

} 

 
g. Search for rightClauseSet in LCS 

 

 if (rightClauseSet found) 

rightResult= 

SubTree(foundIndex) 

 else 

if (S has only one clause C) 

{ 

1-rightResult=2SAT-

FGPRA(rightClauseSet) 

2-Store rightClauseSet in LCS 

in its CRA-Form giving it as 

index the base node of 

rightResult 

} 

- Result= MSRTs.o formed from node n, 

left- and rightResult 

- Store S in LCS in its CRA-Form 

giving it as index the node n 

- Return Result 

} <bracket-1> 

else 

if (S has only one clause C) 

{ 

- Result = Convert(C) 

- Store S in LCS in its CRA-Form 

giving it as index the node n 

Return Result  

} 

Else {  

If (clauses are evaluated all to TRUE) 

 Return TRUE-DAG 

Else (clauses contain a clause evaluated 

 to FALSE) 

 Return FALSE-DAG 

}  



Abdelwahab, N. 
 

 

 

40 

40 

III-2 Converting arbitrary 2CNF Sets 

         to l.o.u and l.o. ones 

Can we always convert arbitrary Sets to 

s.o. or lo.o. ones? To answer this 

question we need to investigate how to 

convert a.a. Clause Sets29 to l.o.u. and 

l.o. ones. 
 

Lemma 1: CRA is guaranteed to convert 

an a.a. Clause Set S into a l.o.u. Clause 

Set. It takes O(N*M) steps30 to do so for 

M = number of clauses, N = number of 

variables. Moreover:  
a. CRA always produces monotone 

mappings (mM). 

b. (x | y) iff (x<y) for literals x,y∈ Lit(S) in 

any l.o. Clause Set S. 

c. In sequential, clause by clause resolution:  

Let x,y∈ Lit(S), S is l.o., S=2CNFBN, 

x∈C1,y∈C2,C1≠C2, FIRSTC(x)=1, 
FIRSTC(y)=2, 

SortOrder(C1,S)< 

SortOrder(C2,S) 
and  

∃n:Node,space-i:VS where: S’=2CNFn, 

Child(n,BN)=TRUE such that: 

xspace-i,yspace-i∈Lit(S’), S’ is l.o., 

xspace-i∈C1
’,yspace-i∈C2’, C1

’≠C2’, 
FIRSTC(xspace-i)=1, 

FIRSTC(yspace-i)=2, 

SortOrder(C1’,S’)< 
SortOrder(C2’,S’) 

and 

C1’, C2’∈S’ images or derivation of images 

of C1, C2∈S then: 

(xspace-i | yspace-i) iff (x | y)31 
 

Proof: c.f. the three conditions of 

(Definition 1) for a Clause Set to be 

l.o.u.: 

a) ∀ai,bij∈Ci+j: ai<bij 

c) ∀x ∈ LIT(S), ∀C ∈ S: 

if x not ∈ LEFT(x,C) then 

∀y ∈ LEFT(x,C): x>y 

 

                                                 
29 Converting an arbitrary Clause Set to an 

almost arbitrary one (a.a.) being a trivial exercise 

needing only sorting literals inside each clause in 

ascending order and taking care that clauses have 

unique occurrences. 
30 Steps are invocations of primitive operations 

as normally perceived in complexity analysis. 

d) Clauses appear only once in S 

It is clear that a) and d) are fulfilled by any 

output of CRA as they constitute the mere 

definition of a.a. Sets. For Condition c): 

Suppose some Literal L in a clause Ci={... 

L ...} ∈ S' (S' = output Set) breached 

Condition c): This means that L is new in 

the clause sequence starting with C0 until 

Ci, but there exists L' to its left where L<L'. 

This cannot be the case, since any such L' 

would have to appear in a row before L in 

the connection matrix (step 2-b, Definition 

7) and thus get a smaller index in the 

renaming step 3-. For the complexity 

assertion: The number of cells to be created 

in a Connection Matrix is always N*M.  

To show the mM property a-: ∀x,y literals 

in a Clause Set: CRA’s way of giving them 

new names is - as seen - to assign each one 

a row in the connection matrix in the order 

of their appearance and then rename the 

rows by counting from 0-n, finishing up 

with a strict order (c.f. Definition 7, steps 

2-a, 3 and 4 as well as the example). 

Therefore: If (x | y), then, unless clauses are 

re-ordered, after one application of CRA: 

M(x)<M(y).  
 

For b-: (x | y) iff (x<y) in any l.o. Clause 

Set. To see this, the only direction we still 

need to show is: (x<y)>( x | y). Suppose in 

a l.o. Set: (x<y). Either ( x | y) or ( y | x). In 

case (y | x), this means that the first 

occurrence of y comes before the first 

occurrence of x and both appear in different 

clauses. But then, x should have been > y 

as per condition c in Definition 1 which 

prescribes that in a l.o. Clause Set a new 

Literal must be strictly greater than all 

literals occurring to its left. 

This means ( x | y). 

31 Intuitively: If two literals x, y belonging to 

different, subsequent clauses of S, a l.o. Base Set, 

have images in another l.o. Set S’ of some Space-

i, and the order of clauses in S’ preserves the 

relative precedence of images of Literal x on 

images of Literal y, this always means that xspace-i 

proceeds yspace-i in S’. The other direction is also 

true. 
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For c-: First direction: Suppose xspace-i 

appears in C1’ for the first time in step 

k. X must also appear for the first time 

within C1 in S in step k, because C1’ is 

the image or a derivation of an image 

of C1 and FIRSTC(x)=1. yspace-i appears 

then in S’ in a step j>k, because 

C1
’≠C2’,SortOrder(C1’,S’)<SortOrder

(C2’,S’), S’ is l.o. and resolution is 

sequential. Suppose now (y | x) in S. 

This means that C2 must have 

appeared in a step <k contradicting the 

fact that C2’, its image, appeared in 

j>k. Therefore it must be that: (x | y). 

The other direction is similar: When (x 

| y), then (yspace-i | xspace-i) cannot be the 

case unless either the order of S is not 

preserved in S’ or yspace-i appears for 

the first time in a clause other than C2’. 

Both conditions contradict the 

assumptions. 

(Q.E.D.) 
 

Lemma 2: For a 2CNF Clause Set S it is 

true that: 

a- S is l.o. iff CRA+(S) reaches a Stable-

Set of literals equivalent to LIT(S) 

b- S is satisfiable iff CRA+(S), the CRA-

Form, is satisfiable 

c- S and CRA+(S) are logically 

equivalent 
 

Proof: a- Suppose S is l.o. This means 

that it is fulfilling all Conditions a)-d) of 

Definition 1. Any attempt to use CRA+, 

i.e., rename the literals and then sort 

them, must generate a Stable-Set = 

LIT(S) after only one CRA- and sorting 

iteration, since otherwise (i.e., if a Literal 

gets a new Name/Index after such an 

iteration) this would mean a breach of 

one or all of those conditions. Other 

direction: Suppose S reached such a 

Stable-Set through application of CRA+, 

i.e., CRA+ terminated. If S is not l.o., 

then it must be at least l.o.u. (because of 

                                                 
32 The other direction: [CRA+(S) is satisfiable 

=>S is satisfiable] can be shown using similar 

Lemma 1). The only reason for S not to 

be l.o. would thus be that clauses are not 

sorted correctly. This is not possible 

because CRA+ can only become a Stable-

Set equivalent to LIT(S) if two 

consecutive renaming iterations assign 

literals with the same names/indices, the 

first of which is followed per definition 

by a sorting operation. 

b- The proof is by induction on M, the 

number of clauses in S. 
 

Base-Case: M=1: For S={{a,b}} CRA+ 

terminates after one iteration yielding the 

Clause Set S’={{a’,b’}} with a’,b’ new 

Indices/Names for a,b, a’=M(a), 

b’=M(b), M the mapping produced by 

CRA+. Let A be an Assignment 

satisfying S, A={{a=v1}{b=v2}}, 

v1,v2∈{TRUE, FALSE}. If we set 
A’={{a’=v1}{b’=v2}}, then S’ is 

satisfied by A’, since nothing has 

changed except variable names. The 

other direction is similar. 
 

Induction Hypothesis: S is satisfiable 

iff CRA+(S) is satisfiable for SizeS=M 
 

Induction step: If SizeS=M+1: Suppose 

A is the Assignment which satisfies S32. 

We distinguish two cases: 
 

Case 1- S’=CRA+(S), CRA+ does not 

alter the order of clauses in S. Assume 

S={C0,..,CM}, S’={C0’,..,CM’}, where 

CM={a,b}, CM’={M(a),M(b)}. A must 

also satisfy S’’=S\CM which is of size M 

and per induction hypothesis there exists 

A’ satisfying S’’’=S’\CM’. The following 

cases can then occur: 

a- Literals a,b ∈ CM are new, i.e., a,b ∉ 
Lit(S’’). M(a) and M(b) are also ∉ 
Lit(S’’’) per monotone mapping 

property of M. Extend A’ to include 

{M(a)=v1,M(b)=v2}, where 

v1,v2∈{TRUE, FALSE} are values given to 

a, b in assignment A. This extended A’ 

arguments and is not included here to avoid 

unnecessary length. 
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satisfies CM’ and thus also S’33, 

otherwise A couldn’t be satisfying CM 

(remembering that names of variables 

are different in CM and CM’, but signs are 

the same). 

b- Either Literal a or b or both are ∈ 

Lit(S’’). It must be then the case that 

v1,v2∈{TRUE, FALSE} used in 

assignment A for any such a or b to 

satisfy S’’ do not falsify CM, otherwise A 

wouldn’t be satisfying S. Per induction 

hypothesis: A’ satisfies S’’’ using, per 

definition, for any of M(a) or M(b) the 

same values v1 and/or v2. They can only 

falsify CM’ if they falsify CM which is not 

the case. 
 

Case 2- S’=CRA+(S) alters the order of 

clauses in S. Let S’={C0’,..,CM’}. Re-

arrange S such that clauses are ordered 

like in S’. Call the new Clause Set S’’, 

i.e., S’’={C0,..,CM}. S is, per definition, 

satisfiable iff S’’ is satisfiable. Apply the 

same arguments used in Case 1 on S’ and 

S’’. 

c- S has a CRA-Form S’=CRA+(S) and 

thus S ⇔M S’, (Definition 8.3), i.e., 

∃M:Mapping such that: Apply(M,S)=S’, 

S’ is the exact syntactic image of S. This 

means: Any Truth Assignment A 

satisfying S can be converted to a Truth 

Assignment A’ satisfying S’ by simply 

substituting variables x with M(x). The 

other direction is also possible. 

(Q.E.D.) 
 

Lemma 3: CRA+ takes a number of 

steps which is in O(M2(logM+N)). More 

precisely M CRA-iterations and M 

sorting operations34 (M = number of 

clauses in S, an a.a Set). 
 

Proof: (by induction on M) 
 

                                                 
33 Since the truth value of S’’’ is not affected by 

the new variables 
34 Assuming that a sorting operation takes 

O(M log M) primitive operations. 

Base-Case: M=1: For S={a,b} CRA+ 

takes one CRA and one sorting operation 

to generate tMapping per definition 

(Definition 8.4). 
 

Illustration Case: M=235 

Let S={{a,b},{d,e}}={C0,C1} 
 

Case 1: No literals in common between 

C0 and C1: In that case a<b<d<e. 

S is l.o. No CRA- or sorting iterations 

needed.  

Case 2: Only head-Literal in common: 

S={{a,b}{a,e}} for example: Same as 

Case 1, S is also l.o. No CRA or sorting 

needed. 

Case 3: Only tail-Literal in common 

(Case I): S={{a,b}{b,e}} for example: 

S’ is converted after one CRA-iteration 

to S={{a,b}{a,c}}, because of 

Definition 7, 2a, Renaming Precedence 

Condition (RPC). Thus, no sorting 

needed. 

Case 4: Only tail-Literal in common 

(Case II): S={{a,b}{c,b}} for example: 

S’ is converted after one CRA-iteration 

to S={{a,b}{a,c}}, because of 

Definition 7, 2a), Renaming Precedence 

Condition (RPC), no sorting needed. 
 

Resuming Base-Cases M=1,2: 

Although we may not need CRA or 

sorting, CRA+ takes at most one iteration 

(i.e., one CRA- and one sorting 

operation) to generate tMapping and to 

terminate. 
 

Induction Hypothesis: For M clauses: 

M CRA-iterations (M2*N) as well as M 

sorting operations (M2logM) are needed 

in the worst case to make S l.o. 
 

Induction step: For any additional 

clause CM+1 = {x,y} we have the 

following cases (c.f. Definition 9, 

pseudo formal procedure): 

35 Monotone +ve 2-SAT case is used here and in 

the next Lemma (w.l.o.g.), since CRA+’s 

behavior does not depend neither on Literal signs 

nor on clause breadth. 
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1. x,y are new literals not appearing 

before in any Clause Ci: This case is 

straightforward in that no sorting is 

needed, i.e., only CRA (renaming) in 

the worst case. 

2. One or more literals of x,y appeared 

in a previous clause: For Example: 

Suppose S={{0,1} {0,2} {0,4} {0,6} 

{2,8} {9,10} {11,12}} which is l.o. 

adding the clause {4,6}, the following 

steps are required: 

a) S={{0,1}{0,2}{0,4}{0,6} 

{2,8}{9,10}{11,12}{4,6}} 

input 

b) S={{0,1}{0,2}{0,4}{0,6} 

{2,8}{4,6}{9,10}{11,12}} 

sort  

c) S={{0,1}{0,2}{0,3}{0,4} 

{2,5}{3,4}{6,7}{8,9}}  

CRA, S in step c) is already l.o. 
 

For a Clause Set of size M: S={{a,b} 

{b,…} {d,…}…} where, as per 

induction hypothesis, it is assumed that it 

is l.o. and we add a clause containing one 

or more literals which appeared before, 

we note that S is l.o.u. A sorting step is 

what is required to align the new clause 

to its right place. If this step is done, then 

another CRA-step guarantees l.o.u (per 

Lemma 1). This means that we need an 

additional CRA (renaming) as well as a 

sorting step for this case. 
 

Resuming the induction step: One 

additional CRA- and one additional 

sorting step is needed in the worst case 

for M+1 

(Q.E.D.) 
 

This section concludes with a Lemma 

showing that any a.a. Set can be 

converted to a l.o. Set, i.e., application 

of CRA+ on any a.a. Set always 

terminates yielding the right result. 
 

                                                 
36 CRA renders S ∪ C l.o.u., i.e., any new literal 

v of C is > LEFT(v, C) after such an iteration. 

Lemma 4: CRA+ terminates always 

converting any arbitrary 2CNF Clause 

Set S of size M to a Stable-Clause Set. 
 

Proof: (by induction on M) 
 

Base-Case M=1: For S={{a,b}} as seen 

in the Base-Case of (Lemma 3) CRA+ 

terminates after one iteration yielding the 

Clause Set S’={{a’,b’}} where a’,b’ are 

new indices/names for a,b. S’ is stable. 
 

Illustration Case M=2: Let 

S={{a,b}{x,y}}. As seen in all Base-

Cases for M=2 of (Lemma 3): One 

iteration of CRA and one sorting 

operation converts S to a l.o. Set. This 

means any further iteration of CRA+ 

yields a Stable-Set (per definition of 

CRA+) letting the algorithm terminate. 
 

Induction Hypothesis: Application of 

CRA+ for a number of iterations k on a 

2CNF Clause Set S of size M converts S 

to a Stable-Clause Set (i.e., CRA+ 

produces M stable clauses after k 

iterations). 
 

Induction Step: Per induction 

hypothesis for S having M+1 clauses, 

there are M stable clauses in iteration k. 

Let C={x,y} be the clause which is not 

stable. After step k the position of C 

cannot be before any other stable clause 

C’={i,j}, e.g., as in {{a,b}…{x,y} 

{i,j}…}, because this would mean that 

CRA-operations will have to change 

indices i,j to new ones for C’ 

contradicting its stability assumption, 

i.e., C has to be the last clause in S. 

In that case, even if literals in C would 

not fulfill the l.o. condition for whatever 

reason other than sorting (because C is 

already in its place), further CRA-steps 

in iterations >=k guarantee to convert C 

into a stable clause (per definition of 

CRA+)36 causing CRA+ to terminate 

with a Stable-Clause Set of size M+1. 

(Q.E.D.) 
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III-3 Way of work of 2SAT-GSPRA+ 

The main difference between 2SAT-

GSPRA and 2SAT-GSPRA+ is that the 

latter uses CRA+ to convert Clause Sets 

to l.o. ones. It is necessary to understand 

what 2SAT-GSPRA+ really does when it 

imposes the l.o. condition on clauses. 

Central in this respect are the following 

points: 
 

i- Counting the number of new 

nodes created in each step is essential. 

As resolution is sequential, a new 

clause resolved in such a step has to 

traverse all nodes of the previous IRT 

if necessary (c.f. Figure 10 for an 

illustration). It is therefore clear that, 

unless nodes are left untouched or are 

copied (i.e., Splits occur), the 

contribution of the new clause is either 

to augment sizes of already existing 

nodes or to add new size-1 ones.  

ii- It is also imperative to 

understand how 2SAT-GSPRA+ 

recognizes equivalent Clause Sets so 

that it is not obliged to repeat similar 

calculations. The equivalence notion 

adopted in [Abdelwahab 2016-2] is 

structural (algorithmic), i.e., two 

Clause Sets are equivalent only when 

their generated resolution trees are37. 

As we are always trying to minimize 

nodes in generated trees, this notion is 

sufficient for our purpose. 2SAT-

GSPRA+ implements it (compare with 

Definition 14, Align function, Point b,) 

by requiring a Clause Set to be stored 

in the LCS list only when CRA+ is 

applied to it. This has the advantage of 

normalizing all stored Clause Sets so 

that their sub-trees can be retrieved 

                                                 
37S1={{a, ¬b}{b,d}{¬d,e}}, 

S2={{¬d,e}{b,d}{a, ¬b}} are for example 

considered to be different from the structural 

point of view although they are logically the 

same. 
38 In this present work RPC is restrained to HLs 

only while in [Abdelwahab 2016-2] it is applied 

easily when encountered again during 

resolution, remembering that all 

resolution steps may require using 

CRA+. [Abdelwahab 2016-2] calls this: 

(CRA-form).  

iii- Sorting condition b) in 

(Definition 1) prescribes distinguishing 

+ve and –ve literals of the same 

variable while ordering a Clause Set 

without giving any preference to the 

best way of doing that, leaving it to 

implementations of CRA+. Some 

implementations may have the effect of 

building SBs and tCNs as seen in 

(Definition 4) and (Figure 7) which 

may split. It is shown here that this 

situation can always be avoided 

without disturbing the essential (RPC) 

condition of CRA by appropriately 

choosing which sign to prioritize while 

applying the (DB Sorting) Condition38.  
 

The following lemmas allow us to get a 

more precise picture of the above ideas. 
 

Lemma 5 (Expansion of MSRTs.os): 

a- ∀n1,n2 nodes ∈ MSRTs.o: if n1,n2 are 

not directly connected in steps <=k then 

they cannot be directly connected in 

steps >k, if the sort order of their Clause 

Sets is not altered, except in the trivial 

case when the new clause belongs to a 

block, parents of n1,n2 were instantiating 

in steps <=k and n1, n2 become 

equivalent (tCN, tMSCN).  
 

b- ∀M>1: A node [q] of size M is 

CN/MSCN iff ∃CN/MSCN [q’] of size 

M-1 augmented in size by a clause C 

such that: [q]=[q’] 

c- Let up1,upj be upper bounds of nodes 

generated during the whole process of 

to all literals. There, a stronger property than the 

one seen in Lemma 8 is shown, namely: That 

appropriately sorting blocks to avoid tCNs (there 

called the l.o.s condition) produces the same 

amount of unique nodes as not doing any extra 

sorting. This was necessary there to imply that 

tCNs and their Splits don’t harm the near-to-

minimal node counts of GSPRA+ trees. 
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resolution in size-levels 1 and j, 

respectively, where 1<j<=M. If Splits are 

not accounted for in any size-level j, 

then: upj<=up1 
 

Proof: 

a- When 2SAT-GSPRA+ is applied on a 

BS, it uses (LLRBS) in the Align 

Algorithm. This rule is applicable within 

a space as well as between spaces in the 

following way: If nodes n1 and n2 belong 

to different spaces and were not directly 

connected in step k, then, unless the sort 

order of their Clause Sets is not altered, 

they cannot be directly connected in 

steps >k, because newly resolved clauses 

don’t affect old results of an application 

of the least-Literal-rule, i.e., least literals 

in old nodes remain the same for l.o. 

Clause Sets (c.f. Definition 4 and Figure 

7 for an illustration). tCN and tMSCN 

exception cases are explicitly dealt with 

in (Lemma 8) below.  
 

b- ∀M>1: If ∃CN/MSCN [q’] of size M-

1 constructed in steps<k and augmented 

in size by a clause C in step k such that: 

[q]=[q’], then per (Definition 4), [q] is a 

CN/MSCN and its size is M. Other 

direction: We need only to investigate the 

case when a node [q] of size M was not a 

CN/MSCN in steps <k and became 

CN/MSCN in step >=k. As per a- this 

cannot happen unless the sort order of one 

of at least two nodes involved is altered. 

Let [q’] be the node of size M whose sort 

order is changed in step k and whose SR-

DAG is completed in steps>k such that 

2CNF[q]=2CNF[q’]. This can only happen 

in 2SAT-GSPRA+ if [q’], when passed to 

the Align-Algorithm is not found to be 

l.o. and CRA+ is used (Definition 14, 

bracket-2, steps: 1-7). In this case: The 

last clause A of the re-arranged Clause 

Set is separated (step 3) and the SR-DAG 

of node [q’] is formed again, first with 

2CNF[q’]= 2CNF[q]\A (step 4), before a 

recursive call of Align is attempted (step 

5). In those first steps: Size[q’]=M-1. 

Since: 2CNF[q’]=2CNF[q]\A and as per 

(step 4) all nodes whose Clause Sets 

begin with 2CNF[q]\A, i.e., [q] as well, are 

reconstructed: [q’] must have been a 

CN/MSCN of size M-1, before its size is 

augmented by A. When Align is called 

then in (step 5) with the last clause A, 

Size[q’]=Size[q]=M which was to be 

shown.  
 

c- If Splits are not accounted for at any 

size-level j>1, then: Per (Definition 14) 

of 2SAT-GSPRA+: A node can have in 

any step only one copy which either 

remains at such a level-j or is propagated 

up one level to become part of level-j+1, 

but not both. Recall that this is not like 

the case of a Split, where one copy of the 

node remains as it is and another copy (or 

more) is resolved with a new 

clause/Clause Set moving up the 

hierarchy (recall Definition 6, Splits). 

Hence, we can show the property using 

induction on j: 1<j<=M as follows:  
 

Base-Case: For j=2: Since up1 is the 

upper bound of nodes generated in size-

level 1 during the whole process of 

resolution, the worst case is that all up1 

are added to level 2. Since Splits are not 

counted at level 2, they must be also the 

only nodes added at that level. Therefore: 

up2 <= up1 
 

Induction Hypothesis: upj<=up1 for 

size-level j, j>1 
 

Induction Step:: Because any node 

formed at level j+1 at any step of the 

resolution can either come from the 

lower j-level, or formed via Split and we 

don’t count Splits: upj+1 cannot be > upj, 

which means upj+1<= upj and thus per 

induction hypothesis upj+1<=up1 

(Q.E.D.) 
 

Lemma 6: (Aligned MSRTs.o Base 

Cases) All size 1,2 nodes of any 

MSRTs.o of a 2CNF Clause Set S 

produced by 2SAT-GSPRA+ are aligned.  
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Proof: For size 1 nodes it is clear that the 

MSRTs.o representing any single clause 

is aligned per (Definition 12) with the 

single clause itself being the Alignment-

Clause. For size 2 nodes of the form 

S={{a,b}{x,y}} let's recall that 2SAT-

GSPRA+ converts any such Clause Set to 

a l.o. Clause Set using CRA+ (step 3, 

Definition 14). This leads to the 

following cases: 
 

Case 1 (Figure 13): No literals are 

common between the two clauses. {x,y} 

is then the Alignment-Clause 
 

Case 2 (Figure 14): There is one Literal 

in common independent of the specific 

place of this Literal. Because of RPC of 

CRA (c.f. Definition 7, 2-a), all Clause 

Sets will be converted via CRA+ to the 

form {a,b}{a,y} which has {a,y} as 

Alignment-Clause.  

(Q.E.D.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 14 
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{b}{y} 

{a, b}{a,y} 
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Lemma 7: (Alignment MSRTs.os) 

2SAT-GSPRA+ produces MSRTs.os with 

aligned nodes39 and if Splits are not 

counted, then for the whole process of 

resolution: The total number of 

generated size-1-level nodes cannot 

exceed RCC2-SAT*M2 
 

Proof: 

1. Alignment MSRTs.os (Induction on 

M)  

Base Case: M=3-sized MSRTs.os are 

aligned because their M=2-sized 

nodes or sub-trees produced by 

2SAT-GSPRA+ are all aligned 

(Lemma 6) and (as per Definition 13) 

their M=3-sized nodes or sub-trees 

are l.o. The fact that all size M=3 

nodes or sub-trees are aligned makes 

in the same way all size M=4 nodes 

aligned and so forth. Inductively: All 

M-sized nodes are aligned because all 

their M-1-sized nodes or sub-trees are 

aligned and their M-sized nodes of 

sub-trees are l.o. This implies that any 

final MSRTs.o is an Alignment 

MSRTs.o. 

2. Size-1 level nodes created in any step 

k<=M can only come from ACS and 

ACS cannot have more than RCC2-

SAT*M per (Definition 13) i.e., the 

total number of generated size-1 

nodes for all steps cannot exceed 

RCC2-SAT*M2 

(Q.E.D.) 
 

Lemma 8: ∀SB, DB, tCN such that 

SB⊆DB and tCN formed in SB: tCN can 

always be avoided by appropriately 

choosing the DB Sorting Condition. 

Similarly: tMSCNs can be avoided as 

well. 
 

Proof: According to (Definition 1), a 

block is called DB if -ve and/or +ve 

                                                 
39 As per (Definition 12) and (Definition 13): 

There is a subtle difference between aligned 

MSRTs.os and Alignment MSRTs.os. While the 

instantiations of block Literal a result in 

Sets S1, S2 respectively and either S1 ⊆ 

S2 or S2⊆ S1. Figures 15 below shows an 

example for such a dissymmetric block 

Ba={{a, b}{¬a, b}{¬a, c}{a, c}{a, d}} 

(SB={{a, b}{¬a, b}{¬a, c}{a, c}}) 

sorted in two ways: One prioritizing 

clauses with –ve occurrences of a (Figure 

15a) and the other prioritizing those with 

+ve occurrences (Figure 15b). Only the 

first, relevant parts of the resolution trees 

are shown. An SB as well as a tCN is 

formed in the first case and bound to split 

in any further step, while the second case 

avoids such formation by utilizing the 

dissymmetry in clause {a,e} to prioritize 

+ve occurrences of a. Clauses with –ve 

occurrences of the block Literal just fill 

then the TRUE leaf node in any further 

step. As (DB Sorting Condition) does not 

affect any special condition used in 

CRA+ (especially the RPC condition in 

Definition 7 which only relates to HLs 

set here to block Literal a), a 

constellation like (Figure 15b) can 

always be reached w.l.o.g. by letting 

clauses with the most common block-

literal-sign (in Figure 15b: +ve) appear 

before the others in the sort order. 

 
 

 

 

 

 
 

 

 
 

 

 

 

former represent trees with only one clause or its 

derivation entailing all Clause Sets, the latter 

represent trees in which all nodes were aligned, 

not necessarily with the same clause. 

Figure 15-a 

Figure 15-b 
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What if Ba is a MSB, i.e., some of its 

Clause Sets belong to more than one 

Space (Definition 10)? It suffices to 

observe that tCNs cannot be formed in 

blocks scattered between different, 

mutually exclusive branches of the tree. 

I.e., the constellation for Ba in (Figure 

16) is not possible: The reason being that 

branch Literal a is the head of rank-2 

clauses occurring also in the base Set BS. 

Thus, to scatter them between different, 

mutually exclusive branches an 

additional variable would be needed, 

contradicting the fact that BS is a 2CNF 

Clause Set. Therefore: Ba must occur in 

one and only one node which might be 

shared by many branches coming from 

different spaces. But then: Even if Ba or 

any of its Clause Sets were parts of more 

than one space, the same arguments used 

above would apply, if one of those 

spaces is chosen for the node in which Ba 

is occurring. In other words: When 

2SAT-GSPRA+ reaches this node it can 

apply DB-Sorting in CRA+ as instructed 

in (Definition 14) and the proof of this 

Lemma without any additional effort. 

(Q.E.D.) 

                                                 
40 The notation [3] stands for [q], q=3. 

III-4 CN-Splits in MSRTs.os 

The most important contributions of this 

work are the observations related to 

Splits of resolution trees on which l.o. 

conditions are imposed. As mentioned 

before: Only CN-Splits need to be 

thoroughly investigated. The other type 

of Splits, N-Splits (c.f. Definition 6), 

cannot occur during resolution work of 

2SAT-GSPRA+, since no node n 

containing Clause Set S and formed in 

step k, can be duplicated in steps >k, 

while S is resolved with a clause whose 

least-Literal is new and has an index 

strictly smaller than all or any indices of 

head-literals in S. Such a case would be 

a breach of the l.o. condition imposed by 

2SAT-GSPRA+ on all Clause Sets of all 

nodes (this is formally shown below in 

Lemma 9-b). As for CN- as well as 

MSCN-Splits, the following two cases in 

(Figure 17 and Figure 18) show practical 

situations occurring during resolution of 

l.o. Clause Sets, motivating the more 

abstract investigations of the Lemma 9. 

In (Figure 17), SS-MSCN3 is formed 

through instantiation of Clause Sets 

{{¬2,3}} and {{2}{¬2,3}} by 

substituting TRUE for Literal 2. It is 

clear that MSCN [3]40 can be augmented 

in size by adding additional clauses of 

the form {¬2, 𝑥} to the BS. A clause {2, 

x}, on the other hand, does not have any 

effect on [3], since it disappears from [3] 

the moment it is added to {{¬2,3}} and 

{{2}{¬2,3}}, i.e., continuing the 

current instantiation block B2 in BS 

either augments the size of MSCN [3] or 

doesn’t have any effect on it. If we 

attempt to split this node using clauses of 

the form {1, y} or {¬1, 𝑦} there is yet 

another restriction: The fact that BS is 

l.o. cannot allow any new blocks Bx 

starting after B2 to contain: x<2. 

Therefore: [3] cannot be split in any 

further step. 

Figure 16 

{a,b}{a,c}… {a,b}{a,c}.. 

a a 

{b}{c}… 
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In (Figure 18), DS-MSCN2 Splits the 

moment block B1 is continued in any 

way in the BS, i.e., when clauses of both 

forms {1,x} and {¬1,x} are resolved.  

 

 
 

The only way to augment the size of [2] 

is by starting a new block Bx which has 

to fulfill x>1, because of the l.o. 

condition imposed on the BS. However: 

When such a block starts, [2] cannot be 

split in any further step, since no more B1 

or B0 clauses are permitted. Are those the 

only possible cases of CN/MSCN Splits? 

Or are there other situations in which 

Splits can occur after MSCNs are 

augmented to big sizes? This is answered 

by the next central Lemma which 

investigates all possible situations 

encountered when Splits are attempted.  

 

Lemma 9: MSRTs.os formed by 2SAT-

GSPRA+ during resolution of a 2CNF 

Clause Set have the following properties: 

a. CNs and MSCNs containing 

clauses belonging to the BS 

or their images cannot split. 

                                                 
41 Reads: The first appearance of an image of a 

in space-i occurs after the first appearance of an 

image of l in any Clause Set S’ of the same space. 

b. N-Splits cannot exist, but 

Rank-1, size-1 CN/MSCN 

Splits can.  

c. Rank-1, size-1 CNs and 

MSCNs which are not tCNs 

or tMSCNs and which are 

augmented to sizes>1 in step 

k, cannot split in steps >k. 

Proof: 

We recall the generic form of a MSCN 

[q]ST
sp1,sp2,sp3,.. (Figure 19) which is a 

generalization of a CN and shall be used 

here w.l.o.g. and which - as opposed to 

tMSCNs - was not formed in a 

symmetric block. Its edge- or branch-

literals can be either distinguished or not 

(c.f. Definition 10, Definition 11, Figure 

12): 

 

 

 

 

 

 

 

 

 

a- If the size of [q]ST
sp1,sp2,sp3,.. gets 

augmented by a rank 2 clause 

C1’={a’, b’}ST in step k, then, 

obviously, there exists a clause 

C1={a, b}∈BS and a mapping M 

such that: a’=MST(a), b’=MST(b), 

i.e., C1’ is an image of C1. In this 

step k: All literals of C1 and all 

their images were new in all 

branches and spaces leading to 

the MSCN per Definition 10, i.e.,  

∀i,lspace-i,S’, where lspace-i is a 

branch- or edge-Literal of 

[q]ST
sp1,sp2,sp3,., S’ Clause Set of a 

parent node containing lspace-i
:  

lspace-i | aspace-i41 

  

Since all Clause Sets and all nodes are l.o., this 

means also that lspace-i < aspace-i according to 

(Lemma 1-b). 

Figure 17: SS-MSCN3 

  (....){.., q,...}Sp1 

aST=M1(x) 

cST=M3(z) 

 {..,q,…}..Sp3 

{ }ST 

 (....){ }Sp2 

bST=M2(y) 

Figure 19 

:: 

Figure 18: DS-MSCN2 
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Per (Lemma 1-a) we have: 

M(lspace-i)<M(aspace-i) -1 

To be able to split [q]ST
sp1,sp2,sp3,.. 

in any step>k, a subsequent 

clause C2={x, y}∈BS must 

traverse some or all branches and 

spaces leading to the MSCN and 

form two different Derivations 

(Definition 6, CN-Split). For at 

least one of those Derivations: 

Some parent node p, Clause Set S 

of p, space-i and edge- or branch-

Literal lspace-i must satisfy:  

xspace-i=lspace-i or yspace-i=lspace-i 

where C2’={x, y}space-i. 

Substituting in above formula -1 

we have: M(xspace-i)<M(aspace-i) 42 

On the other hand: As per the l.o. 

condition imposed on BS: a<=x 

and we have two cases43: 

If a=x then xspace-i=aspace-i and C2’ 

is added to S and augments the 

size of the MSCN instead of 

splitting it. 

If a<x, then as per (Lemma 1-b): 

(a | x), because BS is l.o., such a 

BS may have only one of the 

following two generic forms 

which realize the requirement 

that the first appearance of 

Literal x comes after that of 

Literal a44: 
{..{..,a}..{r, x}..{s, ¬x}…{a, b}…{x,y}…} 
    – 2 

                                                 
42 The same arguments hold if yspace-i is used 

instead of xspace-i or if C2 is a unit clause. Those 

cases are omitted here to avoid unnecessary 

length.  
43 In [Abdelwahab 2016-2] the ‘<’ relationship 

alone is used to show a similar contradiction for 

the 3CNF case. The reasoning shown there, 

which is equally valid here and may be 

considered a shorter version of the proof of 

Lemma 9-a of this work, goes, informally, as 

follows: “If a MSCN is augmented in size by an 

image of a clause C from the BS, then all literals 

of C or their images must be ‘>’ any branch- or 

edge-literals of the MSCN. Since BS is l.o.: Any 

clause D from the BS, coming after C, can only 

possess literals which are ‘>=’ the HL of C, i.e., 

Or  

{…{a, b}…{x, y}…}   – 3 

We will show in what follows 

that both forms lead to 

inconsistency with respect to the 

given case assumption. To see 

this: BS in form-3 satisfies, per 

Lemma 1-c for any space-i: 

(aspace-i|xspace-i) and thus also: 

M(aspace-i)<M(xspace-i), per 

monotone property of mappings. 

Contradiction. Note that {x, 

y}space-i can only come before {a, 

b}space-i when it is ‘pulled’ by a 

clause {.., x}space-i appearing 

before {a, b}space-i In that case: 

Clauses are re-arranged through 

renaming to guarantee l.o. as 

shall be seen. However: Because 

x appears in BS for the first time 

in {x, y} and not as a TL in any 

clause {.., x} prior to {a, b} such 

a situation cannot happen and the 

relative position of x or any of its 

images to an image of Literal a in 

an arbitrary space remains the 

same for this case. 

By contrast: If BS is of form-2, 

this means that in some step>k it 

may be that: Either Ba comes 

before Bx or vice versa. 

Constellations like: 

S={..{x}..{a,b}..{x,y}..}space-i or  

S={..{¬x}..{a,b}..{x,y}..}space-i 

also ‘>’ branch- or edge-literals of the MSCN. 

To split a MSCN, however, there needs to be at 

least one branch- or edge-Literal of the MSCN 

‘=’ to a Literal in D. Contradiction” In this work 

the precedence relation ‘|’ is used to allow a 

thorough investigation of permutation 

possibilities of BS, leading all to the same 

contradiction as well. For 3CNF a lot more BS 

cases are involved, explaining why ‘|’ could not 

be used there.  
44 Because of the l.o. condition, any l.o. Clause 

Set cannot have a form in which blocks Ba or Bx 

are interrupted like in: {..{a, 

z}..{..,x}{a,b}{x,y}} or 

{..{..,a}..{x,..}{a,b}{x,y}} for example.  
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which are both not l.o. To make 

S l.o. in such a step, clauses are 

re-arranged, literals renamed and 

the sub-tree reconstructed by 

2SAT-GSPRA+ such that:  

(i)-{{x}..{x, y}}space-i or  

(ii)-{{¬x}..{x, y}}space-i comes 

either before or after {a, b}space-i. 

If {x, y}∈Bx comes after Ba in a 

space-i, the situation is similar to 

Form-3 discussed above and 

leads to a contradiction, when a 

split is attempted.  The MSCN is 

augmented, since {a<x}space-i.  

On the other hand: If {x, y}∈Bx 

comes before Ba in any one or 

more Spaces, it must be the case 

that only one Derivation of {x, y} 

is generated, otherwise the 

MSCN would split, before it is 

augmented contradicting the case 

assumption.  

In Summary: Because of the l.o. 

condition which prescribes that 

instantiation blocks cannot be 

interrupted (c.f. Footnote 44), 

Clause C2={x, y}∈BS in Form-2 

or Form-3 as well as all its 

possible derivations can only 

either augment the size of the 

MSCN or leave it untouched, but 

not split it.  

Same Arguments apply for unit 

(rank-1) clauses C1={a}∈BS 

which have images in 

[q]ST
sp1,sp2,sp3,.. 45. 

b- (Figures 20) shows a Split of a 

rank-1, size-1 MSCN occurring 

                                                 
45 The intuition behind this central observation 

of Lemma 9-a is the following: When a clause 

C∈BS has an image C’ in a formed MSCN, then, 

per definition, all its literals and/or images of 

literals must have been new with respect to 

branches and edges leading to the MSCN as well 

as literals in Clause Sets of parent nodes. In that 

case: Any attempt to split the node using another, 

subsequent clause D∈BS will be in vain, because 

of the l.o. condition imposed on BS by 2SAT-

GSPRA+ which prescribes either that literals 

in the MSRTs.os for 

S={{0,1}{0,2}{1,2}{1,3}}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To show that N-Splits cannot 

exist: Suppose they do exist, this 

means - per definition of a Split 

(Definition 6) - that: ∃S’:2CNF 

Clause Set such that: For some 

n1,n2:Node∈SR-DAG, S1 is 

2CNFn1, S2 is 2CNFn2, n1≠n2: 

S’⊆ S1, S’⊆ S2 and ∄n: 

Child(n,n1)=Child(n,n2)=TRUE 

(i.e., there are no common sub-

trees between n1, n2, but there is 

a common sub-Set of clauses). 

This means also: Neither n1 nor 

n2 nor any children of them were 

CNs/MSCNs before (S’ was not 

the Clause Set of a CN/MSCN).  

Let F={..}+C+D+S, be the l.o. 

2CNF Clause Set whose 

instantiation results in a sub-tree 

like in (Figure 20c) in which S is 

a Clause Set, S’ a Set containing 

Derivations of clauses in S46, 

and/or images of literals in D be as new as those 

of C or that they be ‘pulled’ by TLs occurring in 

clauses before C, contributing thus to the 

formation not the splitting of any MSCN 

augmented in size by C.  
46 Clauses C, D whose images are not common 

between the two involved nodes may appear in F 

either before or after or bracing Sub-Set S, the 

origin of S’. F={..}+S+C+D, assumes S is 

resolved to create S’ before C, D. It relates, 

therefore, to CN- not N-Splits and is dealt with, 

Figure 20b 
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S1=D’+S’ (left node n1) and 

S2=C’+S’ (right node n2), where 

C,D∈F and C={x, y}, D={a, b}. 

C’ and D’ are Derivations of C, 

D and C’,D’ as well as any other 

Derivations of C,D ∉S’, 

C’≠D’47.  

Then: If L is the least Literal used 

to instantiate F: 

Case-1, L≠x: C’=C should have 

been ∈S1 as well as ∈S2 which 

means C’∈S’, since in the left 

node C’≠D’. Contradiction. 

Case-2, L=x: We distinguish 

three cases: 

i- x≠a, x∉D: D’=D should have 

been ∈S1 as well as ∈S2 which 

means D’∈S’, since in the right 

node C’≠D’. Contradiction. 

ii- x=a, x∈D: C’={y}, D’={}, 

D’’={b} are left- and right-

Derivations of D. Then: 

S2={y}+{b}+S’, which 

contradicts S2={y}+S’, because 

D’’={b}∉S’. 

iii- 𝒙 = 𝒂, ¬𝒙 ∈D: C’={y}, 

D’={b}, D’’={} are left- and 

right-Derivations of D. Then: 

Because F is l.o., x=a was least 

Literal in F: Both y, b must be <= 

any literals L∈S’. This means 

that clauses {y} and {b} are 

going both to appear and get 

instantiated before any clauses in 

S’ in both branches of the tree 

({b} in the left branch, {y} in the 

right branch)48. This instantiation 

                                                 
indirectly, in the other two parts of this Lemma 

showing that such a Split can only occur if 

rankS’<2 (Lemma 9-a) and SizeS’=1 (Lemma 9-

c). Form: F={..}+C+S+D is basically a 

combination between F={..}+C+D+S, the 

investigated one, and F={..}+S+C+D, i.e., does 

not provide substantially different insights and is 

therefore skipped here to avoid unnecessary 

length. 
47 For showing the result it is actually sufficient 

to consider the difference between S1 and S2 

constituting of only one clause (i.e., putting in the 

creates a common sub-tree 

between nodes n1, n2 whose 

Clause Set is S’ contradicting the 

definition of a Split.  

 

 

 

 

 

 

c- Suppose [q]ST
sp1,sp2,sp3 is a MSCN 

which is augmented in size in step k by a 

clause C’. We have just shown that if C’ 

or images of it are ∈BS, then no Splits 

can occur in any steps >k. What about the 

case where C’ is a unit clause, say {z}, 

but ∉BS and there are no clauses D’ in 
the Clause Set of the MSCN such that 

D’ is image of a D∈BS? Augmenting the 

size of [q]ST
sp1,sp2,sp3 with such a C’ in 

step k means that there is a Literal L∈ C, 
where C={¬L, 𝑧}∈BS such that all 

instantiations of C through branches 

leading to [q] agree on its truth value, 

otherwise a Split would occur in this 

step. L is a (Non-Distinguished Literal), 

argument above either D’={} or C’={}), if we 

bear in mind that 2SAT-GSPRA+ is a sequential 

Algorithm and Splits are therefore always 

formed in a single step in which only one clause 

is processed. 
48 This remains the case even if CRA+ is used, 

since the (RPC-condition) has no effect on unit 

clauses. The reader may have noticed that the 

argument used in Lemma 9-b is independent of 

renaming and variable spaces and relates only to 

the l.o. condition and the application of the Least 

Literal Rule on a Clause Set. 

L 

F: …+C+D+S, C={x,y} 

 N1: S1=D’+S’ 
N2: S2= C’+S’ 

Figure 20c 

t 

N4: …{¬𝑦, 𝑧} 

... 

y 

¬x 

[ ]+{z} 

N2:…{¬𝑦, 𝑧} 

Base-Node:...{¬𝑦, 𝑧} 

 N1: …{¬𝑦, 𝑧} 

x 

y 

y 

Figure 21a: step k 

N3: …{t}{¬𝑦, 𝑧}space-i 
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because distinguished ones like x in 

(Figure 21a) lead to different 

instantiations for different branches, i.e., 

Splits, per definition. It is not a Literal 

like t which, although non distinguished, 

appears only in some, not all branches of 

the tree. Such a Literal t would also 

create dissymmetry and hence Splits 

when C is instantiated. L is called a 

CNAL (Definition 4). The Argument 

below amounts to showing that, in case 

such CNAL L is used to augment the size 

of [q]ST
sp1,sp2,sp3 in any step, no Splits can 

occur in furtherance, unless Clause Sets 

of the form:  

{..{..<Literal i>..} {..no < Literal i >..} 

{..< Literal i >}…} – wrong-form 

are allowed for <Literal i>, used for 

splitting the MSCN, a situation which, in 

the studied cases, leads to inconsistency 

between imposed l.o. conditions on all 

sets (including BS) on the one hand and 

the to-be induced Split49 on the other. 

Intuitively, the Argument goes as 

follows: If CNAL L augments the size of 

the MSCN through a clause, say 

C={¬L, 𝑧}∈BS, then L cannot be used to 

split the same node in any further step, 

because any clause E containing L and 

coming after C in the BS can either 

agree with C in the sign of L and shall be 

thus augmenting the MSCN, not splitting 

it, or disagree and in that case it leaves 

the MSCN untouched. If on the other 

hand a <Literal i >, different from CNAL 

L, is used to split the MSCN, i.e., E={i, 

j}, its first appearance in the BS must 

come before the instantiation Block of 

CNAL L, because otherwise <Literal i> 

would be greater than all branch- and 

                                                 
49 Note that Clause Sets similar to wrong-form 

are not always breaching l.o. conditions. For 

example: S={{0,1}{0,2}{1,3}} (putting <literal 

i> = 1). 
50 The shown two cases are the only ones, 

because <literal i> which causes the 

contradiction may here be anyone of the non 

edge-literals of the MSCN, including 

CNAL L, per the l.o. condition of BS, 

and thus not able to split the node. A 

block headed by <Literal i> cannot be 

interrupted as in the above wrong-form, 

which leaves then only one constellation 

of the BS to be thoroughly investigated 

in which <Literal i> is a TL of some 

clause before C such as: 
{..{a, i}..{¬L, 𝑧}…{i, j}…} 

Although such a constellation is l.o., 

where a<i<L<z, instantiation of least 

literals by 2SAT-GSPRA+ necessarily 

results in the following non l.o. form:  
{..{i}..{¬L, 𝑧}…{i, j}…} 

In any space, the conversion of this form 

to l.o. (similar to what we have seen in 

Lemma 9-a) ‘pulls’ the clause E to a 

position in which it can only produce one 

single Derivation through all spaces and 

contribute to the formation of the MSCN 

rather than to splitting it. 

Formally, we distinguish the two only50 

cases: 

  

CNAL literals x (first case)/y (second case) or t. 

With respect to what needs to be shown: Those 

literal types are similar. They: 1- must disappear 

when the MSCN is augmented in step k and 2- 

can theoretically cause Splits in steps>k. The 

argument shown uses <literal i>=t to illustrate 

the idea w.l.o.g. t can either appear before or after 

the CNAL. 
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Case 1 (step k)- CNAL L=y 

appears in BS after <Literal i> 

i.e., (x | y), (t | y) and thus also 

x<y, t<y, since BS is l.o. (Figure 

21a).  

To split [q]ST
sp1,sp2,sp3 using t or 

any of its images in a step>k and 

space-i, two possibilities may 

occur with respect to Clause Set 

S={..{t}{¬𝑦, 𝑧}}space-i of node 

N3: 

a) S becomes = 

{..{t}{¬𝑦, 𝑧}{t,z’}}space-i, 

then either {t} was already 

∈BS and thus an image of S 

is ⊆ BS indicating a breach of 

the l.o. condition, because t 

must then be both <y and >=y 

(per l.o.) or there exists a 

clause D∈BS such that: 

D={a, t}. But then the BS 

contains a subset of clauses 

or images of the form 

{..{a,t}..{¬𝑦, 𝑧}..{t,z’}..} 

where t>=y also leads to the 

same inconsistency. 

b) S becomes = 

{..{t}{¬𝑦, 𝑧}{z’, t}}space-i. 

As t>z’>=y, this means that 

we have a contradiction for 

all possible cases of the BS 

like in a) 
 

Case 2 (step k)- CNAL L=x 

appears in BS before <Literal i> 

i.e., x | y, x | t and x<y, x<t, (Figure 

21b), we have ∀i:tspace-i<zspace-i, as 

well since {z}space-i must augment 

the size of the MSCN.  

                                                 
51The arguments used in [Abdelwahab 2016-2] 

for the corresponding 3CNF case amount to 

showing that Clause Sets similar in form to: 

{..{t}..{¬x,𝑧}..{t,z’}..}will always occur in 

parent sets of [q], if such a node is supposed to be 

augmented first in size by a CNAL z, then split 

using t, consistently breaching the l.o. condition 

and requiring re-arrangement of clauses by CRA+. 

To completely avoid the impression that this re-

As before: To split [q]ST
sp1,sp2,sp3 using t 

or any of its images in a step>k and 

space-i, two cases may occur with 

respect to Clause Set S={..{t}{𝑧}..}space-i 

of node N3: 

 

 

 

 

 

 

 

 

 

 

 

 

a) S becomes = {..{t}{𝑧}..{t,z’}}space-i, then 

either {t} was ∈BS and in that case 

{..{t}..{¬x,𝑧}..{t,z’}..}⊆ BS is a breach 

of the l.o. condition51 or  

{..{a,t}..{¬x,𝑧}..{t,z’}}⊆BS and we 

have to consider two possibilities:  

∀i:(a | x)space-i:  In that case BS has only one of 

the two forms52: 
 {..{a,t}..{¬x, 𝑧}..{t,z’}..}- form1 

Or 

 {{r, a}..{s,x}..{a,t}..{¬x,𝑧}{t,z’}}- form2 

Form1 leads to a contradiction with the 

case assumption, since x appears for the 

first time in {¬x, 𝑧} and is thus per l.o. 

condition > all literals to its left including 

t according to (Definition 1-c).  

Form2 needs to be transformed by 

2SAT-GSPRA+ to S={..{t}{𝑧}}space-i 

in steps<= k according to case 

assumption. In this form r,s must be 

<a, x, t as per l.o. condition of BS. 

This transformation, which creates 

intermediate spaces, can only be 

arrangement may lead to the same node-count as 

the one obtained when Splits are allowed, the 

arguments used here reflect on the original BS, 

rather than any arbitrary parent Set, showing that 

all possible l.o. BS forms (used by 2SAT-

GSPRA+) for the constellations shown in Figure 

21 cannot allow – without contradiction - first 

augmenting the size, then splitting such a [q].  
52 C.f. Footnote 44 in point a- of this Lemma. 

t 

... 

𝑥 

N2:…{z} 

Base-Node: …{¬𝑥, 𝑧} 

 N1:…{z} 

x 

y 

¬y 

Figure 21b: step k 

N3: {…{t}{𝑧}…}space-i 

𝑥 

[ ]+{z} 
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done - using the least Literal rule - 

as follows: 

Suppose r<s, then form2 yields two 

sub-sets: 
{{s, x}..{a,t}..{¬x,𝑧}{t,z’}} - subset1 

{{a}..{s,x}..{a,t}..{¬x,𝑧}{t,z’}} - subset2 

Because subset2 is not l.o., CRA+ 

converts it giving a form where {a} 

and {a, t} are joined in one block Ba 

after which clause {t,z’} appears, i.e.:  

{{s,x}....{¬x,𝑧}..{a}{a,t}..{t,z’}}space-j - subset2’ 

Thus, in such a space-j: zspace-j<tspace-j 

contradicting the case assumption as 

well as (a | x)space-i. 

Subset1 yields when resolved two 

additional Clause Sets: 
{..{a,t}{¬x,𝑧}{t,z’}}   - subset3 

{{x}..{a,t}..{¬x,𝑧}{t,z’}}  - subset4 

Subset3 is similar to form1 and leads 

to a contradiction with ∀i:tspace-

i<zspace-i. Subset4 needs to be 

converted to l.o.: 

{..{a,t}..{t,z’}..{x}..{¬x,𝑧}..}space-l - subset4’ 

Where {x} and {¬x,𝑧} are summed 

up in one block Bx which has the 

effect in such a space-l that (tspace-l | 

xspace-l) contradicting the assumption 

that tspace-l splits the MSCN after it is 

augmented using the CNAL xspace-l. 

Suppose r=s, then form2 becomes: 
{{r, a}..{r,x}..{a,t}..{¬x,𝑧}{t,z’}} - form2’ 

Instantiating this formula in 

steps<=k produces two sub-

formulas:  
{..{a,t}{¬x,𝑧}{t,z’}}   - subset5 

{..{a}..{x}..{a,t}..{¬x,𝑧}{t,z’}} - subset6 

Subset5 is again similar to form1 

above. Subset6 has to be converted 

to l.o. yielding blocks Ba, Bx which 

are uninterrupted and come behind 

each other, since (a < x)space-i as per 

case assumption. 

{..{a}{a,t}..{t,z’}…{x}{¬x,𝑧}} space-m - subset6’ 

In such space-m:  (tspace-m|xspace-m) 

contradicting the assumption that 

tspace-m splits the MSCN after it is 

                                                 
53 The reader may wish to verify this for 

him/herself in a way similar to the one done for 

a). One will find out, that changing the position 

augmented using the 

CNAL xspace-m. 

∀i:(x | a)space-i: In that case BS has only 

one of the two forms: 
{..{¬x, 𝑧}..{a,t}…{t,z’}..} - form3 

Or 

{{r, x}..{s,a}..{a,t}..{¬x,𝑧}{t,z’}}- form4 

Form3 makes z<t and forbids thus, 

because of (Lemma 1-c), in any 

formed space-i, that: tspace-i <zspace-i, 

unless the precedence of {¬x, 𝑧} on 

{a,t} is changed which would be a 

breach of the l.o. condition, since 

(x | a) for all spaces.  

For Form4 there are two cases: 

Suppose r<s Then because 

x<s<a<t the following two subsets 

will result of the application of the 

least Literal rule and conversion to a 

l.o. set: 

{ ..{¬x,𝑧}..{s,a}..{a,t}..{t,z’}} space-n - subset7 

{..{x}{¬x,𝑧}..{s,a}..{a,t}..{t,z’}} space-o - subset8 

Both forms don’t fulfill case 

requirement: tspace-i <zspace-i 

Suppose r=s: Then form4 becomes  
{{r, x}..{r, a}..{a,t}..{¬x,𝑧}{t,z’}}- form4’ 

Where r<x<a<t and the following 

two sub-forms result from the 

application of the least Literal rule 

and/or the l.o. condition: 

{..{¬x, 𝑧}..{a,t}…{t,z’}..}space-p - subset9 

{..{x}{¬x,𝑧}..{a}{a,t}..{t,z’}}space-q - subset10 

Both forms don’t fulfill case 

requirement: tspace-i <zspace-i 
 

b) S becomes = {..{t}{𝑧}{z’,t}} and since 

t>z’>=z, the same contradictions seen in 

a) can be shown for all possible BS 

constellations.53 
 

Resuming all cases of Lemma 9-c: BS 

constellations supporting the intention of 

first augmenting the size of [q]ST
sp1,sp2,sp3 

using a CNAL L in step k, then splitting 

it using <Literal i> all lead to 

inconsistencies, if <Literal i>≠ L. Since L 

of t in {t, z’} to become {z’,t} does not affect any 

argument used here. The case is not extended to 

avoid unnecessary length. 
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itself cannot be used to split [q]ST
sp1,sp2,sp3 

in steps >k, as seen above, this means that 

such a MSCN cannot be split. 

Here is yet another shorter version of 

the proof of Lemma 9-c using only the 

‘>’ relation for interested readers: 

In step k: L is CNAL in a clause {¬L, 𝑧 } 

augmenting the size of [q] with {z}. As 

per the definition of a MSCN : Literal z is 

> all branch and edge literals of [q], i.e., 

z>L,a,b,c,d, where a,b,c,d,.. are all edge- 

and/or branch-literals.  

In any step >k a clause C={x,..} cannot 

use L to split [q], since any +ve 

occurrence of L in C will keep [q] as it is. 

A –ve  occurrence of L in C will only 

augment the size of [q].  

If (x>z) and (L≠x) then also x>a,b,c,d. 

However: To split [q]: X needs to be 

equal to either one of them. 

Contradiction.  

If (x<z) and (L≠x) then per l.o. condition 

of BS also x>L and x cannot appear in a 

Clause C’ before {¬L, 𝑧 } as a HL, i.e., it 

must be that C’={..,x}, L<x<z. Since L, z 

are literals of the same clause, they must 

be kept together in l.o. Clause Sets of 

parent nodes of [q] and their images in 

any space will always appear either 

before or after Literal x or its images 

causing contradictions to the case 

assumption in all cases. 

To see this : If x or any of its images split 

the MSCN there has to be an edge marked 

‘x’ of a parent node n in certain space-i 

such that 

2SATn={..{x}…{¬L, 𝑧}….{x,…}} space-i 

which is not l.o. 

Making 2SATn l.o. draws 

Bx={{x}{x,..}..}space-i together prior to 

{¬L, 𝑧}space-i which is supposed to 

augment the size of the MSCN before 

{x,..}space-i splits it. Contradiction. Even if 

Bx is drawn after {¬L, 𝑧}space-i like in: 

                                                 
54 Rank 1 nodes of any size (i.e., nodes 

containing only unit clauses) have a linear 

number of nodes or sub-trees (in M) 

2SATn={..{¬L, 𝑧}..{x}{x,…}}space-i, this 

makes (x>z)space-i and thus also xspace-i>all 

edge- or branch-literals of the MSCN in 

this space, i.e., not able to cause a split, 

and augmenting the size of [q] only. 

Contradiction. (Q.E.D.) 

It is imperative to summarize the 

important findings of Lemma 9 before 

proceeding to the next section: 
 

a) (Lemma 9-a) shows that BigSps, i.e., 

Splits of rank 2 CN- or MSCN nodes 

cannot occur during 2SAT-GSPRA+ 

resolution. This anchor result of the 

work presented here puts a linear 

upper bound54 on the number of 

nodes which may be created via 

duplication (Split) of any existing 

CN/MSCN in any single step and 

basically means that sub-problems 

which need to be solved in different 

manners again and again by 2SAT-

GSPRA+ are always strictly easier to 

solve than the original problem.  

b) (Lemma 9-b) shows cases where size-

1 Splits occur. It also shows another 

anchor result, namely: No N-Splits 

can occur, because of the l.o. 

condition. 

c) (Lemma 9-c) shows that the linear 

upper bound of point a) is an 

exaggeration and only a constant 

number of nodes are generated 

whenever a CN/MSCN splits in any 

step, because Splits cannot occur for 

CN/MSCN sizes>1. 
 

Demonstrating then that the maximum 

number of such CNs/MSCNs/sub-

problems must also be small suffices for 

establishing the main node count result. 

This is done in the next section.  
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III-5 Complexity of 2SAT-FGPRA 

We proceed by showing that the number 

of unique nodes generated by 2SAT-

GSPRA+ is bounded above by a 

polynomial in M, the number of clauses. 

As 2SAT-GSPRA+ uses in each iteration 

a data structure in which newly created 

Clause Sets are stored in their CRA-

Form (LCS, c.f. Definition 14) there is a 

guarantee that no more nodes/Clause 

Sets are generated than the ones given by 

the maximum unique node count. 

(Lemma 2-c) makes sure that CRA-

Forms in CNs and/or MSCNs represent 

Clause Sets which are logically 

equivalent although they may belong to 

different spaces. 
 

Lemma 10: In any step i>=0 of 2SAT-

GSPRA+ resolving an arbitrary BS of 

size M=i+1 with Clause Ci: Newly added 

clauses used to align any nodes/sub-trees 

of Clause Sets S’ of size <M produced in 

steps <i can only come from ACS. The 

total number of unique-nodes produced 

by 2SAT-GSPRA+ for S in the final 

MSRTs.o, including those generated by 

Splits, is, therefore, bounded above by: 
 

2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3, 

c<=2, i.e., O(M4) 
 
 

Moreover: This bound remains 

polynomial, i.e., O(M6), even if Splits 

are allowed which are not BigSps. 
 

Proof: (by induction on M) 
 

Base-Case: M=1: For size 1 nodes the 

MSRTs.o representing a single clause 

which is aligned per definition, the single 

clause itself being the (Alignment-

Clause). For M=1 we have, therefore: 

i=0: 2 <2+ 2*(4)2 *(1)4 
 

Illustration Case: M=2: The alignment 

of clause C1 to C0 in step i=1 of the 

resolution adds in the worst case 2 to the 

nodes of the MSRTs.o of clause C0 which 

are also 2 at most (c.f. Lemma 6 and with  

 
Figures 13 and 14). Thus, for step M=2 

we have: 
 
 

i=1: 2+2 <2+ 2*(4)2 *(2)4 
 

 

The practically used ACS-portion is 

comprised of clause C1 and/or its 

derivations. 
 

Induction Hypothesis (size M): 

An IRT with a base-node of size M (step 

i+1) in the form of (Figure 22) (here k=2) 

is produced by adding in each step only 

elements of the ACS to the size 1 nodes 

levels (while aligning clauses to the 

intermediate IRTs of previous steps) and 

the total number of unique-nodes, 

including those resulting from Splits, do 

not exceed: 
 

2+c*RCC2-SAT
2 *M4 + RCC2-SAT*M3, c<=2 

 

 

 

 

 

 

 

 

 

 

 

  Figure 22: IRT with base-node size M 

 

:: 
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Induction Step (size M+1): 

When IRT is resolved in step i+2 via 

2SAT-GSPRA+ with a clause C: 
 

1. k M-sized nodes shall become k M+1-

sized nodes and l.o. as well (per 

definition of 2SAT-GSPRA+ and the 

fact that the BS is l.o.). The breadth k 

of the first clause C0 in S is not altered 

and thus also the number of nodes in 

the (Top-part). No other M+1-sized 

nodes can be formed. 
 

2. Recall that as per (Lemma 7): The 

total number of generated size-1-level 

nodes cannot exceed  

RCC2-SAT*M2, if Splits are not 

counted. In essence we show the same 

again here, but in the context of only 

one resolution step: For all <M-sized 

nodes (when they are resolved with C 

forming nodes of Sizes <= M): The 

induction hypothesis applies, i.e., step 

i+1 produced for each one of them at 

most  

|ACS|=RCC2-SAT*M  
 

new nodes of size 1 in their respective 

sub-trees (not counting Splits). 

Suppose now that in step i+2 C is 

aligned to such a node n (Figure 23) 

needing for the alignment of sub-trees 

of n (not necessarily in the same 

space) some other clauses C’, C’’ 

from ACS. If two or more sub-

MSRTs.os of node n and/or any other 

node are aligned with the same clause 

C, C’ or C’’, then on size-1 level of 

                                                 
55 Trivial CNs/MSCNs are not accounted for, 

because they can be avoided altogether w.l.o.g. 

as per (Lemma 8). 
56 This is a theoretical exaggeration, since CRA-

Forms of clauses like {a,b} and {x,y} are always 

the same in reality so that only RCC2-SAT size-1 

nodes are practically added to the overall 

MSRTs.o in this step. Keeping the factor M lets 

us assume that 2SAT-GSPRA+ handles 

the final, overall MSRTs.o a 

CN/MSCN possessing one unique 

CRA-form (c.f. Definition 14 in 

which CRA+ is always applied before 

storing any Clause Set) will be built 

only one time within a space or 

between different spaces representing 

each one of C, C’ or C’’. In addition: 

All such non-trivial CNs/MSCNs55 

can only represent members of ACS 

per definition of ACS (Definition 13). 

Thus, the total number of newly 

formed, unique, size 1 nodes for all 

trees and sub-trees in this step (which 

may or may not become non-trivial 

CNs/MSCNs) cannot exceed |ACS| in 

the worst case56, i.e.: RCC2-SAT *M. 

 

 

 

  

permutations of different clauses of the base set 

differently, storing them in separate places when 

they appear. This is of course not how 2SAT-

GSPRA+ works, but gives us a good way to 

exaggerate our assumptions about its way of 

work so that we can get a more reliable upper 

bound. The exaggeration would be then: To leave 

the M-factor, while counting any possible Splits 

of all those redundant nodes as well. 

Space-1 

SRT1 SRT2 SRT3

3 

…….. 

C 

 Node n 

C aligned to n  

C’’ C' C 

C’ C’’ 

Space-N 

Size-1 Level 

 

Figure 23 
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3. As per 2., the total number of 

generated non-trivial CNs/MSCNs at 

level 1 cannot exceed RCC2-SAT *M2 

in all steps without counting Splits. 

To count Splits at level 1: Recall that 

one copy of a node remains as it is and 

another copy is resolved with a new 

clause moving up the hierarchy (c.f., 

e.g., Figure 20). Assuming for the 

worst case that each one of those 

nodes is split by the newly resolved 

clause C in step i+2 and remains in 

the same level as it is as well: There 

are RCC2-SAT ways to do so for any 

CN/MSCN per definition57. Those 

Splits can only form Clause Sets of 

size 1 and produce only a constant 

amount c(=<2) of new nodes each 

time58. If we assume (also as an 

exaggeration) that step i+2 adds all 

ACS-elements of point 2 as new 

nodes as well59, this makes the 

maximum number of newly added 

size 1 nodes in this step: 
 

c*RCC2-SAT
2 *M2+ RCC2-SAT *M 

 

This means that 
 

c*RCC2-SAT
2 *M3 + RCC2-SAT *M2 

 

is an upper bound of nodes added 

to size-level 1 during the whole 

process of resolution. What about 

added nodes of sizes >1? 

(Lemma 9-c) assures us that there 

are no Splits of nodes at j-size 

                                                 
57 Recall that RCC2-SAT is the cardinality of the 

Set of all clauses which are permutations of 

Literal arrangements of a 2CNF clause C. 
58 We are assuming hence that each newly 

resolved clause in each step i+2 comes with a 

least-literal equivalent to previously instantiated 

block literals of parent-nodes of every non-trivial 

CN/MSCN created before in every space and 

Splits this non-trivial CN/MSCN in all possible 

ways without breaching any l.o. condition. A 

clear exaggeration. 
59 Even if new nodes coming from ACS in this 

step are counted twice this way: It only helps the 

exaggeration intended here. 

levels, for j>1. This means, we 

can apply the (expansion Lemma 

5-c) which asserts that in the 

worst case and for the whole 

resolution process: The upper 

bound of the number of new 

nodes at all those j-size levels 

cannot exceed 
 

c*RCC2-SAT
2 *M3 + RCC2-SAT *M2 

 

confirming thus the given O(M4) 

bound for all levels.  

Resuming again: The O(M2) nodes 

generated in size level 1, which 

include (as a worst case) also all 

possibilities of Splits of CN/MSCNs 

at this level, may in a further 

exaggeration all be propagated up the 

hierarchy of sizes to form at each step 

and for each size-j-level of nodes 

O(M2) additional, new ones. If they 

are not propagated, they remain in 

their respective levels and are not 

accounted for further up in the 

hierarchy60. 
 

4. What happens if we relax (Lemma 

9-c), i.e., allow Splits at size-levels j, 

j>1, which are not BigSps? Any such 

Split would cause only O(M) new 

nodes to be generated each time it 

occurs (as the nodes involved can 

only be of rank 1). According to 

(Lemma 5-b) any CN/MSCN [q] in a 

size-level j and step k must be a 

CN/MSCN [q’] of size-level j-1 

60 Remember that, because there are no Splits at 

such levels, a node in any size-level-j, j>1, can 

either be propagated up in the hierarchy or left as 

it is, but not both, the argument here can also be 

expressed as follows: The O(M2) new nodes 

formed at size-level 1 in each step may in the 

worst case always stop at a certain level j>1 and 

not be propagated further up in the hierarchy. In 

that case level-j will contain at the end of the 

resolution process at most O(M3) unique nodes. 

Assuming that all other levels are similar to 

level-j (an exaggeration which can never 

happen), we get the O(M4) bound.  
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created in steps<k and augmented by 

the new resolved clause in step k. This 

means that the number of 

CNs/MSCNs which can split in any 

size-level j cannot exceed the 

maximum number of CNs/MSCNs at 

size-level j-1 and ultimately at size-

level j=1, i.e., in the worst case O(M2) 

as seen in point 2. Relaxing Lemma 9-

c, we can, therefore, assume as a 

worst case that a new resolved clause 

at any step k splits all CNs/MSCNs 

residing in all levels j>=1 in RCC2-SAT 

possible ways creating at each level 

the maximum possible amount of 

RCC2-SAT*O(M) new nodes for each 

CN/MSCN and that those nodes may 

all be propagated up the hierarchy as 

well. Thus, the upper bound of unique 

nodes created through Splits at any 

level j>=1 and in any step k is: O(M3), 

i.e., O(M4) for all steps. Using a 

simple inductive argument on size-

levels 1<=j<=M, we can show that the 

overall upper bound of unique nodes 

is O(M6), whether nodes are 

generated through Splits or through 

propagation. 
 

Base Case: Level j=1 contains at the 

end of the resolution at most: 

O(M3)<=1*O(M4) unique nodes as 

just seen. 
 

Induction Hypothesis: Size-level j 

contains at the end of the resolution: 

j*O(M4) unique nodes, j<=M  
 

Induction Step: For size-level j+1: 

As per 2SAT-GSPRA+ (Definition 

14) a node can only become of size j 

                                                 
61Definitions: (14) and (15) of both Algorithms 

deliberately leave the issue of choosing C0, the 

head clause of 2CNF Clause Set S to the 

respective implementations of the Algorithms, 

thus opening up the possibilities for choices 

which may lead to different node counts. 

(Lemma 11) shows that whatever those choices 

for 2SAT-GSPRA+ are, 2SAT-FGPRA can 

simulate them correctly. Since only l.o. Clause 

in any step k when either it was of size 

j-1 in steps <k and it got augmented in 

size or when it was generated via 

Split. Unique nodes created through 

Splits cannot exceed O(M4) for all 

levels as just seen. Per induction 

hypothesis: The number of unique, 

size-level j nodes never surpasses 

j*O(M4), which makes the total 

number of unique nodes in size-level 

j+1 after resolution terminates: 

(j+1)*O(M4). As j<=M, we have in 

each such level j at the end: O(M5), 

making the overall upper bound for 

the whole MSRTs.o: O(M6). 

(Q.E.D.) 
 

Finally: The following Lemma shows 

that 2SAT-FGPRA (Definition 15) can 

simulate 2SAT-GSPRA+ correctly, i.e., 

producing exactly the same MSRTs.o 

when taking the same Clause Set sorting 

choices. It also gives an asymptotic 

upper bound of the number of operations 

needed by 2SAT-FGPRA61. 
 

Lemma 11: The following is true: 

a- For any arbitrary 2CNF Clause 

Set S: ∃G:MSRTs.o such that: 

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G. 

b- For 2SAT-FGPRA to produce 

G shown to exist in point a-: For the main 

Assistance Operations62 used by 2SAT-

FGPRA on 2CNF Clause Sets S of size 

M: Node creation and returning results 

(function SubTree), MSRTs.o creation for 

a single clause (function Convert), 

CRA+, Forming new Clause Sets using 

least-Literal-rule (instantiation), Storing 

(nodes), Searching Clause Sets in LCS: 

Sets are used in any sub-problems generated by 

instantiation operations, 2SAT-FGPRA is 

producing a MSRTs.o equivalent to one produced 

by 2SAT-GSPRA+, which always has a 

polynomial number of unique nodes as just seen 

in (Lemma 10). 
62 By Assistance Operations we mean modules 

and/or sub-functions used in the pseudo-code of 

2SAT-FGPRA. 
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The total, worst case number of 

Primitive Operations63 performed by any 

single one of them during a run of 2SAT-

FGPRA is: O(M9). Moreover: Relaxing 

Lemma 9-c yields an upper bound of 

O(M13). 
 

Proof: 

a- (induction on M, the size of S). 

Assume that both Algorithms use the 

same ordering choices in CRA+. Both 

Algorithms use CRA+ in their 

preparation phases (points 2 and 3 in 

Definitions 14 and 15) on the same S, 

i.e., they order clauses in S in the same 

way. Remember also that they always 

convert Clause Sets to l.o., particularly in 

Top-Parts of resolution trees, using the 

same CRA+ as well. 
 

Base-Case: M=1: Because there is only 

one C0 ∈ S, they convert it into the same 

MSRTs.o G. In that case obviously:  
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G. 
 

Induction Hypothesis: 

For all 2CNF Clause Sets S of size M: 

∃MSRTs.o G such that:  

2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G. 
 

Induction Step: If S is l.o. of size M+1, 

then let S’=S\A, where A is the last 

clause in S. Per induction hypothesis: 

∃MSRTs.o G such that: 
 

2SAT-FGPRA(S’)=2SAT-GSPRA+(S’)=G  
 

and we distinguish two cases: 
 

1- When A is aligned to G by 2SAT-

GSPRA+ to form G’ of S there is no 

breach of any l.o. condition in any 

parts of G and A is appended to all 

Clause Sets of G in Top- as well as 

Bottom-parts. In that case: Top-parts 

of G’ are clearly equivalent for both 

Algorithms because Literal choices 

of C0 ∈ S are not affected by the 

addition of clause A in either case 

                                                 
63 Primitive Operations take a constant amount 

of time in the RAM computing model. 

and A is appended to Clause Sets 

which are exactly the same for both 

Algorithms. We use the induction 

hypothesis for Bottom-parts stating 

that there are always graphs G1, 

G2,…Gn which are equivalent for 

both Algorithms and can be 

substituted for Bottom-parts of G’ to 

conclude that: 
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G’ 
 

2- When A is aligned to G by 2SAT-

GSPRA+ to form G’ of S and there is 

a breach of the l.o. condition in some 

Clause Set S’’ in the Top-part of G’: 

Because this breach relates only to A, 

while all other clauses Ci ∈ S’’ are as 

per induction hypothesis the same for 

both Algorithms (and they use same 

choices for CRA+ as well), both 

Algorithms fix the breach generating 

the same exact Clause Sets in Top-

parts of G’ and produce thus the 

same, related Bottom-parts. If on the 

other hand A causes the breach in 

Bottom-parts whose Clause Sets are 

all of size M, the induction 

hypothesis applies and there are 

graphs G1, G2,…Gn which are 

equivalent for both Algorithms and 

can be substituted for such Bottom-

parts of G’, thus: 
 

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G’. 
 

b- Because of (Lemma 10), we know that 

the total number of unique-nodes in G 

cannot exceed 2+ c*RCC2-SAT
2 *M4 + 

RCC2-SAT *M3, c<=2 (taking the result 

obtained without relaxing Lemma 9-c). 

Since G is produced by 2SAT-FGPRA as 

per point a- as well: The following are 

then upper bounds of the total number of 

invocations of Primitive Operations for 

all Assistance Operations listed above 

for that Algorithm (c.f. Definition 15): 
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1. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3 

times CRA+ (each node needs 

renaming of its Clause Set so that it 

can be stored in LCS in its CRA-

Form). Through (Lemma 3) it is 

known that CRA+ takes 

O(M2(logM+N)). Since N cannot 

exceed c*M, i.e., is in O(M)64, this 

makes the total worst case number of 

Primitive Operations for this 

category: O(M7).  

2. 2*(2+ c*RCC2-SAT
2 *M4 + RCC2-SAT 

*M3) times instantiation (two new 

Clause Sets are formed for each node 

in the worst case). Instantiating a 

Clause Set by substituting values 

TRUE or FALSE for a certain Literal 

in all M clauses is an operation in 

O(M). This makes the total number of 

Primitive Operations for 

instantiation: O(M5). 

3. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3 

times node creation assuming that it is 

in O(c), i.e., O(M4). Same amount is 

needed for all SubTree function 

invocations, since getting from LCS a 

stored sub-tree using its index may be 

assumed to take O(c) operations. 

4. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3 

times Storing/Appending in/to LCS 

assuming that it is in O(c), i.e., 

O(M4). 

5. MSRTs.o creation for a single clause: 

O(c), since independent of M any 

clause can have at most 2 literals 

where 2 nodes are created for each 

one of them. 

6. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3 

times Searching Tuples in LCS. This 

search operation can be accomplished 

                                                 
64 To c.f. this: Let M=f(N). f can be exponential, 

i.e., N=O(log M), polynomial, i.e., N=O(M1/k) 

for a given k or linear, i.e., N=c*M, c<=2, which 

is the largest count N can reach, representing the 

case where all clauses have distinct variables.  

in the least efficient way65 by 

sequentially comparing the sought 

Clause Set with all Clause Sets stored 

in the LCS, a single comparison of 

two Clause Sets being in O(M). In the 

worst case there are 2+ c*RCC2-SAT
2 

*M4 + RCC2-SAT *M3 Clause Sets in 

LCS, i.e., O(M8) comparisons are 

needed. This makes the total number 

of Primitive Operations for Searching 

O(M9). 
 

If we relax Lemma 9-c we obviously get 

O(M13) as the number of unique-nodes in 

G would be in O(M6) as per (Lemma 10) 

and the search operation in point 6 above 

is, as seen, the bottle-neck of 2SAT-

FGPRA, requiring in the worst case: 

O((unique-nodes)2*M) operations. 

(Q.E.D.) 

 

III-6 Counting Solutions 

In this section we show that there exists 

an efficient Algorithm which counts 

solutions in the final MSRTs.o produced 

by 2SAT-FGPRA. We give an example 

of its application. Correctness and 

efficiency are shown in Lemmas (13) and 

(14) respectively. 
 

Count2SATSolutions: 

Inputs: The MSRTs.o generated by 2SAT-

FGPRA for a 2CNF Clause Set S 

Outputs: Solution Count (Integer) 

Steps: -  

1- NamedMSRT = Name nodes and edges 

starting from 0 and determine their levels. 

(Algorithm: DetermineLevels below) 

2- Set Solution Count for node n0 = 0, and for 

edges on level 1 to be =1 

3- For all levels i in NamedMSRT 

a. For all edges eij, j is the index of an edge at 

level i:  

65 The least efficient way is chosen to avoid any 

assumptions regarding sort- and search orders of 

Clause Sets in LCS. 
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i. Set Solution Count of eij=Solution Count 

of parent node 

b. For all nodes nik, k is the index of a node at 

level i: 

i. If nik is a TRUE leaf: 

Solution Count of nik=(∑ex*2i-Le)*2N-i, 

where x represents the index of any edge 

going into nik, ex is the solution count of such 

an edge, Le is edge level of x 66, N number 

of variables in S 

ii. Else  

Solution Count of nik=∑ex*2i-Le 
4- Return SolutionCount==∑ Tnd, Tnd is a TRUE 

leaf node 

 

Determining levels of nodes in the 

MSRTs.o in the first step of 

Count2SATSolutions requires 

calculating the longest path from the 

source node to each other node, since a 

node may have several paths and its level 

relates only to the longest one as per 

(Definition 0.3), a problem which is in 

general NP complete [Schrijver 2003]67. 

However: The single-source longest path 

problem for an un-weighted DAG (like 

the MSRTs.o.) has an efficient and even 

linear solution (O(|V|+|E|), V vertices 

and E edges) which uses topological 

ordering. In [Dasgupta 2006] (Ch. 4.7, p. 

130), a single-source shortest-path 

algorithm for DAGs is described. It only 

needs to perform a sequence of updates 

that includes every shortest path as a 

subsequence. The key source of 

efficiency is that in any path of a DAG, 

the vertices appear in increasing 

linearized order. Therefore, it is enough 

to linearize (that is, topologically sort) 

the DAG by depth-first search, and then 

visit the vertices in sorted order, 

updating the edges out of each. The 

                                                 
66 Recall as per (Definition 0.3): Le= LSr+1 if Sr 

is the Source of e.  

67 The longest path problem for a general graph 

is not as easy as the shortest path problem 

because it doesn’t have optimal substructure 

property, i.e., that sub-paths between two nodes 

have themselves to be optimal (enabling the 

greedy strategy).  

scheme doesn’t require edges to be 

positive. In particular, one can find 

longest paths in a DAG by the same 

Algorithm: Just negating all edge 

lengths. The following slightly modified 

Algorithm first creates an ordering for 

the MSRTs.o and then calculates the 

longest distance from the source to each 

node (which is then set to the level of that 

node). Correctness and efficiency of the 

original algorithm is discussed in the 

above reference. 
 

DetermineLevels: 

Inputs: The MSRTs.o generated by 2SAT-  

 FGPRA for a 2CNF Clause Set S 

Outputs: Nodes named and their levels 

calculated 

Steps: -  

1- Scan the MSRTs.o recursively, rename edges 

and nodes and form the topological, lineralized 

order in a depth first traversal manner68.  

2- For all u ∈ V:  

dist(u) = ∞  

dist(s) = 0, s is source node 

3- for each u ∈ V , in the linearized order: 

 dist(u)= Dist(u, MSRTs.o.)  

 Lu=| dist(u)| 

Dist: 

Inputs: u ∈ V, DAG = (V,E) 

Outputs: Integer representing distance from u 

to source of DAG 

Steps: -  

for all nodes v1,v2,..vn ∈V such that (u,vi) ∈E:  

Dist (u,DAG) =  

min{ 

[Dist (v1,DAG) + l(u, v1)], …. 

68 A topological sort order of nodes is basically 

an inequality, which may be formed in the 

following way: For any two nodes n1, n2 children 

of node n: create the inequality n<n1<n2 and add 

it to the final inequality formed recursively 

through depth first traversal. When the inequality 

is extended: Node n1 and its children comes 

before n2 and its children according to 

precedence in already constructed inequalities. 

Algorithm – A3 
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[Dist (vn,DAG) + l(u, vn)] 

} 

l(u,vi,) is the length of the edge from u to vi 

(which is always ‘-1’). 

 

Applying this algorithm to the MSRTs.o 

produced for Clause Set: 

S={{0,1}{0,2}{3,4}} for example yields 

after the first step (Figure 24).  

 
In the third step the following example 

sequence of operations is performed to 

get the longest distance from n0 to n2 

whose absolute value corresponds to the 

level of n2: 

a) The only way to go from n0 to n2 is 

through the only direct predecessor node 

n1. Thus dist(n2) = Dist(n1,DAG) -1 

b) Dist(n1,DAG)=min{Dist(n0,DAG) -

1,Dist(n6,DAG)-1}= min{-1,Dist(n6,DAG)-1} 

c) Dist(n6,DAG)= Dist(n5) -1 

d) Dist(n5,DAG)= Dist(n0) -1=-1 

e) Dist(n6,DAG)=-2 

f) Dist(n1,DAG)= min{-1,-3}=-3 

g) dist(n2) = -4 

h) Ln2=4 

 

(Figure 25) shows all nodes and their 

levels.  

 

 

                                                 
69 The reader may wish to verify this number by 

constructing the truth table and counting the 

assignments satisfying S 

 

 

 

 

 

 

 

 

 

 

 

 

 

After levels of nodes are created in step 

1 of Count2SATSolutions as just seen, 

executing steps 2, 3 through all levels 

gives the following sequen ce of 

operations completing thus the example: 
 

a) Level-0: n0=0 

b) Level-1: e0=1,e5=1,  

n5=e5*2i-Le5=1*21-1=1 

c) Level-2: e6=n5=1, e9=n5=1, 

n6= e6*2i-Le6=1*22-2=1 

d) Level-3: e7=n6=1, e8=n6=1, 
n1=e0*2i-Le0+e7*2i-Le7= 

1*23-1+1*23-3=5 

e) Level-4: e1=n1=5, e2=n1=5,  

n2=(e1*2i-Le1)*2N-i= 

(5*24-4)*25-4=10, n3=e2*24-4=5, 

f) Level-5: e3=n3=5, e4=n3=5, 

n4=(e3*2i-Le3)*2N-i= 

(5*25-5) * 25-5=5  

g) Solution Count=n4+n2=1569 
 

In the next Lemma we show that both 

2SAT-GSPRA+ and 2SAT-FGPRA are 

complete 2SAT-Solver Algorithms. As 

per (Lemma 11-a) 2SAT-FGPRA 

simulates 2SAT-GSPRA+ correctly 

producing the same MSRTs.os. It is thus 

sufficient to prove this property for 

2SAT-GSPRA+. Doing this will enable 

us to focus in the correctness proof of 

Count2SATSolutions on MSRTs.os rather 

than on truth tables  

Algorithm – A4 

Figure 24 

Figure 25 
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Lemma 12 (completeness, truth table 

equivalence): 2SAT-GSPRA+ and 

2SAT-FGPRA are complete, truth table 

equivalent Algorithms, i.e.: Let S be a 

2CNF Clause Set, A any Assignment of 

truth values of literals in S, then: 

Applying A on the MSRTs.o produced by 

any of the two Algorithms leads to a 

TRUE leaf iff A satisfies S. 
 

Proof: We are going to show the result 

w.l.o.g. for 2SAT-GSPRA+ only (by 

induction on M, the number of clauses in 

S) 
 

Base: M=170 for the following MSRTs.o: 

 

 

 

 

 

 

 

If we construct the Truth Table T2 
 

a b S 

0 0 1 

0 1 0 

1 0 1 

1 1 1 
 

and use the following propagation rule to 

apply any Assignment A to any node in 

the MSRTs.o: 

"If the input value of the least Literal in 

A is TRUE go left, else go right. Apply 

this rule to all literals in A and nodes in 

the MSRTs.o until you reach a leaf". 

Then, the obtained results are equivalent 

to the ones found in the truth table. 

Check the two marked cases: For 

assignment A="01" the base-node will 

take us right through edge ¬a, then left 

through edge b making the overall value 

FALSE as the one indicated in the truth 

table. For Assignment A="10" we are 

                                                 
70 The case used here (w.l.o.g.) is not the only 

permutation of +ve/-ve literals a,b combined in a 

clause. The reader is encouraged to check other 

taken by edge a directly to the value 

TRUE which is the value of the truth 

table as well.  
 

Induction Hypothesis: For all 

Assignments A of truth values to literals 

in S, SizeS=M: Applying A to the 

MSRTs.o using the above propagation 

rule returns TRUE iff A satisfies S. 
 

Induction Step: Let S=S’+C, 

SizeS=M+1. Remembering that S must 

be l.o.: When C= {x,y} is added to S’ the 

following cases can be distinguished: 

1. x,y are new with respect to S’: 2SAT-

GSPRA+ propagates C until leaves 

are reached (per l.o. condition the new 

variables are > all literals in branches 

of the previous tree). If leaves are +ve 

then the tree representing C will 

substitute them, otherwise FALSE is 

left. Each branch ending with TRUE 

stands per induction hypothesis for 

the fact that - without the newly added 

clause {x,y} - the Set S’ had already a 

satisfiable assignment A and what is 

missing is to satisfy {x,y} only by 

extending A with a partial assignment 

giving x, y truth values so that A 

becomes A’. This is done through the 

extension produced by 2SAT-

GSPRA+ which is a tree T similar to 

the one in the base case. Because we 

need only to check the two new 

variables, it is easily seen (as in the 

base case) that for all TRUE leaves of 

T, reachable using the propagation 

rule: A’ satisfies S’ +{x,y} and vice 

versa, i.e., if a given A’ satisfies 

S’+{x, y} through giving literals x or 

y the value TRUE, then a TRUE leaf 

in T must be reachable via the above 

procedure. When on the other hand a 

branch terminates with FALSE, 

reachable through any assignment A, 

it is guaranteed by induction 

permutations and verify the validity of the 

property for M=1 in a similar way to the one 

shown here. 

Figure 26 

{¬b} 

{a,¬b} 

TRUE 

a ¬a 

b 
¬b 

FALSE TRUE 

Truth Table - T2 
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hypothesis also that S’ is not 

satisfiable by A even without taking 

the new clause into consideration. 

Thus, A’ does not satisfy S’+{x,y} as 

well for any truth values given to x 

and/or y.  

2. x exists in S’, while y is new: When C 

is propagated through branches of the 

tree, those terminating with FALSE 

and reachable through assignment A - 

as seen in the previous case - are not 

dependent on the new clause and will 

keep their values and guarantee (per 

induction hypothesis) that S’ is not 

satisfiable. Therefore for that case: 

Any new assignment A’ adding a new 

variables to A is not satisfying 

S’+{x,y} as well. For all those 

branches which terminate with TRUE 

it either might be the case that this 

truth value is independent of the new 

variable y and thus kept as it is per 

induction hypothesis (i.e., A satisfies 

S’+{x,y}), or it is dependent on y and 

the branch (and per induction 

hypothesis its corresponding 

assignment A) is extended with a sub-

tree containing two possibilities of 

partial assignments satisfying the 

single new clause {y}: (y=TRUE) and 

(y=FALSE).Then: If 

A’=A+(y=TRUE) satisfies S’+{x,y}, 

it leads to a TRUE leaf using the 

above procedure and if 

A’=A+(y=FALSE) doesn’t it leads to 

a FALSE leaf (first direction) while if 

S’+{x,y} has to be satisfied and we 

are on a TRUE leaf, 

A’=A+(y=TRUE) can be used to do 

that (other direction). 

Resuming the case of C = {x,y}: 

Either no new nodes are added to the 

                                                 
71 For illustration: Consider the case where {1,2} 

is added to {0,1}{0,2}. The left branch of the tree 

for {0,1}{0,2} which is the leaf TRUE, 

corresponds to the fact that values of 1&2 are not 

relevant for the overall value of the formula 

{0,1}{0,2} when literal 0 is set to TRUE 

tree in all those branches where x 

and/or y already exist and where per 

induction hypothesis the tree is 

already equivalent to the right truth 

table or x and/or y are new in some 

branch. In that case they will be added 

to the +ve leaves accordingly and 

correspond to specifications of truth 

table values which were don't cares 

before71.  

(Q.E.D.) 

 

The following Lemma shows then the 

correctness of Count2SATSolutions. 
 

Lemma 13 (Correctness): Let S be a 

2CNF Clause Set for which 2SAT-

GSPRA+ or 2SAT-FGPRA produce a 

MSRTs.o, AllAssignments the set of all 

satisfibale Assignments of S, then: 
Count2SATSolutions(S)=|AllAssignments|. 
 

Proof: (by induction on N, the number 

of levels of nodes in the MSRTs.o) 
 

Base: N=1: Let S={{a}}, then 

Count2SATSolutions produced in step 1 

the following tree: 
 

 

 

 

 

 

 

After which the following sequence of 

operation steps follow: 

a) Level-0: n0=0 

b) Level-1: e0=e1=1, n1=e0=1 

c) Result =1 
 

Which represents the single assignment 

satisfying S, namely: {(a=TRUE)} 

 

following this particular assignment branch, i.e., 

they are Don't Cares. When {1,2} is added, its 

tree replaces TRUE indicating for what values of 

1 & 2 the same truth table gives truth values 

capturing satisfiability conditions of the newly 

added clause {1,2}. 

Figure 27 

{a} 

TRUE 
FALSE 

e1 

n0 

n1 
e0 
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Induction Hypothesis: For all levels N 

in the MSRTs.o.: All node- and edge 

values calculated via 
Count2SATSolutions for that level represent 

the exact number of solutions possible 

through the respective node or edge.  
 

Induction Step: For level N+1, when 

node- and edge-values of that level are 

calculated: 

1- Edge values are equivalent to 

values of parent nodes which are all 

correct per induction hypothesis. 
 

2- Node values are summations 

of edge values either from the same 

level and in that case (per -1) correct or 

from prior levels. Call an edge from prior 

levels e. The value of e is also correct per 

induction hypothesis, but in need for a 

multiplication factor (step 3-b-ii): 

2(N+1)-Le representing the number of 

exponential possibilities of partial 

assignments lost by e through skipping 

variables. Trivially: Any skipped 

variable is accounted for by the 

multiplication factor of 2. 

3- Values for nodes which are 

TRUE leaves are, with respect to 

whatever happened before them, correct 

(as per -1 and -2), but in need of another 

multiplication factor 2NumberOfVars-(N+1) 

representing the number of exponential 

possibilities of partial assignments lost 

through stopping at that level.  

Therefore, the conclusion is that 

assuming Count2SATSolutions counts 

the solutions correctly for any level N, it 

does the same for level N+1. 

(Q.E.D.) 

This section concludes with an upper 

bound on the number of operations 

needed by Count2SATSolutions.  

 

Lemma 14 (Efficiency): Let S be a 

2CNF Clause Set for which 2SAT-

GSPRA+ or 2SAT-FGPRA produce a 

MSRTs.o: The number of steps taken by 

Count2SATSolutions to count all exact 

solutions of S is in O(M9), M being the 

number of clauses (size) of S. If we relax 

(Lemma 9-c) we get O(M13). 
 

Proof: Remembering that the number of 

nodes/vertices of a MSRTs.o is O(M4) (as 

per Lemma 10) and edges cannot exceed 

thus O(M8) in this DAG, we have the 

following: 
 

 1- Step 1 in Count2SATSolutions, 

i.e., DetermineLevels Algorithm, takes 

an amount of steps linear in the number 

of nodes and edges, i.e., O(M8): 

a- Scanning the MSRTs.o 

in the first step to rename nodes 

and edges and calculate the 

topological order is in O(M8) 

b- Applying the single-

source shortest-path algorithm 

for DAGs is in O(M8) as well 

(c.f. [Dasgupta 2006], Ch. 4.7, p. 

130) 
 

2- In further steps 

Count2SATSolutions loops through all 

levels calculating edge- and node-values 

for each level. In the worst case, this 

would be O(M8*N), where N is the 

number of variables in S. Since N is in 

O(M) (c.f. Lemma 11 Footnote 64), we 

get an upper bound of O(M9). Relaxing 

(Lemma 9-c) gives us as per (Lemma 10) 

O(M6) for the unique node count, which 

makes counting in O(M13) in that case. 

(Q.E.D.) 

 

Now we are ready for the main theorem 

of this paper. 
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III-7 Main Result 

Theorem 1: 

a- Let S be a kCNF Clause Set, k>0, 

kSAT-GSPRA+ and kSAT-FGPRA 

Algorithms which are generalizations of 

2SAT-GSPRA+ and 2SAT-FGPRA 

allowing kCNF Clause Sets as input, but 

agreeing on all other resolution steps, in 

particular those related to: 
 

i- Imposing l.o. conditions via 

CRA+ and using least literals for 

instantiation 

ii- Creating CNs/MSCNs at any 

size-level j only from CNs/MSCNs at 

size-level j-1 
 

and for which we can show that: 
 

1- No N-Splits can exist 

2- No Splits of CN/MSCN nodes 

                of rank k can exist 

3- kSAT-FGPRA simulates 

     kSAT-GSPRA+ correctly 
 

And let Uk denote an upper bound of the 

number of unique nodes generated in a 

MSRTs.o through anyone of kSAT-

GSPRA+ or kSAT-FGPRA while 

resolving S, then:  

Uk<=Uk-1*O(M5) where Uk-1 is 

polynomial in M, M number of clauses 

of S. kSAT-FGPRA is in P, more 

particularly in: O(M)*(Uk)2. This implies 

that P=NP. 

b- Counting the exact number of 

Assignments which satisfy Q, a 2CNF 

Clause Set, (called the #2SAT problem) 

is in P: O(M9), or, if (Lemma 9-c) is 

relaxed: O(M13). Because of this also: 

P=NP.  
 

Proof:  

a- Proof is by induction on k, the 

rank of the kCNF Clause Set S: 
 

Base Cases: k=1: Obviously: If S is 

a 1CNF Clause Set (i.e., formed 

only of unit clauses) we get 

MSRTs.os with O(M) unique nodes 

which are formed via anyone of 

1SAT-GSPRA+ or 1SAT-FGPRA 

through instantiation of uniquely 

occurring literals one by one (after 

converting S to a l.o. 1CNF Clause 

Set). Complexity of 1SAT-FGPRA 

is O(M3) as searching already 

resolved 1CNF Clause Sets 

requires: O((unique-nodes)2*M) 

operations (c.f. Lemma 11). 1SAT-

FGPRA is in P. CNs do not exist. 

Splits don’t exist as well, because 

sub-formulas can only appear in one 

node. 
 

k=2: (Lemma 10) in this work asserts 

that: If S is a 2CNF Clause Set, then even 

relaxing the property that Splits 

(produced by anyone of 2SAT-GSPRA+ 

or 2SAT-FGPRA) in size-levels j>1 of a 

MSRTs.o cannot exist, shown to be true 

in (Lemma 9-c), yields a unique node 

count of only O(M6). Recall that this 

node count was obtained as follows: 

Because rank k=2 CN/MSCNs cannot 

split as per (Lemma 9-a) and no N-Splits 

can occur as per (Lemma 9-b) as well, 

and because CNs/MSCNs at any size-

level j only come from CNs/MSCNs at 

the lower size-level j-1 (Lemma 5-b), 

only O(M2) rank k=1 CN/MSCNs may 

split in the worst case at any one step 

forming each O(M) new nodes (the node 

count of 1CNF MSRTs.os) at any size-

level j. For all steps this makes them 

O(M4) nodes generated via Splits per 

size-level. A size-level j<=M 

accumulates in the worst case also 

whatever may have been generated in the 

lower size-level j-1, which is given by 

(j-1)*O(M4) making the overall node 

count j*O(M4)=O(M5) per size-level. 

For all size-levels we get then the O(M6) 

bound in (Lemma 10). Putting U1=O(M) 

in inequality U2<=U1*O(M5) yields the 

same result. For the complexity of 

2SAT-FGPRA: O(M13)= O(M)*(M6)2 as 

shown in (Lemma 11). 2SAT-FGPRA is 

in P. 
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k=372: In [Abdelwahab 2016-2] it is 

shown that: 
 

1- No Splits of CN/MSCN nodes 

of rank k=3 can exist (Lemma 9) 

2- FGPRA simulates GSPRA+ 

correctly (both of them conceived for 

k=3). 
 

Although it is not explicitly shown 

there that N-Splits don’t exist in 

MSRTs.os produced by anyone of 

FGPRA or GSPRA+, the argument 

seen in (Lemma 9-b) in this work 

can be extended to demonstrate that 

it is indeed the case73. GSPRA+ has 

also the feature of reconstructing 

sub-trees in case a Clause Set is 

found to be not l.o. This is the same 

condition which enabled us to 

deduce (Lemma 5-b) that: 

CNs/MSCNs at any level j can only 

come from CNs/MSCNs at the 

lower level j-1. Although Lemma 

13 in [Abdelwahab 2016-2] shows, 

similar to (Lemma 10) in this work, 

an upper bound of O(M4) of unique 

nodes, because size-j>1 Splits are 

not possible, relaxing this condition 

enables us to use exactly the same 

arguments used for the above k=2 

base case. When we do so: Putting 

U2=O(M6) in U3<= U2*O(M5), 

gives us the unique node count of 

O(M11), and a complexity of 

O(M23)=O(M)*(M11)2 for FGPRA 

which, although larger than the 

O(M9) result of [Abdelwahab 2016-

2] is still in P of course. 
 

Induction Hypothesis74: For any kCNF 

Clause Set S, k>0, kSAT-GSPRA+ and 

kSAT-FGPRA Algorithms satisfying 

                                                 
72 Base cases k=1, k=2 are enough for this 

inductive argument and make the results shown 

here independent of any investigations given in 

[Abdelwahab 2016-2]. It is, nevertheless, 

important to show the link to - and thus the 

continuity of - ideas presented there as well.  

conditions 1, 2 & 3 above: 

Uk<=Uk-1*O(M5), where Uk-1 is a 

polynomial expression in M, kSAT-

FGPRA is efficient, more particularly its 

time complexity is given by: 

O(M)*(Uk)2. 
 

Induction Step: Suppose for a 

(k+1)CNF formula F that we can show 

(k+1)SAT-GSPRA+ has the following 

properties: 
 

1- No N-Splits can exist 

2- No Splits of CN/MSCN nodes 

of rank k+1 can exist 

3- (k+1)SAT-FGPRA simulates 

(k+1)SAT-GSPRA+ correctly. 
 

We do this, for example, by extending 

the arguments used, per induction 

hypothesis, to show the same for kSAT-

FGPRA and kSAT-GSPRA+. Then our 

argument for k+1 may go as follows: 

Because rank k+1 CN/MSCNs cannot 

split and no N-Splits can occur as well, 

and because CNs/MSCNs at any level j 

only come from CNs/MSCNs at the 

lower level j-1, only O(M2) rank k 

CN/MSCNs may split in the worst case 

at any one step forming, per induction 

hypothesis, each at most Uk new nodes at 

any size-level j. For all steps this makes 

Uk*O(M3) nodes generated via Splits per 

level. A level j<=M accumulates in the 

worst case also whatever may be 

generated in the lower level j-1, which is 

as already seen above (j-1)*Uk*O(M3) 

making the overall count j*Uk*O(M3)= 

Uk*O(M4) per level. For all levels we get 

then the inequality Uk+1<=Uk*O(M5). 

The complexity expression follows, as 

73 Recall that this argument only uses the l.o. 

condition imposed on all Clause Sets to arrive at 

the result (c.f. Lemma 9-b). 
74 This induction hypothesis implies P=NP. 
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seen in all base cases, from the bottle-

neck search condition requiring: 

O(M)*(Uk+1)2 operations. Since Uk is, 

per induction hypothesis, a polynomial 

expression and kSAT, for k>2, an NP-

compete problem, it follows that: 
 

P=NP.  
 

Suppose now that we don’t show for F 

that (k+1)SAT-GSPRA+ and (k+1)SAT-

FGPRA Algorithms satisfy conditions 

1,2 & 3. Even then, remembering that 

kSAT is NP-complete for any k>2: There 

is a polynomial time reduction from 

(k+1)SAT to kSAT. We could for 

example convert F to a kCNF formula F’ 

via an equisatisfiable transformation and 

use kSAT-FGPRA to solve it. The 

number of clauses of F’ would be 

bounded above by (k+1)*M, M number 

of clauses of F, because such 

transformations generate always at most 

(k+1) clauses for any clause C∈F. As per 

induction hypothesis: kSAT-FGPRA’s 

time complexity is given by: 
 

O(M)*(Uk)2, where Uk-1 is a polynomial 

expression of degree, say, d>0 in M and 

Uk<=Uk-1*O(M5). Substituting (k+1)*M 

for M in this inequality gives: 
 

Uk<=(k+1)d+1*Uk-1*O(M5) and does not 

disturb the polynomial behavior of 

kSAT-FGPRA as expected. Since 

Uk+1=Uk, this trivially means also that: 

Uk+1<=Uk*O(M5) which was to be 

shown. F’ can thus be solved by a 

polynomial time Algorithm producing a 

polynomial number of unique nodes, i.e.,  
 

P=NP. 
 

No surprise since P=NP was already 

embedded in the strong induction 

hypothesis. 
 

b- The same main result follows also 

directly from the following observations: 
 

1- Using 2SAT-FGPRA to 

produce a MSRTs.o for Q is, as per 

(Lemma 11) in this work, in O(M9) or in 

O(M13) if we relax (Lemma 9-c). 
 

2- Counting the exact number of 

solutions using Count2SATSolutions is, 

for the same reason, also either in O(M9) 

or in O(M13) as per (Lemma 14). 
 

3- This means that any Algorithm 

solving #2SAT using 2SAT-FGPRA 

first to construct the MSRTs.o and then 

Count2SATSolutions needs in the worst 

case only O(M9) or O(M13) primitive 

operations. #2SAT is known to be #P-

complete (c.f. [Valiant 1979]), therefore: 
 

P=NP 
 

(Q.E.D.) 
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IV DISCUSSION OF RESULTS 

This work shows that small FBDDs for 

base cases of kSAT: k=1, k=2 are 

achievable via SPR-like Algorithms 

which neither possess N- nor Big-Splits. 

Moreover: The nature of those 

Algorithms permits a uniform 

expression of result parameters of 2SAT-

GSPRA+/2SAT-FGPRA versions in 

terms of 1SAT-GSPRA+/1SAT-FGPRA 

versions for both: The upper bound of 

the number of unique nodes in generated 

FBDDs and the worst case time 

complexity. This is sufficient to prove 

P=NP in the following two different 

ways: 

a- FBDDs of polynomial sizes 

for arbitrary 2CNF formulas enable the 

definition of efficient model counting 

solutions resulting in solving #2SAT in a 

polynomial number of steps (Theorem 1-

b). 

b- Uniformly linking efficient 

1SAT- and 2SAT-versions of SPR-

Algorithms, while proving small, upper 

bounds on unique node counts, enables 

formulating the strongest possible 

induction hypothesis, namely: That 

kSAT-FGPRA is a polynomial time 

Algorithm producing polynomial 

number of unique nodes in a FBDD 

(which means: P=NP). This in its turn 

facilitates using kSAT-FGPRA to solve 

(k+1)CNF formulas via equisatisfiable 

translations in the induction step, 

completing thus a third way of showing 

that P=NP in (Theorem1-a)75. 
 

The core work of demonstrating that 

FBDDs for a 2CNF formula F can 

always be small strongly relates to the 

concept of a Split, which expresses the 

fact, that some sub-formulas of F may be 

repeatedly processed during resolution. 

Fatal cases of processing sub-formulas 

                                                 
75 Counting also the solution of 3SAT presented 

in [Abdelwahab 2016-2]. 

of the same difficulty as the original 

problem from scratch again and again 

(N- and Big-Splits) are shown to be 

avoided using imposed l.o. conditions. 

The rest of existing rank 1- and/or size 1- 

Splits facilitate a uniform formulation of 

the relation between k- and (k-1)SAT-

SPR-Algorithms when some lemmas are 

relaxed. 
 

Splits are not mere accidents which don’t 

have a rational reason. They reflect 

consequences of tangible pattern-

properties of variables found in nature 

and enforced on Clause Sets to serve, in 

addition to usual container-properties, in 

the definition of SPR-like procedures. 
 

Finally: Discussing the consequences of 

our findings is beyond the scope of this 

work. 
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VI APPENDICES 

VI-A Formal terms, their definitions and usage 

 
Term/(Acronym,Link) Definition Formally Used in Comment 

Variable, Literal, Clause, 

2CNF Formula/Clause Set 

0.1 Standard Basic --- 

Truth Assignment, Partial 

Assignment, Restricted 

Assignment 

0.1 f:Var =>{0,1}. When f is partial it 

is called Partial Assignment, 

when it is restricted to only one 

variable it is called Restricted 

Assignment 

Basic,  

(Lemma 2) 

--- 

2SAT Decision Problem 0.2 Standard Basic --- 

Graphs, Vertices/Nodes, 

Edges, adjacent vertex, 

Source, Target , reachable, 

Child, Parent, Base Node 

(BN), Path, Branch, 

acyclic, Length of 

Path/Branch, Directed 

Acyclic Graph (DAG) 

0.3 Standard Basic --- 

Source Path of node n (SPn) 0.3 SPn:List<Edges> Counting 

Models 

Used for determining 

node levels in the 

(Count2SATSolutions) 

procedure (Section III-6) 

Level of node n (Ln) in a 

DAG 

0.3 Ln=Max(length(SPn
1)..length(SPn

k)) 

where any SPn
i is a Source Path of 

n.  

 

Counting 

Models 

Used in the 

(Count2SATSolutions) 

procedure (Section III-6) 

Level of edge e (Le) in a 

DAG 

0.3 Le=LSR+1, where SR is Source of 

e 

Counting 

Models 

Used in the 

(Count2SATSolutions) 

procedure (Section III-6) 

Topological Ordering of a 

DAG (TO) 

0.3 ∀e:Edge, e=(vi , vj ), vi,vjV: i< j Counting 

Models 

Used in the 

(Count2SATSolutions) 

procedure (Section III-6) 

-Sequential Resolution 

DAG (SR-DAG) 

- 2CNF Clause Set of a 

node (2CNFnode), 

- Base Clause Set (BS),  

- (TRUE-DAG) 

- (FALSE-DAG) 

0.3 -SR-DAG: ∀n:Noded:DAG: 

∃S, S is 2CNF Clause Set, S is the 

Clause Set of n (2CNFn). BS is 

2CNFBN. 

- TRUE-DAG: SR-DAG with one 

node only labeled TRUE. 

FALSE-DAG: similar. 

 

Basic --- 

-(rankC)  

-(rankNode) 

-(rank2CNF) 

0.3 - rankC: (clause) => N 

- rankS=rankNode= 

Max(rankC(C1)..rankC(Cm)),  

C1-CmS, S is 2CNFNode 

Basic - rankC: Number of literals 

in clause C 

-Size of a node n (Sizen),  

-Size of a 2CNF Clause Set 

S (SizeS) 

0.3 Standard Basic - Sizen: Number of clauses 

in the 2CNFn 

- SizeS: Number of clauses 

in a 2CNF Clause Set S 

-(Top-Part) of a SR-DAG  0.3 Topd:SR-DAG={n:Noded | ∃S, S is 

2CNFn, SizeS=M or SizeS=M-1, 

SizeBNd=M} 

Basic --- 
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-(LeftDAG) 

- (RightDAG) 

- (SubTree) 

0.3 LeftDAG: (n:Node)=>SR-DAG 

rightDAG: (n:Node)=>SR-DAG 

SubTree: (n:Node)=>SR-DAG  

 

Basic - Functions returning SR-

DAGs of left- and right 

Child nodes of a node n 

- SubTree: Is a Function 

which, given a node n of a 

SR-DAG, returns the 

portion of the SR-DAG 

starting with n. 

Literals in a 2CNF Clause 

Set S (LIT) 

0.4 LIT: (S) => Var  

 

Basic, 

(Lemma 1) 

(Lemma 2) 

Function returning all 

literals in S 

Left literals of Literal x 

(LEFT) 

0.4 LEFT:(x:LiteralC,C:ClauseS) 

=> Var 

 

 

Basic - LEFT: Function 

returning literals 

occurring to the left of a 

Literal x in the string 

representation of S 

(SortOrder) 0.4 SortOrder:(C:ClauseS, S:2CNF 

Clause Set)=>int 

 

Basic, 

(Lemma 1) 

- Function mapping clause 

C S and 2CNF Clause 

Set S to an integer number 

representing the position 

of C within S 

-Head-Literal, Tail-Literal 

(HL,TL)  

-Connectivity of a Literal x 

in a 2CNF Clause Set S 

(Connectx,S) 

0.4 HL={L:Literal | C S, S is 2CNF 

Clause Set, C={L, t}} 

TL={L:Literl | C S, S is 2CNF 

Clause Set, C={t, L}}  
Connectivity:(x:Literal 

S,S)=>int 

 

Basic -First Literal in any clause 

is called Head-, last one is 

called Tail-Literal 

- Connectivity: Is a 

Function mapping a 

Literal x in a Clause Set S 

to the number of clauses 

of S in which the Literal x 

appears. It is used in CRA 

-Permutations of CS, S is 

2CNF Clause Set (permC).  

-Resolution Complexity 

Coefficient (RCC) 

- Alignment 2CNF Clause 

Set of S (ACS). 

0.4, 13 - permC={C S | C={a, b} or 

C={b, a} or C={a} or C={b}, a, 

b:LiteralC} 

-RCCk-SAT=kPk+kPk-1+kPk-2+…kP1 

i.e., for 2SAT 

RCC2-SAT= 2P2 + 2P1 = 4 

- ACS=∪permCiS for all CiS 

(Lemma 7) 

(Lemma 10) 

- permC is the Set of all 

clauses which use 

permutations of Literals in 

C S 

- ACS is the Set of all 

unique clauses and their 

derivations used for the 

alignment of all nodes of a 

MSRTs.o 

-Instantiations of Literals,  

- (Derivation) of C S and 

S is 2CNF Clause Set,  

-(Linear Derivation) of C 

S,  

-(Empty Derivation) of C 

S, 

-(Positive Derivation) of 

C S, 

-(Negative Derivation) of 

C S, 

-(Every Derivation) of C 

S, 

-(InstSimple) 

- InstSimpleC, 

- Satisfiability of S 

0.4 -Inst:(A:Assignment,S) => 2CNF 

Clause Set  

-

InstSimple=Inst(A:RestrictedAss

ignment,S) => 2CNF Clause Set. 

-InstSimpleC: 

(A:RestrictedAssignment,C:Clau

se) => 2CNF Clause Set 

a-

InstSimpleC:(A:Assignment,C:Cl

ause) => Clause  

b- Derivation of a clause C 

is{C’:Clause | C’ permC}.  

c- Linear Derivation of C is  

{C’:Clause| C’={a,b} or C’={b} , 

a, b:LiteralC, a<b}  

d- Empty Derivation of C is  

{C’:Clause| C’={TRUE} or 

Basic,  

(Lemma 2) 

- Instantiations are 

functions using Total or 

Partial Truth Assignments 

to create new Clause Sets. 

They substitute literals in 

Clause Sets by Boolean 

truth values given in the 

Assignment. 

- The clause resulting 

from applying an 

instantiation on any C S 

is called a derivation of C.  

- It is called linear 

Derivation if consecutive 

instantiations respect the 

linear order of literals in 

C.  
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{FALSE} or {TRUE,FALSE} or 

{FALSE,TRUE} or 

{FALSE,FALSE} or 

{TRUE,TRUE}}  

e- Positive Derivation of C is  

{C’:Clause| TRUE C’} 

f-Negative Derivation of C is  

{C’:Clause| 

C’={FALSE,FALSE} or 

C’={FALSE}} 

g- Every Derivation of C is 

{C’:Clause| C’ permC or C’ 

Empty Derivation of C} 

 

 

 

 

- If consecutive 

instantiations result in a 

clause containing only 

truth values and no 

literals, the derivation is 

called: Empty Derivation 

- A Derivation containing 

one TRUE value is called 

Positive Derivation. 

- A Derivation containing 

only FALSE values is 

called Negative 

Derivation. 

- Derivations can be 

directly evaluated to 

TRUE or FALSE. 

Evaluation is embedded in 

the Inst function. If this 

evaluation results in the 

TRUE, S is said to be 

satisfiable by A. 

- When Partial 

Assignments used by Inst 

are related to only one 

variable, Inst is called 

InstSimple. InstSimple 

can be restricted to only 

one clause and becomes 

InstSimpleC 

- S is said to be satisfiable 

by A: If Inst(A,S) results 

in the overall value TRUE  

C.f.: (Lemma 2) 

- (Convert) a clause to SR-

DAG,  

-(FIRST) occurrence of a 

Literal in a 2CNF Clause 

Set S,  

-(SELECT) a Literal from a 

2CNF Clause Set S 

0.4 - Convert(C:ClauseS)=>SR-

DAG 

- FIRST/FIRSTC(L:Literal, 

S)=>int 

- SELECT(S)=>int 
 

Basic, 

(Lemma 1) 

- Convert is a function 

mapping a 2CNF Clause 

C={a1,b11} to a SR-DAG 

by substituting in two 

subsequent simple 

instantiation steps first a1 

with TRUE and FALSE 

creating Clause Sets and 

placing them in the 

respective nodes of the 

SR-DAG and then doing 

the same for b11 (Figure 

2). 

- FIRST: is a function 

mapping a Literal and a 

Clause Set S to the integer 

position (starting from the 

left) of the Literal in the 

string representation of S. 

FIRSTC is the version of 

this function which 

returns the index of the 

clause in which L appears 

for the first time, c.f.: 

(Lemma 1-c) 
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- SELECT: Is a Function 

selecting a Literal from 

LIT(S). Although generic, 

it is only used in 

Algorithms of this work to 

select the least Literal 

according to LLR 

-Linearly Ordered- (l.o.) ,  

-Linearly Ordered, but 

unsorted (l.o.u.),  

-Almost Arbitrary (a.a.) 

Clause Sets 

1 For a 2CNF formula S, S is called 

l.o. if the following Conditions 

hold: 

 

a)  ∀ai,bij∈ Ci,j: ai<bij 

b)  ∀i,j,x,y: if i<j then 

      L2∈Cj,x >= L1∈Ci,y, 

      where L2 is HL of Cj,x 

      and L1 HL of Ci,y, 

      SortOrder(Cj,x,S)> 

      SortOrder(Ci,y,S) 

c)  ∀xLIT(S),∀Ci,jS: 

     if x ∉ LEFT(x,Ci,j) then 

      ∀y LEFT(x,Ci,j): x>y 

d)  S is a Set 

 

If S fulfills Conditions a), c), d), 

but not b) it is l.o.u. If S fulfills 

Conditions a), d) only it is a.a.  

 

All 

Lemmas 

a) Literal names/indices 

are sorted in 

ascending order 

within clauses. 

b) S is sorted by ai 

& bij in 

ascending order 

taking into 

consideration 

negation signs.  

c) all new 

Names/Indices of 

literals occurring for 

the first time in a 

clause C of S are 

strictly larger than all 

the Literal 

Names/Indices 

occurring before 

them in S 

d) Clauses appear only 

once in S. 

 

- Blocks (Ba),  

- Block-Literal,  

- Block-Sequence (Bseq),  

- Symmetric Block (SB),  

- Dissymmetric Block 

(DB),  

-(DB Sorting Condition) 

1 - Bax={{ax,bx1}{ax,bx2} ..  

{ax,bxi,}} is a 2CNF Clause Set. 

- ax is Block-Literal 

- S={Ba…Bn} is Block-Sequence 

- A Block Bx is called SB if ∃A: 

Assignment such that:  

instSimple(A:{X=TRUE},Bx}= 

instSimple(A:{X =FALSE}, Bx} 

-It is called DB if ∃A:Assignment 

such that: 
instSimple(A:{X=TRUE},Bx}=S1, 

instSimple(A:{X =FALSE}, Bx}=S2 

and either S1 ⊆ S2 or S2⊆ S1.  

 

 

 

Basic,  

(Lemma 8) 

(Lemma 9) 

- Blocks are referred to by 

the name of the leading 

Literal (in this case S is 

called ax-Block).  

- Clauses having ax as 

leading Literal are said to 

belong to the ax-Block. 

- A Block Bx is called SB 

if -ve and/or +ve 

instantiations of Block 

Literal x result in the same 

Clause Set.  

- A Block Bx is called DB 

if -ve and/or +ve 

instantiations of Block 

Literal x result in Sets S1, 

S2 and one of them is 

included in the other. 

- DB Sorting Condition: If 

a DB Bx is sorted such that 

all clauses containing –ve 

instances of Literal x are 

placed before all those 

containing +ve instances 

or vice versa 
-(2SAT-GSPRA 

Procedure),  

- (Align Procedure),  

2 -2SAT-GSPRA Procedure (c.f. 

Section III.1) 

(Lemma 5) - A node in a SR-DAG is 

symbolized by [x] if the 
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-Name Literal (NL), - 

(Edge Literal)  

- (Branch Literal) 

- Least Literal Rule of a 

2CNF Clause Set S (LLRS),  

-Variable Ordering (∏p),  

-CanonicalOrdering (∏c
p) 

 

-Align Procedure (c.f. Section 

III.1) 

- NL=LLRS={i:Literal |∃BS: 

2CNF Clause Set, ∃n:NodeSR-

DAGBS, S is 2CNFn, 

SELECT(S)=i and ∀xLIT(S): 

i<x} 

-∏p=<i,j,k,…> where i,j,k,… 

integers such that i<j<k<…. 

 

 

lead clause in its Clause 

Set is headed by a least-

Literal x. Moreover: x is 

called the NL of this 

Clause Set/node. 

- Edges going out of a SR-

DAG node [x] are marked 

with x and represent 

instantiations of the NL x 

of the Clause Set of that 

node (this fact is called 

LLR).  

-Literals on edges of 

branches leading 

indirectly to a node n are 

called branch-literals of n 

while literals on edges 

connected directly to n are 

called edge-literals of n. 

Every edge-Literal is a 

branch-Literal, but not 

vice versa. 

- A variable ordering of a 

problem p (∏p) expressed 

as a 2CNF Clause Set S 

and resolved by any 

resolution procedure PR is 

a list of integers <i,j,k,…> 

representing indices of 

Literal/variable names 

indicating priorities of 

instantiations of 

literals/variables of S used 

in PR. If ∏p represents the 

canonical, truth table 

ordering of variables the 

following notation is used: 

∏c
p.  

-(Sequentially ordered SR-

DAG) 

- Strongly ordered SR-

DAG (s.o.) 

- Loosely ordered SR-DAG 

(lo.o.) 

3 - Sequentially Ordered SR-

DAG:  

∀S, n ∈SR-DAG, S is 2CNFn: 

S={Ci,Cj,…CM} for some 

i<j<….<M’, M’<=M. M number 

of clauses in S, Cx’s are clauses or 

derivations of clauses enumerated 

from left to right in S 

- Strongly Ordered SR-DAG: ∀S, 

𝑛 ∈SR-DAG, S is 2CNFn: S is 

linearly ordered (l.o.) 

- Loosely Ordered SR-DAG: ∀S, 

𝑛 ∈SR-DAG, S is 2CNFn: S is 

either l.o. or l.o.u. 

All 

Lemmas 

- Strongly ordered Sets are 

always linearly ordered, 

the inverse is not always 

the case, i.e., some l.o. 

Sets may have Clause Sets 

in their SR-DAGs which 

are not l.o.  

- If a Set S has a BS which 

is l.o. while some other 

Clause Sets in its 

generated SR-DAG are 

l.o.u., then S as well as its 

SR-DAG is called loosely 

ordered 

- Common Node (CN),  

- Head-CN (HCN),  

- Tail-CN (TCN),  

4 -[q]∈SR-DAG is CN if 

∃n1,n2 ∈SR-DAG such that: [q] 

adjacent to both n1 and n2 

(Lemma 8) 

(Lemma 9) 

A CN [q] is supported in a 

step l>k if its Clause Set S 

gets clauses appended to 
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- Trivial-CN (tCN),  

- (Supported CN)  

- Supporting Parent,  

-(Direct Parent),  

-(Direct Child),  

-Double-Sided CN from 

the perspective of x 

(DSCNx),  

-Single-Sided CN from the 

perspective of x (SSCNx),  

-(Distinguished Literal), 

-(Non-Distinguished 

Literal),  

-CN-Augmenting Literal 

(CNAL) 

- A CN [q] ∈SR-DAG is HCN if 

its Clause Set has a leading/head 

clause C∈S, NL q is HL of C 

- A CN [q] ∈SR-DAG is TCN if 

its Clause Set has a leading/head 

clause C’ which is a derivation of 

a clause C∈ S, NL q is TL of C 

- [q] ∈SR-DAG is tCN if ∃n ∈
 SR-DAG, S is 2CNFn , S is SB, 
Child([q],n)=TRUE 

-A CN [q] ∈SR-DAG with 

S=2CNF[q], S=Bseq produced in 

steps <=k, is said to be supported 

in a step l>k if ∃C:Clause, C∈Bx 

such that:  

S=S ∪ C in step l>k while in steps 

<=k: ∃𝑛 ∈SR-DAG, 

Parent(n,[q]), S’ is 2CNFn, S’ is 

Bseq and Bx ∉ S’ 

- CN [q] ∈SR-DAGBS is called 

DSCNx if ∃n1,n2:Node∈SR-

DAGBS, x,y:Literal, S1 2CNFn1, S2 

2CNFn2 such that: LLRS1=x, 

LLRS2=y, x=¬y, 

Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 

- CN [q] ∈SR-DAGBS is called 

SSCNx if ∃n1,n2:Node∈SR-

DAGBS, x,y:Literal, S1 2CNFn1, 

S2 2CNFn2 such that: 

LLRS1=LLRS2=x, 

Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 

 - CNAL={L:Literal∈C:Clause, 

[q] is CN∈SR-DAGBS formed in 

steps<=k, L is non-distinguished 

for [q] | Size[q] is augmented in 

steps>k through invocations: 

InstSimpleC ({L=TRUE},C) or 

InstSimpleC ({L=FALSE},C)} 

its head in step l which 

don’t belong to any Block 

instantiated in steps <=k 

by one or more of its 

parents. A parent-set of 

such a CN is called 

supporting. 

If a head-clause of a CN is 

also a clause of one of the 

Clause Sets of its parents, 

then this parent is called 

direct parent of the CN. 

The CN itself is called 

direct child of this parent 

A CN [q] formed within a 

Block Bx through +ve as 

well as -ve edge- or 

branch-literals x is 

DSCNx. Such a x is called 

in this case distinguished 

Literal for [q].  

A CN [q] formed within a 

Block Bx through only +ve 

or only -ve edge- or 

branch-literals x is SSCNx. 

x is called in this case non-

distinguished Literal for 

[q].  

If for a CN [q] there is no 

distinguished Literal x 

such that the CN is 

DSCNx, then [q] is SSCN.  

If a non-distinguished 

Literal x for a CN [q] 

formed in steps <=k is 

used to augment the size 

of [q] in step l>k, i.e., x is 

instantiated in a clause 

added to the clauses of [q] 

in l, then x is CNAL for 

[q]. 

- Dependency Graph (DG),  

- Leaves of Dependency 

Graphs,  

- Free Binary Decision 

Diagram (FBDD) 

5 - DG is a DAG <V,E> where V is 

the Set of all NLs, E the Set of 

ordered pairs <v1,v2> , v1,v2∈ 𝑉 

All 

Lemmas 

- DGs can be deduced 

from SR-DAGs in a 

canonical way and used as 

practical alternatives for 

truth tables. They are 

equivalent to FBDDs. 

- DGs (FBDDs) have the 

following properties 

a- Each NL can appear 

only once in a branch. 

b- Branches can have 

different Literal/variable 

orderings ∏p depending 

on the sub-problem p they 

belong to c- A leaf of a DG 

is a node whose value is 

TRUE or FALSE. 
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- (Splits),  

- (N-Splits)  

- (CN-Splits)  

- (Split Node)  

- Big-Splits (BigSps) 
 

6 - Split: A SR-DAG is said to 

possess a Split if ∃S’:2CNF 

Clause Set such that: For some 

n1,n2:Node∈SR-DAGBS, S1 is 

2CNFn1, S2 is 2CNFn2, n1≠n2: S’⊆ 

S1, S’⊆ S2, ∄n: 

Child(n,n1)=Child(n,n2)=TRUE  

- Splits are called CN-Splits, if, in 

addition to the formal condition 

above: ∃q:Node, ∃C:Clause: S’ is 

2CNF[q] , [q] is CN/MSCN in step 

k and C is resolved in steps >k 

such that: C1⊆S1, C2⊆S2, 

C1,C2∉S’, C1,C2∈Every 

Derivation of C, C1≠C2.  

- If a Split is not a CN-Split, it is 

called a N-Split. 

- BigSps: Are Splits of a CN [q] 

where rank[q]=rankBN 

(Lemma 9) Split: There exists a sub-

Set of clauses common 

between two or more 

Clause Sets of different 

nodes which don’t possess 

common sub-trees. 

Splits are formed when 

either node n containing 

Clause Set S constructed 

in step k is duplicated one 

or more times in steps >k 

together with all or parts 

of its nodes or sub-trees, 

the cause of this 

duplication being that S is 

resolved with a clause 

whose least-Literal was 

new in that step and had an 

index < all or any indices 

of head-literals in S (N-

Split) or a CN [q] 

constructed in step k 

and/or any of its nodes or 

sub-trees are duplicated 

with variations one or 

more times in steps >k 

(CN-Split).  

If [q] is a CN of a SR-

DAG which is split in step 

k, then the new node 

[q]'=[q]+C' formed in k, 

because C∈BS is resolved 

(C' is a Derivation of C) is 

called: Split-Node. 

BigSps occur when a CN 

is split which has the same 

rank as the rank of the 

base node. They are 

causes of exponential 

behavior of 2SAT-

GSPRA. 

- Clauses Renaming 

Algorithm (CRA),  

-(Connection Matrix),  

- Renaming Precedence 

Condition (RPC) 

 

7 - CRA c.f. Definition 7 

 

 

 

 

 

 

 

 

 

(Lemma 1) 

(Lemma 3) 

(Lemma 6) 

(Lemma 8) 

Connection Matrix: Rows 

are Literal Names/Indices, 

Columns are clauses, 

Entries are TRUE/FALSE 

according to whether the 

Literal occurs in the given 

clause or not 

RPC: Arrange literals in 

ascending order within 

any Ci ∈ 𝑆 such that 

literals which were not 

renamed before and 

appear more often in other 

clauses become HLs 

before those which appear 
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less often or which only 

appear in Ci. 

- (Mapping), 

- (Image), 

- Variable Space/Space 

(VS),  

- 2CNF Clause Set in 

space-i (Sspace-i), 

- Node in space-i 

(Nodespace-i) 

8.1 - Mapping: (N) => N 

- VS=Mapping*(N) 

(Lemma 1) 

(Lemma 9) 

- Mapping is a bijective 

function giving a Literal 

Name/Index in a 2CNF 

Clause Set S its new 

Name/Index after a 

renaming operation using 

CRA.  

- The new Name/Index is 

also called: Image of the 

Literal. New names of 

literals forming single 

clauses or Clause Sets are 

called Images of clauses 

or Clause Sets.  

– A VS is a subsequent 

application of mappings 

starting from the Base 

Clause Set of a 2CNF 

formula.  

- To express that a Clause 

Set is formed in a certain 

space-i the notation: 

S={{..}…{..}}space-i or just 

Sspace-i is used.  

- To express that a node is 

formed in a certain space-

i the notation: Node space-i 

is used.  

- (Apply) 

- (InvApply) 

8.2 - Apply: (M:Mapping, S:2CNF 

Clause Set) => 2CNF Clause Set 

 

All 

Lemmas 

- Apply is a function 

which replaces 

occurrences of literals in a 

2CNF Clause Set S with 

their Names/Indices given 

by the mapping M.  

- InvApply is similarly 

defined, but applies to S: 

M-1 instead of M. 

- Equivalence via Mapping 

(S1 ⇔M S2),  

- (Syntactic Image) 

8.3 - S1 ⇔M S2: if ∃M1, M2:Mapping 

such that: 

Apply(M1,S1)=Apply(M2,S2)=S’. 

S’ is called syntactic image of 

both S1, S2. 

 

(Lemma 2) - Equivalent via Mapping: 

Are 2CNF Clause Sets 

which reside in MSCNs, 

i.e., CNs which are 

formed between different 

Variable Spaces  

- trivial Mapping 

(tMapping),  

- (Stable Set of literals), 

 - (Stable Clause) 

- Stable Clause Set 

8.4 - tMapping: ∃M:Mapping, S a 

2CNF Clause Set, ∀xLIT(S): 

M(x)=x 

- Sub is a Stable Set of literals: If 

∃M:Mapping produced in step k 

such that: ∀xSub, Sub⊆Lit(S): 

M(x)=x in any step >k  

- Stable Clause: ∀x:LiteralCi, 

xSub⊆Lit(S), Sub is a Stable Set 

of literals 

(Lemma 2) 

(Lemma 3) 

- tMapping: Each Literal 

index is given itself after a 

renaming operation using 

CRA. 

-Stable Set of literals: a 

subset of Literal indices is 

mapped to itself via CRA 

in step k and remains 

always mapped to itself 

for any step>k,  
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- Stable Clause Set: 

∀CiS:Clause Set, Ci is stable, 

then: S is a Stable Clause Set.  

 

- Mixed-Space Node 

(MSN),  

- Single-Space Nodes 

(SSN) 

8.5 - MSN: S1, S2 are 2CNF Clause 

Sets of nodes n1,n2SR-DAG, 

respectively, and S1≠S2, but 

n1=n2=n. 

(Lemma 9) - MSNs possess two 

syntactically non-

equivalent Clause Sets, 

because of the application 

of CRA+ 

- SSNs are nodes in which 

CRA+ was not applied 

- Mixed-Space Tree 

(MST),  

- Single-Space Tree (SST) 

- Literal in space-i  

(Lspace-i) 

- Literal x proceeds Literal 

y in a Clause Set S of space-

i  

((x | y)space-i)  

- Mapping in space-i 

(Mspace-i) 

 

 

8.6 - (x | y)space-i: If ∃space-i:VS such 

that:  

Sspace-i is a 2CNF Clause Set 

where:  

FIRST(x,Sspace-i)<FIRST(y,Sspace-i) 

(Lemma 1) 

(Lemma 9) 

- MST: SR-DAG with 

MSN nodes 

- SST: SR-DAG with only 

SSNs.  

– Lspace-i refers to the name 

of Literal L given by a 

mapping M in space-i.  

- x proceeds y in space-i: 

Within space-i the first 

occurrence of Literal x in a 

Clause Set S comes before 

the first occurrence of 

Literal y. When space-i is 

known, its subscript is 

omitted. Since S is always 

apparent from the context 

a reference to it is omitted 

as well. 

- Mspace-i: Refers to the 

mapping created by a 

CRA operation within 

space-i.  

- Monotone Mapping in 

space-i (mMspace-i) 

8.7 - A mapping is monotone when 

∀x,y∈LIT(Sspace-i): if (x | y) space-i 

then also Mspace-i (x)<Mspace-i (y) 

(Lemma 1) 

(Lemma 9) 

-This property is intrinsic 

in all GSPRA Algorithms 

- Clauses Renaming and 

Ordering Algorithm 

(CRA+),  

- (CRA-Form) 

- Sequentially-Ordered, 

Multi-Space Resolution 

Tree/SR-DAG (MSRTs.o.),  

- Multiple Space Block 

(MSB)  

9, 10 - CRA+: Pseudo-Code Definition 

9, CRA+(S) is called the CRA-

Form of S. 

- MSRTs.o.: Is a SR-DAG such 

that:  

∀nspace-i:NodeSR-DAG: 

(2CNFn)space-i is l.o. 

- MSB = {(Bx1)space-i:2CNF Clause 

Set | 

∃space-j, (Bx2)space-j:2CNF Clause 

Set, 

M: Mapping, where:  

((Bx1)space-i ⇔M (Bx2)space-j ) Or 

((B’x1)space-i ⇔M (B’x2)space-j)), B’x1, 

B’x2 are Derivations of Bx1, Bx2, in 

respective Spaces } 

(Lemma 2) 

(Lemma 3) 

(Lemma 8) 

(Lemma 9) 

(Lemma 10) 

 -MSRTs.o is a MST whose 

Clause Sets are all l.o.  

- MSB: A block Bx whose 

Clause Set or derivations 

thereof (all or part of 

them) belong to more than 

one VS (Notation also: 

Bx
S1,S2,..,S1,S2,.. Variable 

Spaces). 

- Similar to Single Space 

Blocks: An MSB may be 

symmetric or 

dissymmetric.  

-Multi-spaced Symmetric 

Block (MSSB) 

10.1 - MSSB = {  

(Bx1)space-i:2CNF Clause Set | 

∃space-j, (Bx2)space-j:2CNF Clause 

Set, 

M: Mapping, where 

(Lemma 8) 

(Lemma 9) 

- MSSB is the structure in 

which a tMSCN can occur 
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((Bx1)space-i ⇔M (Bx2)space-j 

Or  

(B’x1)space-i ⇔M (B’x2)space-j) 

B’x1, B’x2 are Derivations of Bx1, 

Bx2, in respective Spaces and 

∃Aspace-i, Aspace-j: Assignment such 

that:  
instSimple(Aspace-i:{X1=TRUE}, 

(Bx1)space-i) ⇔M  

instSimple(Aspace-j:{X2=FALSE}, 

(Bx2)space-j) 

}  
 

  
 

 

- Multiple Space Common 

Node (MSCN) 

- Target Space (TS) 

10.2 - MSCN:- if ∃n1,n2 ∈ MSRTs.o not 

necessarily of the same space: [q] 

adjacent to both n1 and n2 

(Lemma 8) 

(Lemma 9) 

(Lemma 10) 

- Target Space: The VS of 

a node which is target of 

two or more MSNs in a 

MSRTs.o. 

- Double-Sided MSCN 

with respect to Literal z 

(DS-MSCNz),  
- Single-Sided MSCN with 

respect to Literal z (SS-

MSCNz),  

- trivial MSCN (tMSCN) 

11 - [q]space-i is DS-MSCNz, if 

∃n1,n2 ∈ MSRTs.o of 2CNF Clause 

Set S, ∃xspace-j , yspace-k:Literal, 

∃M1,M2: Mapping, such that: 

[q]space-i is adjacent to both n1 and 

n2 and  

zspace-i =M1(xspace-j), zspace-i 

=M2(yspace-k), where yspace-k has the 

opposite sign of xspace-j 

- [q]space-i is SS-MSCNz, if 

∃n1,n2 ∈ MSRTs.o of 2CNF Clause 

Set S, ∃xspace-j , yspace-k, 

∃M1,M2:Mapping, such that: 

[q]space-i is adjacent to both n1 and 

n2 and 

zspace-i =M1(xspace-j), zspace-i 

=M2(yspace-k), where yspace-k has the 

same sign as xspace-j, 

- [q] is tMSCN, if ∃n ∈ MSRTs.o 

whose Clause Set is a MSSB, 

Child[q],n)=TRUE 

(Lemma 8) 

(Lemma 9) 

- DS-MSCNz: There exist 

at least two edge- or 

branch-literals x, y from 
Spaces space-j, space-k 

respectively and a Literal z 

from the target space-i 

such that both literals are 

translated to z within their 

respective spaces and 

have opposite signs. 

Literals x and y are also 

called distinguished (c.f. 

Definition 4, 

(Distinguished Literal)). 

- SS-MSCNz: Similar 

definition, but x, y have 

same signs 

- tMSCN: [q] is formed in 

step k and belongs to a 

MSSB to which one or 

more of its parents 

belonged in steps <k 

- DS-MSCNz as well as 

SS-MSCNz are used to 

show that a MSCN cannot 

be first augmented to sizes 

>1 and then split except in 

the trivial case of a 

tMSCN (Lemma 9-c)  

- tMSCNs are called 

trivial, because they can 

result in Splits which 

happen only inside 

symmetric Blocks and 

thus can be avoided 

altogether when an 

appropriate sorting 

condition within CRA+ is 
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chosen (called: DB-

Sorting, (Lemma 8)  

(Aligned MSRTs.o,), 

(Alignment Clause , 

(Aligned Node) 

(Alignment MSRTs.o) 

12,13 -Aligned MSRTs.o:- ∃C S, C’ 

derivation of C such that:∀n

MSRTs.o., S’ is 2CNFn,  

∀Cx  S’ the following is true: 

a-

SortOrder(C’,S’)>SortOrder(Cx,

S’) 

b- S’ is l.o. 

- A node n of size M is said to be 

aligned if:  

- For M<=2: n possesses 

a Clause Set with an 

aligned MSRTs.o 

- For M>2: 

(iii) All nodes of 

sub-trees of size M 

are l.o. 

(iv) All nodes of 

sub-trees of size <M 

are aligned 

- An MSRTs.o whose nodes are all 

aligned is called Alignment 

MSRTs.o 

 

 

(Lemma 6) 

(Lemma 7) 
(Lemma 10) 

- C is called Alignment 

Clause 

- The fact that a MSRTs.o 

produced by 2SAT-

GSPRA+ is always an 

Alignment MSRTs.o is 

used to show that the 

number of new nodes on 

size-level 1 in any 

inductive step cannot 

become more than the 

number of elements in 

ACS which are linearly 

many (Lemma 7) 

Resolution procedures: 

(2SAT-GSPRA+), (Align) 

(LCS) 

14 c.f. Section III.1 (Lemma 6) 

(Lemma 7) 
(Lemma 8) 

(Lemma 9) 

(Lemma 10) 

-Used to study the effect 

of resolving one single 

clause at a time and count 

the number of unique 

nodes produced in the 

final MSRTs.o 

- LCS: List of Tuples: 

<Clause Set, Node index> 

initially empty used to 

store already resolved 

Clause Sets and their 

generated sub-trees 

 

2SAT Fast Generic Pattern 

Resolution Algorithm 

(2SAT-FGPRA) 

15 c.f. Section III.1 (Lemma 11) -This is the central, 

practical Algorithm 

proposed in this work (and 

a similar one is proposed 

in [Abdelwahab 2016-2] 

as well). It overcomes the 

main drawback of 2SAT-

GSPRA+ of having to re-

construct sub-trees again 

and again in case their 

respective Clause Sets are 

not l.o. Instantiation is 

performed always in any 

node on the whole 

2CNFnode rather than step 

wise one clause at a time.  
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- 2SAT-FGPRA is shown 

to correctly simulate 

2SAT-GSPRA+ (Lemma 

11-a) 
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VI-B Selected Lemmas and their Dependencies on Formalized Concepts 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 2: For a 2CNF Clause Set S it is true 

that: 

- S is l.o. iff CRA+(S) reaches a 

stable Set equivalent to LIT(S) 

- S is satisfiable iff CRA+(S) is 

satisfiable 

- S is logically equivalent to 

CRA+(S) 

l.o. Condition 

Stable Set 

CRA+ 

Satisfiable 

Assignment 

LIT 

Lemma 3: The complexity of CRA+ is in 

O(M2(Log M+N) 

l.o. Condition 

l.o.u. Condition 

CRA+ 

CRA 

RPC 

Lemma 4: CRA+ terminates always 

converting an arbitrary 2CNF Clause Set to a 

stable one 

l.o. Condition 

l.o.u. Condition 

CRA+ 

CRA 

Stable Set 

Lemma 1: 

- CRA produces monotone 

Mappings 

- (x | y) iff (x<y) 

- (xspace-i | yspace-i) iff (x | y) when 

involved Clause Sets are l.o. and 

order of clauses and images of 

clauses in respective spaces is 

preserved  

l.o. Condition 

monotone Mapping  

CRA 

VSpace 

LIT 

(x | y)  

FIRSTC 

SortOrder 



Abdelwahab, N. 
 

 

 

87 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 5: 

a- For all n1,n2 nodes ∈ MSRTs.o: if n1,n2 are not directly connected in 

steps <=k then they cannot be directly connected in steps >k, if the sort 

order of their Clause Sets is not altered, except in the trivial case when 

the new Clause belongs to a block, parents of n1,n2 were instantiating in 

steps <=k and n1, n2 become equivalent (tCN, tMSCN).  

b- For all M>1: A node [q] of size M is CN/MSCN iff there exist 

CN/MSCN [q’] of size M-1 augmented in size by a clause C such that: 

[q]=[q’] 

c-Let up1,upj be upper bounds of nodes generated during the whole 

process of resolution in size-levels 1 and j, respectively, where 1<j<=M. 

If Splits are not accounted for in any size-level j, then: upj<=up1 

 

2SAT-GSPRA 

LLRBS 

CNs/MSCNs 

Lemma 9-a: CNs and MSCNs containing clauses belonging to the BS 

or their images cannot split. 

Proof sketch: in step k: there exists a Clause C1={a, b}∈BS and a 

mapping M such that: a’=MST(a), b’=MST(b). In this step also: All 

literals of C1 and all their images were new in all branches and spaces 

leading to the MSCN [q], i.e., for all i,lspace-i,S: where lspace-i is a branch- 

or edge-literal of [q]ST
sp1,sp2,sp3,., S Clause Set of any parent node in space-

i.: (lspace-i | aspace-i) and per Lemma 1-a also: M(lspace-i)<M(aspace-i). 

To split [q], in steps>k:: there must exist a Clause C2={x, y}∈BS and a 

parent node p of [q] such that: xspace-i = lspace-i for some literal lspace-i in p, 

i.e., M(xspace-i)<M(aspace-i). Then: Per l.o. of BS: Either x=a which 

means [q] is only augmented in size not split or a<x and thus (a | x) per 

Lemma 1-b. BS is then in one of the forms:  

1-{..{..,a}..{r, x}..{s, ¬x}…{a, b}…{x,y}…} or  

2-{..{a,b}..{x,y},..}. Form 2 leads to (aspace-i | xspace-i), hence: M(aspace-i) 

<M(xspace-i). Contradiction. Form 1 causes the MSCN to be augmented 

by {x,y}, not split. 

(A shorter version of this anchor proof of this work, using the ‘>’ 

relation, can be found in Footnote 43) 

 

BS, rank, size 

CN, MSCN 

Mapping , monotone Mapping  

Lemma 8: ∀SB, DB, tCN such that SB⊆DB and tCN formed in SB:tCN 

can be avoided by appropriately choosing the DB Sorting Condition. 

Similarly: tMSCNs can be avoided as well. 

 

 

 

Lemma 7: (Alignment MSRTs.o )  

2SAT-GSPRA+ produces aligned MSRTs.os and if Splits are not 

counted, then during the whole process of resolution: 

-The number of newly added size-1-level nodes cannot exceed  

RCC2-SAT*M2 

- The number of newly added size-j-level nodes, j>1, cannot 

exceed RCC2-SAT*M2 as well, for any level j 

 

 

2SAT-GSPRA+ 

Lemma 6: (Aligned Base Cases) All size 1,2 nodes of any MSRTs.o of a 

2CNF Clause Set S produced by 2SAT-GSPRA+ are aligned. 

 

2SAT-GSPRA+ 

SB, DB, tMSCN  

RPC, Aligned MSRTs.o 

 

ACS 

Aligned MSRTs.o 

2SAT-GSPRA+ 

Distinguished-, 

non-Distinguished Literal 

Lemma 1 
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CRA-Form 

Lemma 10: The total number of unique-nodes produced by 2SAT-

GSPRA+ in the final MSRTs.o, including those generated by Splits, is 

bounded above by: 

 

2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3, c<=2, i.e., O(M4) 

 

Moreover: This bound remains polynomial, i.e., O(M6), if Splits are 

admitted which are not BigSps (i.e., Lemma 9-c relaxed). 

 

 

Alignment Clause 

CN, MSCN 

ACS 

Lemma 5 

Lemma 6 

Lemma 9 

Lemma 11: The following is true: 

a- For any arbitrary 2CNF Clause Set S: ∃MSRTs.o such that: 

2SAT-FGPRA(S)=2SAT-GSPRA+(S). 

b- For 2SAT-FGPRA to produce the MSRTs.o shown to exist 

in point a-: For the main Assistance Operations used by 2SAT-FGPRA 

on 2CNF Clause Sets S of size M: The total, worst case number of 

Primitive Operations performed by any single one of them during a 

run of 2SAT-FGPRA is: O(M9). If Splits are admitted which are not 

BigSps, i.e., Lemma 9-c is relaxed, then this bound is O(M13). 

 

 

 

 

 

Top-parts 

l.o. Condition 

Lemma 10 

2SAT-FGPRA 

Lemma 12: 2SAT-GSPRA+ and 2SAT-FGPRA are complete, truth 

table equivalent Algorithms, i.e.: Let S be a 2CNF Clause Set, A any 

Assignment of truth values of literals in S, then: Applying A on the 

MSRTs.o produced by any of the two Algorithms leads to a TRUE leaf 

iff A satisfies S. 

 

 

 

 

 

 

Assignment 

Assignment Satisfies S 
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