
Abdelwahab, N.

3

3

Journal Academica Vol. 8(1), pp. 3-88, October 13 2018 - Theoretical Computer Science - ISSN 2161-3338
online edition www.journalacademica.org - Copyright © 2018 Journal Academica Foundation - All rights reserved

Full Length Research Paper

#2SAT is in P

Elnaserledinellah Mahmood Abdelwahab*

Senior Project Manager, makmad.org e.V., Hanover (Germany)

Received January 29 2018, Revised May 15, 2018; Accepted June 27 2018

ABSTRACT

This paper presents a new view of logical variables which helps solving efficiently the

#P complete #2SAT problem. Variables are considered to be more than mere place

holders of information, namely: Entities exhibiting repetitive patterns of logical truth

values. Using this insight, a canonical order between literals and clauses of an arbitrary

2CNF Clause Set S is shown to be always achievable. It is also shown that resolving

clauses respecting this order enables the construction of small Free Binary Decision

Diagrams (FBDDs) for S with unique node counts in O(M4) or O(M6) in case a particular

shown Lemma is relaxed, where M is number of clauses. Efficiently counting solutions

generated in such FBDDs is then proven to be O(M9) or O(M13) by first running the

proposed practical Pattern-Algorithm 2SAT-FGPRA and then the counting Algorithm

Count2SATSolutions, so that the overall complexity of counting 2SAT solutions is in P.

Relaxing the specific Lemma enables a uniform description of kSAT-Pattern-Algorithms

in terms of (k-1)SAT- ones opening up yet another way for showing the main result. This

second way demonstrates that avoiding certain types of copies of sub-trees in FBDDs

constructed for arbitrary 1CNF and 2CNF Clause Sets, while uniformly expressing kSAT

Pattern-Algorithms for any k>0, is a sufficient condition for an efficient solution of kSAT

as well. Exponential lower bounds known for the construction of deterministic and non-

deterministic FBDDs of some Boolean functions are seen to be inapplicable to the

methods described here.

Keywords: Logic, Duality, Variables, Patterns, Container, kSAT, #2SAT, FBDD, P=NP

*Corresponding author: elnaser@makmad.org

https://www.journalacademica.org/
mailto:elnaser@makmad.org

Abdelwahab, N.

4

4

CONTENT

I INTRODUCTION 4

II USED METHODS 9

II-1 Exponential Lower Bounds on

FBDD Construction Revisited 12

II-2 #2SAT Solution Methodologies .. 15

II-3 Similarities and Differences

between previous and current work 17

II-4 How to read this paper 18

III THEORY 22

III-1 Definitions 22

III-2 Converting arbitrary 2CNF Sets

to l.o.u and l.o. ones 40

III-3 Way of work of 2SAT-GSPRA+ 44

III-4 CN-Splits in MSRTs.os 48

III-5 Complexity of 2SAT-FGPRA 57

III-6 Counting Solutions 62

III-7 Main Result 68

IV DISCUSSION OF RESULTS 71

V REFERENCES 72

VI APPENDICES 74

VI-A Formal terms, their definitions and

usage ... 74

VI-B Selected Lemmas and their

Dependencies on Formalized Concepts

 .. 86

1 There is no loss of generality in giving

examples from the monotone 2CNF case,

because properties of logical variables, relevant

for this work, are already applicable in this

simplest case.
2 Formal definitions and illustrations of BDDs

are seen below, but can also be found in, e.g.,

[Wegener 2000].

I INTRODUCTION

The current work aims at applying a

new view of logical variables to the

solution of #2SAT. This view

considers variables to be more than

mere place holders of information,

namely: Entities exhibiting

repetitive patterns of logical truth

values. The ideas are materialized in

novel Algorithms imposing

universally applicable structural

criteria on 2CNF Clause Sets,

according to which clauses are

ordered by their pattern lengths and

least literals are always chosen for

instantiation without prior trials.

This enables efficient construction

of small FBDDs upon which simple

and equally efficient counting

Algorithms can then be applied. To

informally illustrate the basic ideas

we start first with a concrete

example.

Let be S={{x0,x4}{x1,x2}{x2,x3}}.

w.l.o.g., a monotone 2CNF formula1 for

which we would like to find a validating

Truth Assignment by instantiating

literals. Our instantiations result

ultimately in a decision tree, which may

be abstracted into a Binary Decision

Diagram (BDD)2. Let PR, the used

procedure, be described in pseudo-code3

as follows.

PR:

Inputs: Arbitrary 2CNF Clause Set S

Output: BDD

Data Structure: Store of resolved Sets and their

BDDs (ST)

Steps:

3 Functions used in all pseudo-codes given in this

work, except those of the theory section, have

commonly used meanings and don’t need any

further specification as the procedures they are

embedded in intend to give the reader only a

sketch of the ideas under investigation, details

and formalizations of which are found only in the

Theory section.

Abdelwahab, N.

5

5

1- Select any Literal x from a Clause C S

2- Put x=TRUE in S forming S’

3- If (S’ evaluates to TRUE)

leftResult=TRUE-Node

Else

if (any C’ S’ Evaluates to

FALSE)

leftResult=FALSE-Node

4- Put x=FALSE in S forming S’’

5- If (S’’ evaluates to TRUE)

rightResult=TRUE-Node

Else

if (any C’’ S’’ Evaluates to

FALSE)

rightResult=FALSE-Node

6- Search for S’ in ST if not

TRUE/FALSE

If found

Put leftResult =BDD of S’

Else

- Put leftResult=PR(S’)

- Store S’ as well as leftResult

in ST

7- Search for S’’ in ST if not

TRUE/FALSE

If found

Put rightResult =BDD of S’’

Else

- rightResult=PR(S’’)

- Store S’’ as well as

rightResult in ST

8- Create node Result such that: S is

Clause Set of Result and:

 a- leftNode(Result)=leftResult

 b- rightNode(Result)=rightResult

9- Store S as well as Result in ST

10- Return Result

This procedure does not instruct us how

to choose literals for instantiation. Such

a choice is crucial for the size of resulting

BDDs as can be seen in Figures (1-a) and

(1-b) in which non-terminal node counts

are 5 and 10 respectively.

Let us call the content of a stack which

registers the Literal choices made by PR

in step 1 (while solving a problem p

expressed in a 2CNF Clause Set): A

Variable Ordering (to be précised in

Section III, Notation: ∏p). (Figure 1-a)

shows an ordering ∏p = 2<1<3<0<4

which makes the number of nodes

generated in the final BDD half the

number needed if we chose ∏’p =

0<1<2<3<4 of (Figure 1-b). We call ∏’p

Canonical Ordering (Notation: ∏p
c),

because it represents the order in which

variables are listed from left to right in

the Truth Table:

x0 x1 x2 x3 x4

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

…..

Since the number of possible orderings

may be very large even for a reasonable

number of variables: Finding for a

problem p an optimal ordering ∏p, i.e.,

one which enables the construction of

minimal BDDs, is in general NP-

complete (c.f. [Bolling 1996]). The first

trivial, but important observation we can

make, however, is the following:

Observation-1: It is possible to change

any ordering ∏p to a canonical one ∏p
c

Algorithm – A1

Figure 1-b

Figure 1-a

Truth Table – T1

Abdelwahab, N.

6

6

by renaming variables in the Truth

Table.

In the above example: Renaming

x2>x0,x3>x2,x0>x3 makes the smaller

BDD achievable via a Canonical

Ordering for S’={{x0,x1}{x0,x2}{x3,x4}}

which is equivalent, via renaming, to S.

An important consequence of

Observation-1 is that we can focus our

attention on the study of conditions

under which a Canonical Ordering

produces BDDs with small node counts,

instead of searching in all Ordering

possibilities for suitable choices. This

idea leads to the following central

Conjecture:

Conjecture: If during the resolution

process in which PR recursively

processes any 2CNF Clause Set S:

1- It always uses Canonical

Orderings to instantiate literals in S

2- It makes sure S that respects the

conditions under which Canonical

Orderings produce small BDDs,

transforming S into an equivalent S’ if

necessary, Then the BDD produced by

PR is small.

Therefore, this work has two main

objectives:

a- First understand and then formalize

the conditions under which Canonical

Orderings produce small BDDs

b- Prove the Conjecture.

To get an intuitive understanding of what

those conditions may be, we focus our

attention on constructing BDDs for S in

the above example only using Canonical

Orderings. More particularly: We would

like to investigate node counts whenever

one single clause is resolved against a

4 To do so: PR has to be changed to allow

sequential processing of clauses. To avoid

unnecessary complication and length: This is

only done in the formal part starting with Section

BDD constructed for the beginning of a

Clause Set4. (Figure 1-c) shows two

starting alternatives for S:

S’’={{x1,x2}{x2,x3}} and

S”’={{x0,x4}{x1,x2}}. Node counts are

clearly different. Remembering that

(Figure 1-b) depicts the BDD for the

whole S, we have therefore two

possibilities of node-count-growth from

M=2 to M=3, where M is the number of

clauses in S: From 4 (S’’) to 10 or from

6 (S’’’) to 10. In both cases we notice a

blow-up of the number of nodes resulting

from “copying” almost all of previously

constructed nodes.

What about S’ ? (Figure 1-d) shows a

node-count-growth from 3 to only 5 in

the BDDs constructed for

Siv={{x0,x1}{x0,x2}} and S’,

respectively.

III (the 2SAT-GSPRA Procedure of Definition

2). The reader may wish in this section to

consider PR capable of sequential processing of

clauses and continue reading under this

assumption.

Figure 1-c: Starting alternatives

Abdelwahab, N.

7

7

Obviously, the nature of growth in the

case of S’, the formula in which we

renamed variables to obtain a Canonical

Ordering, is different: The full BDD is

constructed from the previous one by just

adding two additional nodes to the

lowest BDD-level.

How can we explain this?

A second intuitive observation helps in

understanding this phenomenon:

Observation-2: Any variable xi

represents in the canonical Truth Table

a repetitive pattern of 0s and 1s whose

length is 2N-i and which is given by the

formula:

2N-i-1(0)2N-i-1(1)

where N is the total number of variables.

To fully appreciate this observation: A

graph may be drawn in which the x-axis

represents rows of a Truth Table and the

y-axis Boolean values given for a

particular 2CNF formula f. We call this

graph: Pattern-Domain of f (PDf).

(Figure 1-e) shows for Truth Table T1

PD{x0,x4}, PD{x2,x3}, PD{x2}, respectively.

A Pattern Length Repetition of a variable

v (PLRv) is the number of times a truth

pattern of v is repeated within the 2N

rows of the truth table. We call the

Pattern Length Repetition of the variable

with the least index in a clause C/Clause

Set S: Pattern Length Repetition of C/S

(PLRS/PLRC).

Using PDs, let’s try to explain what

happens when we go from the BDD of

Clause Set S’’={{x1,x2}{x2,x3}} (Figure

1-c, top) to the one of

S={{x1,x2}{x2,x3}{x0,x4}} (Figure 1-b).

(Figure 1-f) shows PDS’’ and PD{x0,x4}.

0

1

1 3 5 7 9 1113151719212325272931

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x2,x3}

0

1

1 3 5 7 9 1113151719212325272931

{x2}

Figure 1-e: Example PDs of different clauses

Figure 1-d: Smaller growth rate

Abdelwahab, N.

8

8

As seen: PDS’’ consists of one self-

repeating pattern

P1=“0000111100111111”, where

PLRS’’=2 (i.e., PDS’’=2 x P1), P1

representing the concatenation between

sub-patterns for Clause Sets:

{2}{2,3}=”00001111”&

{2,3}=”00111111” in (Figure 1-c, top) .

When we want to resolve5 this pattern

with PD{x0,x4}=P2&P3, which has

PLR{x0,x4}=1, where

P2=”0101010101010101”,

P3=“1111111111111111” as seen in

(Figure 1-f, bottom), it is clear that we

need P1 to be bit-ANDed against each

one of P2 and P3. This explains why all

nodes of the BDD for S’’ had to be

copied once as can be seen in (Figure 1-

b). Clause {4} is appended there to all

5 Resolving PDf with PDg means: Producing PDh

such that h=AND(f,g).

copies of such nodes representing the

result of bit-AND operation between P1

and P2.

Obviously: Because PLR{x0,x4} < PLR S’’

this Copy-Operation (which we also

call: Split-Operation or just Split) was

necessary.

What about PDs of (Figure 1-d)? They

are shown in the following (Figure 1-g):

Here the new, to-be-resolved clause

C={x3,x4} has PDC=8x”0111”, PLRC=4

0

1

1 4 7 10 13 16 19 22 25 28 31

{{x1,x2}{x2,x3}}

0

1

1 4 7 10 13 16 19 22 25 28 31

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x3,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}{x3,x4}

Figure 1-f: PD of an already processed

Clause Set S’’ (top) compared to the PD of a

new clause (bottom)

Figure 1-g: PD of an already processed

Clause Set {{x0,x1}{x0,x2}} is bit-ANDed

with PD of {x3,x4} to form PD of

{{x0,x1}{x0,x2}{x3,x4}}

Abdelwahab, N.

9

9

while PD{0,1}{0,2}=(8x”0”) & (24x”1”) is

a pattern which repeats itself only once,

i.e., PLR{0,1}{0,2}=1. This gives us the

opportunity to resolve the new incoming

pattern of C with sub-patterns of

PD{0,1}{0,2} only once and then refer to the

result of this resolution whenever

needed. This is reflected in the BDD by

including node {3,4} (Figure 1-d,

bottom) as a common sink between two

constructed branches, thus reducing

drastically the total amount of unique

nodes.

Resuming this motivation example: We

can use the Pattern Domain of a 2CNF

formula f (PDf) to explain blow-ups in

the number of nodes generated by

sequential resolution procedures which

use Canonical Orderings to produce

BDDs. It turns out that resolving a

clause C with a Clause Set S, where

PLRC<PLRS necessitates Split-

Operations. Such Operations are

important causes of BDD blow-ups. In

the case of S’ above we have also seen

that sequentially resolving Clause Sets S

with a clause C does not induce Splits

when PLRC>PLRS. We call this

condition: Linear Order (l.o.). The core

of this work is formally showing that

Algorithms observing the l.o. condition

always produce small FBDDs.

Are there any sources of BDD blow-ups

other than Split Operations caused by

procedures not observing l.o.

conditions? An important part of this

work is also dedicated to showing that

nodes which are sinks between branches

(also called: Common Nodes (CNs))

may also cause Splits. Fortunately and

precisely because of the l.o. condition:

Those Splits are benign, i.e., they do not

cost, for each CN, more than a constant

number of additional nodes per inductive

resolution step.

6 Algorithm 2SAT-FGPRA in the Theory section

is the concrete, detailed counterpart.

II USED METHODS

This work is a second application of

ideas presented in [Abdelwahab 2016-1]

for solving hard problems, the first being

published in [Abdelwahab 2016-2]

related to 3SAT. At the core of those two

publications is a 3SAT-Solver producing

small FBDDs by enforcing l.o.

conditions on all resolved Clause Sets. In

the present work, this Solver is modified

to be applicable to the 2CNF case and

may informally be described as per the

following high-level pseudo-code and

Flowchart of (Figure 1-h)6:

PR+:

Inputs: Arbitrary 2CNF Clause Set S

Output: FBDD

Steps:

1- Use the Renaming and Sorting

Algorithm (CRA+, Definition 9) to

convert S to an equivalent l.o. Clause

Set S’, i.e., Set S’=CRA+(S).

2- Select the least Literal x from the first

clause C S’.

3- Instantiate S’ using partial

Assignments:{x=TRUE}, {x=FALSE}

forming left- and right-Clause Sets S1,

S2, respectively

4- If either S1 or S2 are evaluated to

TRUE or FALSE, create left/right

TRUE/FALSE-nodes in the respective

case.

6- If neither S1 nor S2 are TRUE/FALSE

and are found in a Resolved-ClauseSet-

Store: Call yourself recursively first

with S1, then with S2, forming leftResult

and rightResult, respectively.

Otherwise: Call yourself only for the

Clause Set is new and not

TRUE/FALSE and return the BDD

stored for the other.

7- Form the finalResult from Clause Set

S’, leftResult and rightResult.

(Figure 1-i) shows the actual resolution

of F={{x1,x3}{x2,x4}{x0,x2}{x1,x4}{x2,x4}}

using 2SAT-FGPRA after it is converted

in to a l.o. Set S=CRA+(F)).

Algorithm – A2

Abdelwahab, N.

10

10

Before going into a discussion of the

mentioned publications, showing

differences between methods described

therein and modifications/adaptations

used in this work, known state-of-the-art

literature is briefly described. From the

vast literature around #2SAT,

BDDs/FBDDs and NP-completeness,

we have chosen only those research

findings which relate to our work or bear

possible challenges to our results.

FBDD for S

PRA+:

2CNF-Clause Set S

S’=CRA+(S)

FBDD already exists? Call yourself

recursively

forming left and

right Result

Return Result

Least Literal

Instantiation

Figure 1-h: Flowchart of Algorithm – A2 (PR+)

Creation of left and right

Clause Sets which may be

TRUE/FALSE

yes

Abdelwahab, N.

11

11

F
ig

u
r
e
 1

-i
:

2
S

A
T

-F
G

P
R

A
 s

o
lv

in
g
 2

C
N

F
-C

la
u
se

 S
et

 S

Abdelwahab, N.

12

12

II-1 Exponential Lower Bounds on

 FBDD Construction Revisited

Most important BDD/FBDD

properties are known since the 80s

and 90s of last century and

represent well established facts

which contributed to the commonly

accepted idea that: Some important

Boolean Functions can only possess

large BDDs and/or FBDDs and

there are no ways to overcome this

restriction. We discuss the

seemingly apparent contradiction

between our findings and this

consensus, despite of the fact that,

because of the existence of

polynomial reductions, exponential

lower bounds proven in literature

are targeting mainly Boolean

Functions expressible in k- or 3CNF

while the work here concerns 2CNF

formulas.

Exponential lower bounds for

BDDs are known for Ordered

Binary Decision Diagrams

(OBDDs), which are the best

studied forms of BDDs and which

only need one variable order to

govern instantiations of Clause Sets.

Alternatively: An FBDD allows the

flexibility to choose a different

order for each branch. There are

many BDD variable ordering

heuristics in literature, but the most

common way to deal with ordering

is to start with something

"reasonable" and then swap

variables around to improve BDD

size. This dynamic variable

reordering is called sifting [Rudell

1993]. The overall idea is: Based on

a primitive "swap" operation that

interchanges xi and xi+1, pick a

7 N(f,Y) denoting the number of different sub-

functions obtained under all possible

assignments to Y.

variable xi and move it up and down

the order using swaps until the

process no longer improves the size.

The reader may have noticed that

the above procedure PR+

(Algorithm - A2) does not perform

any Variable/Literal selection-trials

and just proceeds, after converting

the Clause Set to a l.o. one, by

instantiating the least Literal of the

first clause.

The first exponential lower bounds

on the size of FBDDs have been

proven as early as 1984 by [Zak

1984] and [Wegener 1988]. In his

seminal paper Bryant also showed

[Bryant 1986] that integer

multiplication is a function which

cannot have a small OBDD

irrespective of the variable ordering

used. Later, this result was also

extended to the FBDD case. A long

list of papers, which reported

similar results for Boolean functions

such as: Hamiltonian-Circuit,

Perfect Matching, Clique-Only,

Triangle-Parity, Blocking Sets in

finite projective planes etc.

followed or were published in the

same period. In [Wegener 2000] a

lower bound technique which is

influenced by the algorithmic point

of view following [Sieling 1995] is

used to explain the methodology

behind the majority of results. It

turns out that variants of the

following observation were

constantly used:

"Lemma: Let f be a Boolean function of

n variables. Assume that m is an integer,

1 < m < n, if for m any m-element subset

Y of the variables N(f, Y) = 2m holds7,

then the size of any read-once branching

program computing f is at least 2m-1."

Abdelwahab, N.

13

13

[Abdelwahab 2016-1, Theorem 3]

shows that lower bounds related to

the construction of FBDDs obtained

using the above Lemma are

bypassed by Sequential Pattern

Resolution (SPR)-like Algorithms

using 3CNF representations. The

direct reason for that being the fact

that: While the proof of Lemma

requires the first m-1 levels of any

FBDD constructed for such a

function to constitute a complete

binary tree, SPR-like Algorithms

using 3CNF formulations always

form trees which are bound to reach

leaves after at most k<=3

instantiation steps in any tree-level

(Property 8 [Abdelwahab 2016-2],

Section II).

Most of the problems for which

lower bounds were proven using

this Lemma (for example: the

“blocking-sets in projective planes”

problem shown in [Gal 1997]) are

described in kCNF formulations

which reflect/preserve the exact

problem structure, i.e., in the

projective planes example: Every

plane is exactly one clause and

every point is exactly one variable.

[Abdelwahab 2016-1] calls such

descriptions preserving all

properties of decision structures of a

problem as well as

interrelationships between those

structures: Reserved Descriptions.

Let f be a Boolean Function for

which an exponential lower bound

LB on the size of the FBDD is

obtained, f’ an equisatisfiable 3CNF

formulation of f. The reasons why

8 Formalizations of the ideas expressed in the

points here are not attempted to avoid

unnecessary length.
9 Lemma could only be applied to the

blocking Sets problem, because of the

following combinatory property shown to

hold for projective planes [Gal 1997]:

LB isn’t applicable to f’ can be

informally summarized in the

following points8:

1- If f has a reserved kCNF

description, it is sometimes the only

way to guarantee that, for any m-

element subset Y of the input

variables of f, different sub-

functions obtained under all

possible assignments to Y are truly

distinct. For example in the

projective planes case we quote the

following part of the lower bound

proof [Gal 1997], page 15:

“Proof of the theorem. We

show that for every q-element

subset A of the variables, N(fΠ, A) =

2q holds, i.e., each truth assignment

to the variables in A yields a

different sub-function on the

remaining variables. Since each

line defines a clause of the

function fΠ, it follows from the

Fact9 that for an arbitrary q-

element subset A of the variables

there exist q clauses such that each

variable from A appears in exactly

one of them, and each variable

appears in a different clause.”

Obviously: Because f’ is formalized

in 3CNF, a line for projective

planes with q>3 cannot be

represented by only one clause

making the above Argument

inapplicable.

2- From the logical point of view, f

and f’ are not equivalent. This

means that Deterministic FBDDs

constructed for them are not

expected to be equivalent10. It also

"Fact: Let J={p1,…,pt} be a set of t<=m

distinct points of the projective plane P,

then there exist distinct lines {l1,…lt} such

that for i>=1, j <=t we have pi ∈lj iff i=j."
10 Let Gf, Gf’ be FBDDs of f, f’ respectively, then:

f = f’ iff Gf (a) = Gf’(a) for all a{0, l}n, where

Abdelwahab, N.

14

14

means: There may be models for f

which are not models for f’ and vice

versa. As f and f’ are equisatisfiable,

they may disagree for a particular

choice of variables. As a matter of

fact: A typical equisatisfiable

translation from kCNF to 3CNF

usually looks like:

(A∨B∨x1)∧(¬x1∨C∨x2)∧(¬x2∨D∨E)

For a k=5 clause C=(A∨B∨C∨D∨E)

for example. Note that while C has

a model in which B=TRUE,

x2=TRUE and all other variables

including x1 are FALSE, this is not

a model for the translated 3CNF

formula. In such constellations: The

number of variables in clauses of f’

are strictly larger than the number

of variables in clauses of f and

consequently: Sub-function

properties, necessary for the

application of the above Lemma are

disturbed by the introduction of new

variables which have no place in the

definition of f and must be treated

as Don’t Cares, i.e., variables

whose truth values don’t matter for

the overall truth-value of the

formula. Treating variables as Don’t

Cares makes the FBDD Non-

Deterministic, causing all lower

Gf(a) denotes the leaf node value obtained from

Gf for input string a [Wegener 2000].
11 It must be mentioned here that

introducing new variables is known, since

the 90s, to disturb exponential lower

bounds obtained for multiplication-BDDs

for example. In [Burch 1991] a method for

using BDDs to verify multipliers while

avoiding exponential complexity is shown.

Normally the outputs of an n by n bit

multiplier circuit are represented by BDDs

with 2n variables, since the circuit has 2n

inputs. In the method described there, the

outputs of the circuit are represented by a

BDD with 2n2 variables, instead. The size

of this BDD is cubic in n.
12 Recall: A Deterministic FBDD is a FBDD in

which every node is marked with a variable

bounds for Deterministic FBDDs to

be inapplicable11.

3- Let LB be an exponential lower

bound on the size of any Non-

Deterministic FBDD12 constructed

for f, as the one given in [Sauerhoff

2003] for example, not necessarily

using Lemma. Call an efficiently

constructed Non-Deterministic

FBDD: pNFBDD and an efficiently

constructed Deterministic FBDD:

pFBDD, then: For LB to be

applicable on procedures using f’,

something like: “A pNFBDD exists

for f iff a pFBDD exists for f’” must

be true13.

Although starting with a pFBDD for

f’, a pNFBDD for f is easily

constructed by erasing all markings

which represent variables not in f

(call a Set containing them: Z), the

other way around is not obvious.

Starting with a pNFBDD for f, in

which some nodes are unmarked

does not give any clue to how

markings must be put such that a

procedure produces a pFBDD for f’.

Correct markings have to be

properly “guessed” indicating that

this translation may be hard14.

name, while a Non-Deterministic FBDD has

some unmarked nodes [Wegener 2000] .
13 Note that if f and f’ are equivalent, agreeing on

all used variables, this is trivially true.
14 To see this: Suppose Gf is a pNFBDD

for f and suppose there exists an input a,

such that Gf(a)=TRUE. This means that

there is a path P in Gf leading to a TRUE

node. P may contain unmarked nodes

{un1,un2,…uni}. If we attempt, using Gf, to

construct a pFBDD, say Gf’, for f’, we need

to mark {un1,un2,…uni} with names of

variables from Z such that a path P’ in Gf’

(corresponding to P) leads to a TRUE leaf.

There are two ways to do so: Either all

possibilities of assignments for variables in

Z must be explicitly extended creating in

the worst case an exponential sub-tree in

Gf’ rather than only one single path, or

Abdelwahab, N.

15

15

II-2 #2SAT Solution Methodologies

There are two types of approaches

related to counting problems: Ones

which aim at improving known

exponential bounds on finding exact

solutions and others which seek better

approximations. As we are presenting in

this work a method for exact counting,

we will focus in this section on

describing the known state-of-art in this

category and underline differences to our

proposed method. We discuss also

results from parametric complexity

which use some notion of ‘truth patterns’

to reduce the effort needed to bound the

number of solutions more tightly.

In exact counting, methods based upon

DPLL-style exhaustive search and those

based on what is called knowledge

compilation are distinguished. The

method presented here can be classified

as a knowledge compilation method, in

which a given CNF formula is converted

into a FBDD from which the count can

be deduced easily, i.e., in time

polynomial with regard to the size of the

formula. One advantage of this

methodology is that once resources have

been spent on compiling the formula into

this new form, complex queries can

potentially be answered quickly.

State-of-the-art methods of this type

are best represented by the ones

using deterministic, decomposable

negation normal forms (d-DNNF)

as described in [Darwiche 2002],

which are generated by an

exhaustive version of the DPLL

procedure called c2d. Those forms

were created to provide alternatives

for BDDs, which could, in

principle, be constructed and then

“read off” for the solution count by

traversing the BDD from the leaf

labeled “1” to the root. BDDs are

different assignments of those variables are

deterministically tested against f’. Both

commonly not used for this

purpose, because of the consensus

regarding exponential lower bounds

discussed in the previous section.

Compilation of a given CNF

formula F into d-DNNF is done via

c2d by first constructing a so-called

decomposition tree, which is a

binary tree whose leaves are tagged

with the clauses of F and each of

whose non-leaf vertices has a set of

variables, called the separator,

associated with it. The separator is

the set of variables that are shared

by the left and right branches of the

node, the motivation being that once

these variables have been assigned

truth values, the two resulting sub-

trees will have disjoint sets of

variables. The resulting components

can then be easily combined using

AND nodes [Handbook of

Satisfiability 2009]. In [Beame

2013] a special case of d-DNNF

formulas, called decision-dDNNF,

is shown to be convertible to

FBDDs with only a quasi-

polynomial increase in

representation size in general,

leveraging known exponential

lower bounds for FBDDs, to

exponential lower bounds for

decision-DNNFs. The power of

decision-DNNFs is separated from

d-DNNFs and a generalization of

decision-DNNFs known as AND-

FBDDs is described as well. This

implies exponential lower bounds

for natural problems associated with

probabilistic databases (c.f. [Beame

2013]).

Algorithms for specifically counting

solutions of 2SAT can be found in, e.g.,

[Fuerer 2007]. The idea is an extension

of a research direction focusing on 2SAT

problems, where every variable occurs

options don’t qualify as ‘efficient

construction’ procedures.

Abdelwahab, N.

16

16

x-times at most, obtaining the best time

of O(1.246069n) for counting models

and max-weight models, n number of

variables, achieved also in polynomial

space. The decisive parameter

determining the running time of the

proposed Algorithm is the number of

degree x=3 nodes. Progress in

eliminating those nodes is possible when

there are many of them, i.e., when the

average degree is higher. In that case: A

degree 3 vertex in the constructed graph

with a neighbor of degree 3 is found

more frequently and they can both be

eliminated in the same time. The

improved time bounds for degree 3

propagate to formulas of higher degrees,

because the average degree has a

tendency to shrink during the iterative

algorithm’s run (c.f. [Fuerer 2007]).

In [DeItaLuna 2012] a method is

described where given a formula F,

#2SAT(F) can be bounded above by

considering a binary pattern analysis

over its set of clauses. For each clause

Ci = {xj, xk}, Ai is a set of binary strings,

called: ‘binary pattern’, such that the

length of each string is n, the number of

variables. The values at the j-th and k-th

positions of each string, 1 ≤ j, k ≤ n

represent the truth value of xj and xk that

falsifies Ci. E.g., if xj ∈ Ci then the j-th

element of Ai is set to 0. On the other

hand, If xj ∈ Ci then the j-th element of

Ai is set to 1. The same argument applies

to xk. Using this notion of a ‘pattern’ it

can be shown that for F = {C1, C2,...,Cm},

a 2CNF formula, n variables, m ≥ 2: The

hard cases to answer whether

#2SAT(F)=k, are given when m>n. This

is one of the rare occasions in the

literature of hard problems, where a

formalized notion of ‘truth patterns’ is

used to reveal intrinsic properties of

logical formulas.

15 Note that a Cook-Levin reduction is actually

parsimonious. Cook-Levin (Restated): For every

Before going into the next section, where

we distinguish this work from

[Abdelwahab 2016-2], we summarize

important findings of the previous two

sections in the following points,

underlining differences between known

#SAT solutions and our presented one:

1- Exact counting of solutions can be

done using exhaustive knowledge

compilation methods which avoid BDD

construction, because of the consensus

that BDDs possess exponential lower

bounds for important Boolean Functions

and may thus become large in the worst

case.

2- Using an equisatisfiable 3CNF

representation f’ of a Boolean

Function f makes lower bounds

obtained for Deterministic-FBDDs

of f inapplicable, because of the

additional variables in f’.

Polynomial Non-Deterministic

FBDDs of f fail to capture

polynomial Deterministic-FBDDs

of f’, rendering lower bounds for

Non-Deterministic FBDDs of f out

of scope as well. This paves the way

to the usage of SPR-like methods

constructing FBDDs like the ones

published in [Abdelwahab 2016-2]

to efficiently solve #SAT,

especially knowing that

conveniently, many of the known

reductions between NP-complete

problems, including those related to

3SAT, are parsimonious, i.e., they

preserve the number of solutions

during the translation15.

3- Independent of the above points:

The present work is concerned with

the construction of FBDDs for

2CNF formulas. To the best of our

knowledge: There are no lower

bounds, susceptible to challenge

our results, for this special case.

language L ∈ NP, there is a parsimonious

reduction from L to SAT.

Abdelwahab, N.

17

17

II-3 Similarities and Differences

between previous and current work

[Abdelwahab 2016-2] was set up to

prove two related assertions:

1- That SPR Algorithms described there

(GSPRA+, FGPRA) always produce

small FBDDs for 3CNF formulas.

2- That they are efficient 2-

Approximation Algorithms for

MinFBDD, an NP-complete problem.

Although the first point was enough to

demonstrate the main theoretical result,

it was necessary to provide evidence,

that the used Algorithms have practical

value as well. Similar to procedure PR+

(Algorithm – A2): GSPRA+ and FGPRA

apply, using CRA+, the l.o. condition on

all Clause Sets generated during

resolution. In the same time: Creation of

new Clause Sets via instantiation is

solely done using least literals. The final

output being a special form of DAGs we

call also here MSRTs.o, whose main

features are:

a- Nodes contain Clause Sets

b- Variables in a Clause Set may be

renamed one or more times in the same

branch. Sequences of such renaming

operations are called: Variable Space.

c- MSRTs.os can be easily converted to

FBDDs by abstracting the least

Variable/Literal index of every Clause

Set.

The essential difference between this

work and [Abdelwahab 2016-2] is the

way in which formal concepts are

defined, namely: Keeping definitions as

close as possible to Set- and Graph-

Theory. This facilitates proofs of

relevant lemmas and makes them more

accessible to readers than their

counterparts in [Abdelwahab 2016-2].

New proofs for previously not shown

properties of MSRTs.os (like the fact that

no N-Splits can exist in such graphs for

example) are also important additions.

Table T2 gives an overview of essential

formal similarities and differences.

Concept,

Algorithm,

Proof

Previous

formalization

Current

formalization

Linearly

Ordered (l.o.),

Linearly

Ordered, but

unsorted

(l.o.u.) Clause

Sets

Structural property

of Clause Sets

Same as before

+ Var/Literal

Index

comparison

Relation “<” is

characterized by

the Literal

precedence

Relation “|”

(Definition 8.6)

N-Splits, CN-

Splits, BigSps

Copies of nodes Special forms of

Clause Sets

occurring in a

MSRTs.os

(Definition 6)

MSRTs.o Special form of

DAG

+SR-DAG

formally defined

+ Special form

of SR-DAG

(Definition 10)

Variable

Space (VS),

CN/MSCN,

tCN

-Variable Space:

Sequence of CRA+

Operations,

-CN: Sink node

-MSCN: Sink node

in a VS

-tCN/tMSCN:

CNs/MSCNs

produced in

Symmetric Blocks

Same as before

CRA,CRA+ Properties shown:

- Termination

- Correctness

- Complexity

Same as before

+ (x | y) iff (x<y)

(Lemma 1-b)

+ S and CRA+(S)

are

equisatisfiable

+ They are also

equivalent

(Lemma 2-b,c)

Lemma 9-a:

No BigSps

Shown using “<”

Relation and l.o.

property of Clause

Sets of parent

nodes of a

CN/MSCN

Shown using “|”

Relation and l.o.

property of the

Base Clause Set

(BS)

Lemma 9-b:

No N-Splits

Not shown Shown using

new

characterization

of Splits

Lemma 9-c:

No size>1

Splits

Shown using the

“<” Relation,

CNAL properties

Shown using the

“|” Relation,

CNAL

properties and

BS l.o. property

Lemma 14:

Counting

Solutions

Not in the scope Shown using

DAG properties

Abdelwahab, N.

18

18

Theorem 1:

Sufficient

conditions

which

guarantee the

efficiency of

SPR-like

kSAT-

Algorithms

Not in the scope Shown using

induction on k

and)Lemma 11(

SPR

Resolution

procedures

GSPRA+,FGPR:

-produce optimal

Top-Parts

-their output is

equivalent

- FGPRA is

efficient, 2-

approximative to

MinFBDD

2SAT-GSPRA+,

2SAT-FGPRA:

1- Top parts are

not shown to be

optimal

2- 2SAT-

FGPRA

simulates 2SAT-

GSPRA+

correctly

(Lemma 11-a)

3- 2SAT-

FGPRA is

efficient

(Lemma 11-b)

II-4 How to read this paper

The Conjecture formulated in the

introduction of this work includes claims

which bear important consequences

requiring an extra effort to organize

formal concepts and/or proofs thereof in

such a way, that the overview is not lost,

while readers attempt to check

correctness. For this purpose the

following tools are made available for

use throughout this whole document:

1-All formal Concepts, Algorithms, and

Proofs are explained with examples

while expressing them as close as

possible to Set Theory for formal

concepts and concrete near-to-C pseudo-

code for Algorithms, highlighting exact

formal definitions always in bold. Cross-

References to definitions are availed to

simplify reading.

2- Lemmas, Figures and References are

cross-referenced (in pdf-file format).

16It is commonly known that BDDs admit

efficient Algorithms for counting solutions after

being built. Therefore: Verifying that node

3- All Acronyms used are highlighted in

blue bold when they are defined for the

first time.

4- All concepts are listed in a

comprehensive table in Appendix A,

where Acronyms, formalizations, their

place in definitions (including page

numbers and links), lemmas using them

as well as their actual purpose are

included.

5- Selected lemmas and their

dependencies on formal concepts are

listed in Appendix B.

6- A table of content (first page) is

provided to facilitate overview as well as

referencing of content.

7- (Figure 1-j) below shows

interdependencies between lemmas and

links them to Theorem 1. Although all

lemmas are important, parts marked

green represent the most crucial pieces

of information, sufficient alone to

produce the main result one time,

followed in importance by blue marked

parts. Coloring parts intends to help

readers first find critical flaws in our

argumentation more easily and second

distinguish between the two presented

results in the following way:

i- In a first quick scan, a reader may wish

to consider only the green path, where

one can verify the O(M6) bound of

(Lemma 10) on the upper size of the

FBDD/MSRTs.o, shown to hold under

the assumption that (Lemma 9-c) is

relaxed, i.e., only N- and BigSps cannot

be produced, as follows16:

a- Concepts: l.o./l.o.u. 2CNF Clause Sets

(Definition 1), (Variable Space) ,

(CNs/MSCNs) , Splits (N-, as well as

counts cannot exceed O(M6) for any 2CNF

formula is the essential effort a reader may want

to do in order to accept the second proof of the

main result of this work, i.e., Theorem 1-b.

Overview of differences and similarities to our

previous work – T2

Abdelwahab, N.

19

19

CN-Splits), (Alignment MSRTs.os) are

all well-defined.

b- Algorithms (CRA), (CRA+), (2SAT-

GSPRA+) and (2SAT-FGPRA) are

sufficiently detailed and their way of

work clearly described.

c- It is always possible to convert an

arbitrary 2CNF Clause Set to a l.o. one

using CRA+ (Lemma 2-a). If necessary,

this is done in each recursive step by

2SAT-GSPRA+. CRA+ delivers Clause

Sets which are not only equisatisfiable

(Lemma 2-b), but also equivalent

(Lemma 2-c) to the original Clause Set.

CRA+ is also efficient (Lemma 3).

d- Mappings produced by CRA are

monotone and the Literal precedence

Relation ‘|’ is an exact characterization

of the trivial Index comparison Relation

‘>’ (Lemma 1-a, b). This information is

used in the crucial proof of (Lemma 9-

a).

e- Splits are the actual causes of

exponential behavior. While N-Splits are

taken care of in the definition of the

Canonical Ordering criteria (especially

the l.o. condition as has been seen) and

thus avoided altogether by 2SAT-

GSPRA+ (Lemma 9-b), CN-Splits may

still occur.

f- CN-Splits cannot occur for nodes of

rank>1 (BigSps) (Lemma 9-a).

g- 2SAT-GSPRA+ repeats the

construction of sub-trees for Clause Sets

of sub-problems when they are found to

be breaching the l.o. condition. This

makes sure that any CN/MSCN at size-

level j is only a CN/MSCN at size-level

j-1 augmented by a newly resolved

clause during re-construction (Lemma 5-

b), i.e., the number of CNs/MSCNs is

preserved (in the worst case) when they

move up the hierarchy of size-levels.

h- No more than O(M2) nodes can be

created in the lowest j=1 size-level

during the whole process of resolution

(Lemma 7)

i- Rank 1 nodes (i.e., those which have

only unit clauses) produce only O(M)

new nodes when they split (trivial)

j- All this leads to the O(M6) upper

bound of (Lemma 10, point 4).

k- 2SAT-GSPRA+’s repetitive

construction of sub-trees causes

redundant operations which are avoided

altogether by 2SAT-FGPRA. 2SAT-

FGPRA is a practical Algorithm in

which all clauses of a Clause Set are

instantiated with values of the chosen

least Literal in the same time. It

simulates 2SAT-GSPRA+ correctly

(Lemma 11-a).

l- The worst implementation of 2SAT-

FGPRA requires comparing all created

nodes with each other and always using

CRA+ to rename their Clause Sets,

making the overall asymptotic

complexity O(M13), because Lemma 9-c

is relaxed (Lemma 11-b).

ii- In a second scan readers may want to

study (Lemma 9-c) (blue path), which

shows that CN-Splits cannot occur in

size-levels j>1. This reduces the upper

bound of the nodes count of the

FBDD/MSRTs.o to O(M4):

a- As before: The only new nodes

added by 2SAT-GSPRA+ to the lowest,

size-level j=1 in any step and at any time

can’t be more than O(M2) nodes. As

2SAT-GSPRA+ is sequential: Those

nodes form, at each step, the basis for

size-j-level nodes, j>1, and may be

propagated up in the hierarchy of levels,

making the maximum amount of nodes

in each such level j during the whole

resolution process not exceeding the

upper bound of nodes at level 1 (Lemma

5-c).

b- Either trivial- or rank 1, size 1-

CNs can split (Lemma 8, Lemma 9-b)

Abdelwahab, N.

20

20

making the maximum amount of nodes

added in this way to the lowest level also

O(M2), since one such Split causes, in

the worst case, a constant amount of

nodes to be created on the size-level it

occurs in.

c- The final FBDD has in the worst

case a total unique node count of only

O(M4) (Lemma 10).

d-To count Assignment possibilities:

An Algorithm Count2SATSolutions

traversing in the worst case all nodes and

edges of the FBDD/MSRTs.o is used. As

both 2SAT-GSPRA+ and 2SAT-FGPRA

are complete, Truth-Table equivalent

Algorithms (Lemma 12),

Count2SATSolutions is shown to be

counting exact solutions correctly

(Lemma 13). To do so: It requires O(M9)

or O(M13), in case Lemma 9-c is relaxed

(Lemma 14).

e- One main result, (Theorem 1-a)

shows conditions under which SPR-

Algorithms solving kSAT-problems

become efficient (green path). It turns

out that avoiding both N- as well as big

CN-Splits are sufficient conditions for

polynomial time performance. In the

same time: The uniform way of

expressing node counts and time

complexity of base case k=2 in terms of

base case k=1 makes it possible to

demonstrate P=NP by formulating and

using the strongest induction hypothesis

possible. This is what is gained by

relaxing Lemma 9-c.

f- Because Count2SATSolutions is in

P (both green and blue paths), P=NP

follows also this way (Theorem 1-b).

Abdelwahab, N.

21

21

(Lemma 5-b):

For all M>1: A

node [q] of size

M is

CN/MSCN iff

there exists

CN/MSCN [q’]

of size M-1

augmented in

size by a clause

C such that:

[q]=[q’]

Properties of CRA+

(Lemma 2): CRA+ translates

2CNF Clause Sets to equivalent

Sets

(Lemma 3): CRA+ is in

O(M2(log (M+N)))

(Lemma 4): CRA+ terminates

always producing stable 2CNF

Clause Sets

(Lemma 6): In a

MSRTs.o: Nodes of sizes

1,2 are all aligned

(Theorem 1):

a- kSAT-GSPRA+/kSAT-

FGPRA uniformly produce

small MSRTs.os

b- #2SAT is in P
(Lemma 14): Counting

Solutions in a MSRTs.o

is in P

(Lemma 11-b): 2SAT-

FGPRA takes a polynomial

number of primitive

operations to produce the

MSRTs.o. of an arbitrary

2CNF Clause Set S

(Lemma 10): O(M4) is an

upper bound of the number of
unique nodes created by

2SAT-GSPRA+ for a 2CNF

Clause Set S. Moreover: This
bound remains polynomial,

i.e., O(M6), if Splits are

admitted which are not
BigSps.

(Lemma 11-a): 2SAT-

FGPRA simulates

2SAT-GSPRA+

correctly

(Lemma 9): While

2SAT-GSPRA+ resolves

a 2CNF Clause Set S

a) No big Splits can

occur

b) - N-Splits can’t exist.

 - Rank-1, Size-1 CNs

can split

c) Rank-1, Size-1 CNs

augmented to sizes>1 in

step k cannot split in

steps >k.

(Lemma 7): The Upper

bound of nodes created

at level 1, without

counting Splits is

RCC2-SAT *M2

(Lemma 1):

a-CRA produces monotone

Mappings

b- (x|y) iff x<y

c- ….

(Lemma 5-c): If Splits

are not counted in any

size-level j>1 then:

upj<=up1

(Lemma 8): tCNs and

tMSCNs can be avoided

when DB sorting

condition is used

(Lemma 12): 2SAT-

GSPRA+ and 2SAT-

FGPRA are TT-

equivalent

(Lemma 13):

Count2SATSolutions is

correct

Figure 1-j: Interdependencies of Lemmas

Abdelwahab, N.

22

22

III THEORY

III-1 Definitions

Definition 0: (Nomenclature and Basic):

Variable, Literal, Clause, 2CNF

Formula/Clause Set, Truth

Assignment, Partial Assignment,

Restricted Assignment, 2SAT Decision

Problem, Graphs, Vertices/Nodes,

Edges, adjacent Vertex, Source, Target,

reachable, Child, Parent, Base Node,

Path, Branch, acyclic, Length of

Path/Branch, Directed Acyclic Graph,

Source Path of node n, Level of node n

in a DAG, Level of edge e in a DAG,

Topological Ordering of a DAG,

Sequential Resolution DAG, 2CNF

Clause Set of a node, Base Clause Set of

a node, TRUE-DAG, FALSE-DAG,

rankC, rankNode, Size of a node n, Size

of a 2CNF Clause Set S, Top-Part of a

SR-DAG, LeftDAG, RightDAG, literals

in a 2CNF Clause Set S, literals of a

2CNF Clause Set S to the left of Literal

x, SortOrder, Head-Literal, Tail-

Literal, Connectivity of a Literal x in

2CNF Clause Set S, Permutations of a

Clause, Resolution Complexity

Coefficient, Instantiations of literals,

Satisfiability, Derivations of a Clause,

Linear Derivations of a Clause,

InstSimple, InstSimpleC, Convert a

Clause to SR-DAG, First occurrence of

Literal x in a 2CNF Clause Set S, Select

a Literal x of a 2CNF Clause Set S

Definition 0.1: Consider a finite Set of

Boolean variables Var={x1, x2, . . . xn}

a- A Literal is either a Boolean

variable xi or its negation ¬xi. Indices

deduced from enumerations are also

used to stand for Literal names. The

relation ‘a<b’ expresses the fact, that

index a of some Literal is smaller than

index b of another in a given

enumeration.

b- A clause is a disjunction of

literals. For example, (x1 ∨ x2) is a clause.

c- A Formula/Clause Set in

conjunctive normal form (CNF) is a

propositional formula in which clauses

are connected using the Boolean AND

operation. For example: (x1 ∨ x2) ∧

(x2 ∨ ¬x3) ∧ x5 is a CNF formula.

d- A formula ϕ is a 2CNF when

every clause has exactly 2 literals. For

example (x1∨x2)∧(x2∨¬x3) is a 2CNF

formula, but (x1∨x2∨¬x4)∧(x2∨¬x3)∧(x5)

is not.

e- A Truth Assignment is a total

Function f:Var =>{0,1}. When f is

partial, the assignment is called Partial

Assignment. When f is restricted to only

one variable it is called Restricted

Assignment.

Definition 0.2: 2SAT Decision Problem:

Given a 2CNF formula ϕ, is there a Truth

Assignment such that ϕ evaluates to

true?

Definition 0.3: A graph G = (V,E)

consists of a finite set of Vertices/Nodes,

V, and a finite set of Edges E.

• Each edge is a pair (v,w) where v, w V

• A Directed Graph, or Digraph, is a

graph in which the edges are ordered

pairs: (v, w) ≠ (w, v)

• In the Digraph: b is called adjacent to

a when there exists an edge (a, b)E,

also:

• Node a is not adjacent to node b.

• Node a is called predecessor of

node b, node b is a successor of

node a

• The Source of the edge is node a,

the Target is node b.

• Node b is called reachable from

node a if b is adjacent to a or there

Abdelwahab, N.

23

23

is a non-empty list <e1,e2,…,en>17

of edges connecting, indirectly, a

to b. Node b is also called in that

case Child of node a, a Parent of b.

Boolean Predicates

Child(n1:Node, n2:Node),

Parent(n1:Node,n2:Node) are

formally used to express this fact

• Base Node (BN) of G is the source

of its first edge.

• A Path/Branch is a list of vertices

<w1, w2,…wn> such that for all the

edges:

(wi, wi+1)E, 1 <= i < n, and each

vertex is unique except that the

path may start and end on the same

vertex if G is cyclic.

• An acyclic Path is a Path where

each vertex is unique

• The length of the Path/Branch is

the number of edges along the path

• A directed graph which has no

cyclic paths is called a DAG

(Directed Acyclic Graph).

• Source Path of a node n in a DAG

(SPn) is a list of edges connecting

n to the Base Node: SPn=<e1,

e2,…em>, ei:Edge. A node may

have several non-empty Source

Paths and is always reachable from

the Source.

• Level of node n (Ln) in a DAG is

an integer representing the number

of edges in the longest Source Path

connecting n to the Base Node. It

is given by:
Ln=Max(length(SPn

1)..length(SPn
k))

where any SPn
i is a Source Path of

n.

• Level of an edge e (Le) in a DAG:

Le= LSr+1 if Sr is the Source of e.

17 <obj1,obj2,…objn>, where obji:Type is the

notation used to denote lists of Objects of Type.

Type shall be omitted when obvious.

• A Topological Ordering (TO) of a

DAG is an ordering of its nodes

such that:

∀e:Edge, e=(vi,vj), vi,vjV: i< j.

• A DAG formed for a 2CNF Clause

Set BS and whose nodes contain

2CNF Clause Sets is called a

Sequential Resolution18 DAG

(SR-DAG or SR-DAGBS),

i.e.,∀n:Noded:DAG: ∃S, S is

2CNF Clause Set, S is the Clause Set

of n (2CNFn). BS is 2CNFBN.

• A TRUE-DAG is a SR-DAG with

only one node labeled TRUE and

whose Clause Set is empty. A

FALSE-DAG is a SR-DAG whose

only node is labeled FALSE and

whose Clause Set is empty as well.

• rankC: (C:Clause) => N is a

Function returning the number of

literals contained in a clause.

rank2CNF, rankNode are similar

Functions returning the maximum

number of literals in any clause in

the 2CNF Clause Set of a node.

∀n:Noded:SR-DAG:

RankS=Rankn=Max{rankC(C1)..

rankC(Cm)}, C1,..,CmS, S is 2CNFn

• The size of a node n in a SR-DAG

(Sizen) is an integer representing

the number of clauses in the Clause

Set of that node. The same integer

is used to denote the size of a

Clause Set S (SizeS).

In a SR-DAG of a 2CNF Clause

Set S of size M the set of all nodes

containing Clause Sets of sizes M

or M-1 is called the Top-Part of the

SR-DAG. Topd:SR-DAG={n:Noded |

∃S, S is 2CNFn, SizeS=M or

SizeS=M-1, SizeBNd=M}

18 The word “Resolution” and/or any of its

declinations are not referring in any place of this

work to the classical Resolution procedure used

in Logics.

Abdelwahab, N.

24

24

• LeftDAG: (n:Node)=>SR-DAG

Is a Function which, given any

node n of a SR-DAG, returns the

SR-DAG of its left Child if

existent. RightDAG is defined

similarly.

• SubTree: (n:Node)=>SR-DAG

Is a Function which, given a node

n of a SR-DAG, returns the portion

of the SR-DAG starting with n.

Definition 0.4: For a 2CNF Clause Set S

of the form:

{{a1,b11}{a1,b12}..{a1,b1i}

 {a2,b21}{a2,b22}..{a2,b2j}…

 {am,bm1}{am,bm2}....{am,bmk}}19

a) LIT: (S) => Var

Is a Function mapping S to the Set of

all unique Literal Names/Indices in S
b) LEFT: (x:Literal C, C:Clause S) =>

Var

Is a Function mapping Literal x, and

clause C S to the Set of all variable

Names/Indices occurring in the

string representation of S to the left

of Literal x in clause C. Right(x,C) is

defined similarly.

c) SortOrder:(C:Clause S,S)=>int

Is a Function mapping clause C S

and S to an integer number

representing the position of C within

S.

d) First Literal in any clause is called

Head-, last ones is called Tail-literal

(HL, TL).
HL={L:Literal | C S,C={L, t},

t:Literal}

TL={L:Literal | C S,C={t, L},

t:Literal}

Connectivity:(x:Literal S,S)=>int

Is a Function mapping a Literal x in a

Clause Set S (also: Connectx,S) to the

19 AND and OR connectives are omitted as per

known convention.
20 Recall that nPr=n!/(n-r)!

number of clauses of S in which the

Literal x appears

e) For any clause C S the cardinality of

the Set of all clauses which contain

permutations of literals in C (permC)

is called Resolution Complexity

Coefficient (RCC). Both are formally

defined as follows:
- permC={C S | C={a, b} or C={b, a}

or C={a} or C={b}, a, b:LiteralC}

-RCCk-SAT=kPk+
kPk-1+

kPk-2….+kP1

i.e., for 2SAT

RCC2-SAT= 2P2 + 2P1 = 420

f) Instantiations of literals,
Inst:(A:Assignment, S) => 2CNF Clause

Set are Functions using Total, Partial

or Restricted Truth Assignments to

create new 2CNF Clause Sets. They

substitute the literals in Clause Sets

by Boolean values given in the

Assignments. The clause resulting

from applying an instantiation on any

C S is called a Derivation of C. It is

called Linear Derivation if

consecutive instantiations respect the

linear order of literals in C21. If

consecutive instantiations result in a

clause containing only truth values

and no literals, the derivation is

called: Empty Derivation.

Derivations containing one TRUE

value are called Positive Derivations,

those containing only FALSE values

are called Negative Derivations.

Empty, Positive and Negative

Derivations can be directly evaluated

to TRUE or FALSE. In this work we

assume that this evaluation is

embedded in the Inst function. If this

evaluation results in the TRUE, S is

said to be satisfiable by A. When

Partial Assignments used by Inst are

related to only one variable, Inst is

21 Examples of derivations of clause C={x, y }

for any ordered indices x, y are {x} and {y}

respectively of which only the latter is a linear

derivation if the order is given by: x<y.

Abdelwahab, N.

25

25

called InstSimple. InstSimple can also

be restricted to only one clause.

Formally:
1) InstSimpleC:(A:Assignment,C:Cla

use) => Clause

2) Derivation of a Clause C

is{C’:Clause | C’ permC}.

3) Linear Derivation of C is

{C’:Clause| C’={a,b} or C’={b} , a,

b:LiteralC, a<b}

4) Empty Derivation of C is

{C’:Clause |C’={TRUE} or

{FALSE} or {TRUE,FALSE} or

{FALSE,TRUE} or

{FALSE,FALSE} or

{TRUE,TRUE}}

5) Positive Derivation of C is

{C’:Clause| TRUE C’}

6) Negative Derivation of C is

{C’:Clause| C’={FALSE,FALSE}

or C’={FALSE}}

7) Every Derivation of C is

{C’:Clause| C’ permC or C’

Empty Derivation of C}

g) Convert(C:ClauseS)=>SR-DAG. Is

a Function mapping a 2CNF clause

C={a1,b11} to a SR-DAG by

substituting in two subsequent simple

instantiation steps first a1 with TRUE

and FALSE creating Clause Sets and

placing them in the respective left-

and right-nodes of the SR-DAG and

then doing the same for b11 as in

below (Figure 2):

22 Alternatively: Clauses in S can be enumerated

from left to right. In that case subscripts i,j are

omitted and only one index is used. This is the

h) FIRST(L:Literal, S)=>int

Is a Function mapping a Literal to its

integer position (starting from the

left) in the string representation of S.

FIRSTC is the version of this function

which returns the index of the clause

in which L appears for the first time

in the current enumeration of clauses.
i) SELECT(S)=>int

Is a Function selecting a Literal from

LIT(S).

Definition 1: Almost Arbitrary-, Linearly

Ordered-, Linearly Ordered, but Unsorted

Clause Sets, Block, Block-Sequence, Block

Literal, Symmetric Block, Dissymmetric

Block, DB Sorting Condition

For a 2CNF formula S of the above form,

S is called linearly ordered (l.o.) if the

following Conditions hold:

a) ∀ai,bij∈ Ci,j: ai<bij, i.e., Literal

Names/Indices are sorted in

ascending order within clauses22.

b) S is sorted by ai & bij in

ascending order taking into

consideration negation signs23.

Formally: ∀i,j,x,y: if i<j then

L2∈Cj,x >= L1∈Ci,y, where L2 is

HL of Cj,x and L1 HL of Ci,y

SortOrder(Cj,x,S)>

SortOrder(Ci,y,S)

c) ∀xLIT(S),∀Ci,jS:

if x ∉ LEFT(x,Ci,j) then

∀y LEFT(x,Ci,j): x>y

(all new Names/Indices of literals

occurring for the first time in any

clause of S are strictly greater

than all the Literal

Names/Indices occurring before

them in S).

d) S is a Set, i.e., clauses

appear only once in S.

way clauses are referred to in the rest of this

paper.
23 i.e., {1,2} comes before {1,3} or {¬1,3} and

{¬1,2} before {1,2} or vice versa.

Figure 2

Abdelwahab, N.

26

26

If S fulfills Conditions a), c), d), but not

b) it is called linearly ordered, but

unsorted (abbreviated l.o.u.). If S fulfills

Conditions a), d) only it is called almost

arbitrary (a.a.). Clause Sets of the form:

S={{ax,bx1}{ax,bx2} .. {ax,bxi,}} are

called Blocks and are referred to by the

name of the leading Literal (in this case

S is called ax-Block). Clause Sets of the

form: S={Ba…Bn} are called Block-

Sequences (Bseq). ax is called Block-

Literal. Clauses having ax as leading

Literal are said to belong to the ax-Block.

A Block Bx is called Symmetric Block

(SB) if ∃A: Assignment such that:
instSimple(A:{X=TRUE},Bx}=

instSimple(A:{X =FALSE}, Bx}

i.e., -ve and/or +ve instantiations of

Block Literal x result in the same Clause

Set. It is called Dissymmetric Block

(DB) if ∃A:Assignment such that:

instSimple(A:{X=TRUE},Bx}=S1,

instSimple(A:{X =FALSE}, Bx}=S2 and

either S1 ⊆ S2 or S2⊆ S1.

i.e., -ve and/or +ve instantiations of

Block Literal x result in Sets S1, S2 and

one of them is included in the other. If a

DB Bx is sorted such that all clauses

containing –ve instances of Literal x are

placed before all those containing +ve

instances or vice versa, this condition is

called: DB Sorting Condition.

Definition 2: 2SAT-GSPRA Procedure,

Align Procedure, Name Literal, Least Literal

Rule, Edge Literal, Branch Literal, Base

Clause Set, Variable Ordering, Canonical

Ordering

The 2SAT-Generic Sequential Patterns

Resolution Algorithm (2SAT-GSPRA)

applied to an arbitrary Set S of 2CNF

clauses consists of the following

procedure:

2SAT-GSPRA:

Inputs: Arbitrary 2CNF Clause Set S of size M

Output: SR-DAG

Steps: -

1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).

2- choose a clause C0 S

3- convert C0 to a SR-DAG using Convert(C0)

4- set IRT (Intermediate Resolution Tree) =

SR-DAG produced in 3

5- ∀ Ci S (one by one)

 IRT=Align(IRT , Ci)

6- return IRT

Align (SR-DAG, C):

Inputs: An SR-DAG with base-node n and S

2CNFn, an a.a. 2CNF clause C

Outputs: SR-DAG

Steps: -

If (SR-DAG=FALSE-DAG)

Return FALSE-DAG

else

 If (SR-DAG=TRUE-DAG)

 Return Convert (C)

else

{ <bracket-1>

Update S in node n with C: S=S ∪ C

X=SELECT(S) such that X is the least

Literal of S

leftC=instSimpleC({X=TRUE},C)

rightC= instSimpleC({X=FALSE},C)

if (leftC=empty)

(i..e. C evaluated to TRUE via

InstSimple)

leftResult=LeftDAG(n)

 else

 If (leftC=Nil)

(i..e., C evaluated to FALSE

via InstSimple)

leftResult=FALSE-DAG

else

{<bracket-2>

leftResult=

align(LeftDAG(n), leftC)

}<bracket-2>

if (rightC=empty)

rightResult=RightDAG(n)

 else

 If (rightC=Nil)

rightResult=FALSE-DAG

else

{<bracket-2>

rightResult=

align(RightDAG(n), rightC)

}<bracket-2>

Result=SR-DAG formed from node n, left- and

rightResult

Return SubTree(Result)

}<bracket-1>

Abdelwahab, N.

27

27

1. A node in a SR-DAG is symbolized

by [x] if the lead clause in its Clause

Set is headed by a least-Literal x.

Moreover: x is called the Name

Literal (NL) of this Clause Set/node.

2. Edges going out of a SR-DAG node

[x] are marked with x and represent

instantiations of the NL x of the

Clause Set S of that node (this fact is

called the Least-Literal/Head-Clause-

rule of S or just Least-Literal Rule of

S, LLRS). Formally:

NL=LLRS={i:Literal |∃BS: 2CNF

Clause Set, ∃n:NodeSR-DAGBS, S is

2CNFn, SELECT(S)=i and

∀xLIT(S): i<x}

3. Literals on edges of branches leading

indirectly to a node n are called

branch-literals of n while literals on

edges connected directly to n are

called edge-literals of n. Every edge-

Literal is a branch-Literal, but not

vice versa.

4. A variable ordering of a problem p

(∏p) expressed as a 2CNF Clause Set

S and resolved by any resolution

procedure PR is a list of integers

representing indices of

Literal/variable names indicating

priorities of instantiations of

literals/variables of S used in PR.

Formally: ∏p=<i,j,k,…> where

i,j,k,…Var such that i<j<k<….

5. If ∏p represents the canonical, truth

table ordering of variables the

following notation is used: ∏c
p. As

the 2SAT-GSPRA procedure

described above always uses LLRS to

instantiate Clause Sets S, it obviously

uses ∏c
p

The following example shows for

2CNF Clause Set

BS={{0,1}{2,3}{1,2}} the first steps

of 2SAT-GSPRA(BS):

A) C0={0,1} is converted to a SR-DAG

identical with (Figure 2) (replace a1

by 0 and b11 by 1) using Convert(C0),

where node n0 contains Clause Set

{{0,1}}, n1 is TRUE-DAG, n2

contains Clause Set {{1}}, n3 is

TRUE-DAG and n4 is FALSE-DAG

B) Align(SR-DAG{0,1},{2,3}):

a) S={{0,1}} ∪ {2,3}={{0,1}{2,3}}

b) least Literal x=0

c) leftC={2,3}

d) rightC={2,3}

e) IRT=leftDAG(n0)=TRUE-DAG

 (the DAG of node n1)

f) leftResult=Align(TRUE-DAG,{2,3})

➢ Return Convert({2,3})

g) IRT=rightDAG(n0)

h) rightResult=Align(IRT,{2,3}), node=n2

i) S={{1}} ∪ {2,3}={{1}{2,3}}

ii) least Literal x=1

iii) leftC={2,3}

iv) rightC={2,3}

v) IRT=leftDAG(n2)=TRUE-DAG

 (The DAG of node n3)

vi) leftResult=Align(TRUE-DAG,{2,3})

➢ Return Convert({2,3})

vii) IRT=rightDAG(n2)=FALSE-DAG

viii) rightResult=Align(FALSE-DAG,{2,3})

➢ Return FALSE-DAG

ix) Result=SR-DAG formed from

 node n2, left- and rightResult

x) Return SubTree(Result)

i) Result=SR-DAG formed from node n0,

 left- and rightResult

j) Return SubTree(Result)

Abdelwahab, N.

28

28

Definition 3: Sequentially Ordered SR-

DAG, Strongly Ordered-, Loosely ordered

2CNF Clause Sets

An SR-DAG of a Set S of 2CNF clauses

is called sequentially-ordered if
∀S, n ∈SR-DAG, S is 2CNFn:

S={Ci,Cj,…CM} for some

i<j<….<M’, M’<=M. M number of

clauses in S, Cx’s are clauses or

derivations of clauses enumerated

from left to right in S.

An SR-DAG of a Set S of 2CNF clauses

is called strongly ordered (s.o.) if ∀S,

n ∈SR-DAG, S is 2CNFn: S is linearly

ordered (l.o.) (Figure 3, right). In such

case the Set S is also called strongly

ordered. Strongly ordered Sets are

always linearly ordered, the inverse is

not always the case, i.e., some l.o. Sets

may have Clause Sets in their SR-DAGs

which are not l.o. If a Set S has a base

Clause Set which is l.o. while some other

Clause Sets in its generated SR-DAG are

l.o.u., then S as well as its SR-DAG is

called loosely ordered (lo.o., Figure 3,

left), e.g.: Loosely Ordered SR-DAG:

∀S, n ∈SR-DAG, S is 2CNFn: S is

either l.o. or l.o.u.

Figure 3: lo.o. and s.o. Trees

Abdelwahab, N.

29

29

X Y Z ……..

Q

Definition 4: Common Node, Head-CN,

Tail-CN, Trivial-CN, Supported CN,

Supporting Parent, Direct Parent, Direct

Child, Double-Sided CN from the perspective

of x, Distinguished Literal, Single-Sided CN

from the perspective of x, Non-Distinguished

Literal, CN-Augmenting Literal

A node [q] is called Common Node (CN)

in a SR-DAG of a Set of 2CNF clauses S

if ∃n1,n2 ∈SR-DAG: [q] adjacent to both

n1 and n2, i.e., [q] becomes (in step k of

the resolution procedure) a common

child to two or more nodes [x], [y], [z],

… (Figure 4). This happens when

x,y,z,… literals are replaced by TRUE or

FALSE in their respective Clause Sets.

The common-node [q] contains the first

appearance of its name Literal (NL) q in

all branches of the SRT containing

[x],[y],[z],..

Figure 4: Common-node generated in <=k.

Types of common-nodes for 2CNF

clauses are Head- and Tail Common-

nodes (HCNs, TCNs).

More precisely:

− A CN [q] is called HCN if its Clause

Set has a leading/head clause C∈S,

NL q is HL of C

− A CN [q] is called TCN if its Clause

Set has a leading/head clause C’

which is a derivation of a clause C∈
 S, NL q is TL of C

(Figure 7, upper part) shows nodes n1,n2

not connected. They both get

instantiated through their least-literals

a,b to different directions in the SR-

DAG. Any further clause {x,y} in steps

>k will keep this situation intact, since a

and b remain the least-literals in their

respective Clause Sets and cannot be

bypassed by clause {x,y} in the new tree.

(Figure 7, lower part) shows a situation

where both nodes are merged in steps >k

(right) as the new clause {i,a} belongs to

a block Bi parents of both nodes were

instantiating in steps <=k. The added

clause makes N1 equivalent to N2 as

seen. We call those types of CNs: Trivial

Common Nodes (tCNs). They are

formed in SBs and are included in the

Properties/Lemmas dealing with the

generation of CNs. Formally: A node

[q] ∈SR-DAG is called Trivial Common

Node (tCN) if ∃n ∈ SR-DAG, S is 2CNFn,

S is SB, Child([q],n)=TRUE

A CN [q] ∈SR-DAG with S=2CNF[q],

produced in steps <=k, is called

supported in a step l>k if ∃C:Clause,

C∈Bx such that: S=S ∪ C in step l>k

while in steps <=k: ∃n ∈SR-DAG,

Parent(n,[q])=TRUE, S’ is 2CNFn, S’ is

Bseq and Bx ∉ S’,

i.e., its Clause Set S gets clauses

appended to its head in step l>k which

don’t belong to any Block instantiated in

steps <=k by one or more of its parents.

A parent-set of such a CN is called

supporting. In (Figure 5) an example is

shown for the CN {b} which is supported

by clause {c,d} not belonging to block

Ba. If a head-clause of a CN is also a

clause of one of the Clause Sets of its

parents, then this parent is called direct

parent of the CN. The CN itself is called

direct child of this parent (Figure 6):

Figure 5

Figure 6

Abdelwahab, N.

30

30

A CN [q] formed within a Block Bx

through +ve as well as -ve edge- or

branch-literals x is called: Double-Sided

CN from the perspective of x, DSCNx.

Such a x is called distinguished Literal

for [q]. A CN [q] formed within a Block

Bx through only +ve or only -ve edge- or

branch-literals x is called: Single-Sided

CN from the perspective of x, SSCNx, x

is called non-distinguished Literal for

[q]. Formally:

- CN [q] ∈SR-DAGBS is called DSCNx if

∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1

2CNFn1, S2 2CNFn2 such that: LLRS1=x,

LLRS2=y, x=¬y, Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.

- CN [q] ∈SR-DAGBS is called SSCNx if

∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1

2CNFn1, S2 2CNFn2 such that:

LLRS1=LLRS2=x, Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.

If for a CN [q] there is no distinguished

Literal x such that the CN is DSCNx, then

[q] is called simply SSCN. If a non-

distinguished Literal x for a CN [q]

formed in steps <=k is used to augment

the size of [q] in step l>k, i.e., x is

instantiated in a clause whose derivation

is added to the clauses of [q] in l, then x

is called: CN-Augmenting Literal

(CNAL) for [q].
CNAL={L:Literal∈C:Clause, [q] is

CN∈SR-DAGBS formed in steps<=k, L is

non-distinguished for [q] | Size[q] is

augmented in steps>k through

invocations: InstSimpleC ({L=TRUE},C)

or InstSimpleC ({L=FALSE},C) }

Concepts defined here are used mainly in

(Lemma 9-a), (Lemma 9-b) and (Lemma

9-c).

i

Figure 7

Base-Set/Node

N1: {a,..}{..}..
N2: {b,..}{..}..

......
......

a
b

Base-Set/Node + {x,y}

N1: {a,..}{..}.. {x,y}
N2: {b,..}{..}.. {x,y}

......
......

a
b

i

Base-Set/Node+{i!,a}

N1: {a}
N2: TRUE

TRUE

a

FALSE

Base-Set /Node+{i!,a}+{ ,a}

N1: {a}

TRUE

a

FALSE

Abdelwahab, N.

31

31

Definition 5: Dependency Graph, Leaves of

Dependency Graphs, Free Binary Decision

Diagrams

A dependency graph (DG) of a 2CNF

Clause Set S is a directed, acyclic graph

<V,E> where V is the Set of all NLs, E

the Set of ordered pairs <v1,v2>, v1,v2∈
𝑉 representing instantiations of NLs

produced during resolution. DGs can be

deduced from SR-DAGs in a canonical,

straightforward way24 and used as

practical alternatives for truth tables.

They are equivalent to Free Binary

Decision Diagrams (FBDDs)25 as shown

in [Abdelwahab 2016-2] . The following

two properties define a DG:

1. Each NL can appear only once in a

branch.

2. Branches can have different

Literal/variable orderings ∏p

depending on the sub-problem p they

belong to26.

A leaf of a DG is a node whose value is

TRUE or FALSE. Positive leaves have

the value TRUE. (Figure 8) shows an

example of a DG for the exemplary s.o.

tree in Definition 3 (Figure 3).

24 By abstracting in each resolution-step for each

node of the SR-DAG and Clause Set S the least-

literal of the head-clause used in LLRS and

building out of it a corresponding node in the

DG.
25 FBDDs are normally generated by recording -

on top of resolution-procedures - variable

assignment decisions encountered while trying to

Definition 6: Splits, N-Splits, CN-Splits,

Split Node, Big-Splits

An SR-DAG is said to possess a Split if

∃S’:2CNF Clause Set such that: For some

n1,n2:Node∈SR-DAGBS, S1 is 2CNFn1, S2 is

2CNFn2, n1≠n2: S’⊆ S1,

S’⊆S2,∄n:Child(n,n1)=Child(n,n2)=TRUE

(i.e., n1,n2 possess common sub-

formulas, but don’t possess common

sub-trees). CN-Splits are characterized

on top of that by the existence of

different Derivations of the same clause

in the non-common parts of the Clause

Sets of both nodes. Formally: Splits are

called CN-Splits, if, in addition to the

condition above: ∃q:Node, ∃C:Clause∈
𝐁𝐒: S’ is 2CNF[q] , [q] is CN/MSCN in step

k and C is resolved in steps >k such that:

C1⊆S1, C2⊆S2, C1,C2∉S’, C1,C2∈Every

Derivation of C, C1≠C2. If a Split is not a

CN-Split, it is called N-Split.

Splits are thus formed when either node

n containing Clause Set S constructed in

step k is duplicated one or more times in

steps >k together with all or parts of its

nodes or sub-trees, the cause of this

duplication being that S is resolved with

a clause whose least-Literal was new in

that step and had an index strictly less

than all or any indices of head-literals in

S as seen in the introduction (N-Split) Or

a CN [q] constructed in step k and/or any

of its nodes or sub-trees are duplicated

find a solution. The methods described here as

well as in in [Abdelwahab 2016-2] produce a

canonically ordered FBDD(=DG) representing

existent variable alignments in the used clauses.
26 In contrast to the more common OBDDs in

which one Literal/variable-ordering is governing

the whole graph.

Figure 8

Abdelwahab, N.

32

32

with variations27 one or more times in

steps >k (CN-Split). We focus on CN-

Splits in furtherance, since N-Splits are

already covered in l.o.u. and l.o.

conditions imposed by our main

Algorithms below which both require

condition c of Definition 1 prohibiting

the use of new names/indices which are

< indices of already resolved clauses.

Example of a CN-Split:

The reason why different CN-Splits

occur is generally that different

derivations of C get resolved with a CN

through different branches of the SR-

DAG linked to this CN. New nodes

[q]'=[q]+C' are formed where C' is a

possible derivation. [q'] is called: Split-

Node. If rank[q]=rankBN this form of

Splits is called Big-Split (plural:

BigSps) This situation is illustrated in

below (Figure 9) as well as the concrete

example of (Figure 10). BigSps are

causes of exponential behavior of 2SAT-

GSPRA when it is applied to a.a. or l.o.u.

Clause Sets.

Figure 10: A concrete example for the sequential

resolution of the ordinary 2-SAT case showing a

new clause {2!,5} traversing in step k a IRT

produced in steps < k. CN {3!} (left) is seen to

split (right) to form nodes {{3!}{2!,5}}} and

{{3!}{5}} respectively. This Split is not a

BigSps.

27 Different variations of the duplicated CN

correspond to the resolution of different

Concepts defined here are used mainly in

(Lemma 9-a), (Lemma 9-b) and (Lemma

9-c).

derivations of a newly resolved clause C with the

CN.

X Y Z ……..

Q

Base-Node

C (resolved in step >k)

C' C'' C'''

{2!,5}

{2!,5}

{5}

Figure 9

Abdelwahab, N.

33

33

Definition 7: Clauses Renaming Algorithm,

Connection Matrix, Renaming Precedence

Condition

The Clauses Renaming Algorithm

(CRA) is a procedure which takes an

arbitrary Clause Set S as input, renames

its literals yielding a new, logically

equivalent S' as output which is

guaranteed to be l.o.u. This procedure

consists of the following steps:

CRA:

Inputs: Arbitrary 2CNF Clause Set S of size M

Output: Clause Set S’

Steps: -

1. Enumerate clauses in S (starting with 0) in

ascending order.

2. For each clause Ci:

a) Arrange literals in ascending order

within Ci such that literals which were

not renamed before and appear more

often in other clauses become HLs

before those which appear less often or

which only appear in Ci. This condition

shall hereafter be called: Renaming

Precedence Condition (RPC). RPC uses

Connectx,S of Definition 0.4.

b) Create a matrix whose rows represent

variable/Literal names/indices while

columns represent clauses. This matrix

is called: Connection Matrix.

3. For all clauses Ci and all literals in Ci:

- Create a new row and write

column values TRUE or

FALSE according to whether

the Literal appears in the

corresponding clause or not.

4. Rename all variables in the Connection

Matrix in ascending order.

5. Reconstruct the clauses again using the new

variable names. This reconstruction may be

done by simply substituting each Literal in

the original Clause Set with its new Literal

name/index.

Example: If S = {{0,5} {0,2} {1,3}

{1,4} {2,3}}, then the Connection

Matrix of S is:

 C0 C1 C2 C3 C4

0 True True False False False

5 True False False False False

2 False True False False True

1 False False True True False

3 False False True False True

4 False False False True False

Transformed (via step 4 of CRA) to:

 C0 C1 C2 C3 C4

0 True True False False False

1 True False False False False

2 False True False False True

3 False False True True False

4 False False True False True

5 False False False True False

The new clause list for the above reads

S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}.

Note that S' is l.o.u. Note also that if we

would want to convert S' to a l.o. Set by

sorting clauses via their least-literals (as

required by Condition b) in Definition 1)

we would get: S'' = {{0,1} {0,2} {2,4}

{3,4} {3,5}} which is not fulfilling

Condition c) because of Literal 3 (i.e., S''

is neither l.o. nor even l.o.u.). To convert

an arbitrary Clause Set to a l.o. Clause

Set, an extension to CRA is needed,

introduced hereafter with some

definitions:

Definition 8: Mapping, Image, Variable

Space, Node in space-i, Apply, Inverse Apply,

Equivalence via Mapping, trivial Mapping,

Stable Set, Stable Clause, Stable Clause Set,

Mixed Space Node, Single Space Node, Mixed

Space SR-DAG/Tree, Single Space SR-

DAG/Tree, Literal in space-i, Assignment in

space-i, Literal x proceeds y in space-i,

Mapping in space-i, monotone Mapping

Definition 8.1: Mapping: (N) => N is a

bijective function giving a Literal

Name/Index in a 2CNF Clause Set S its

new Name/Index after a renaming

operation using CRA. The new

Name/Index is also called: Image of the

Literal. New Names of literals forming

single clauses or Clause Sets are called

Abdelwahab, N.

34

34

Images of original clauses or Clause

Sets. Subsequent application of

mappings starting from a BS is called a

Variable Space (VS). To express that a

Clause Set is formed in a space-i the

notation: S={{..}…{..}}space-i is used. To

express that a node is formed in a space-

i the notation: Node space-i is used.

Definition 8.2: Apply: (M:Mapping, S:

2CNF Clause Set) => Clause Set

Is a function which replaces occurrences

of literals in a Clause Set S with their

Names/Indices given by the mapping M.

InvApply is similarly defined, but

applies to S: M-1 instead of M.

Definition 8.3: Two 2CNF Clause Sets

S1, S2 are said to be Equivalent via

Mapping (Notation: S1 ⇔M S2) if ∃M1,

M2:Mapping such that:

Apply(M1,S1)=Apply(M2,S2)=S’. S’ is

called: Syntactic Image of both S1, S2.

Definition 8.4: If ∃M:Mapping, S

2CNF Clause Set, ∀xLIT(S):

M(x)=x, i.e., each Literal index is given

itself after a renaming operation using

CRA, M is called trivial Mapping

(tMapping).

If ∃M:Mapping produced in step k

such that: ∀xSub, Sub⊆Lit(S):

M(x)=x in any step >k, i.e., a subset of

Literal indices is mapped to itself via

CRA in step k and remains always

mapped to itself for any step>k, Sub is

called a Stable Set of literals. If

∀x:LiteralCiS, xSub⊆Lit(S), Sub

is stable, then: Ci is called Stable

Clause. If ∀CiS, Ci is stable, then: S is

a Stable Clause Set.

Definition 8.5: If S1, S2 are 2CNF

Clause Sets of nodes n1,n2SR-DAG,

respectively, S1≠S2, but n1=n2=n, then:

n is called Mixed-Space Node (MSN) as

opposed to Single-Space Nodes (SSN).

Definition 8.6: SR-DAGs with MSN

nodes are called Mixed-Space Trees

(MSTs). SR-DAGs with only SSNs are

called Single-Space Trees (SSTs). A

Literal index subscribed by space-i

(Lspace-i) refers to the name L given by a

mapping M in space-i. An Assignment

giving literals in space-i truth values is

called space-i-Assignment (Aspace-i)
If ∃space-i:VS such that: Sspace-i is a 2CNF

Clause Set where:

FIRSTC(x,Sspace-i)<FIRSTC(y, Sspace-i),

then: x proceeds y in Sspace-i or, if S is

known from the context, just: x proceeds

y in space-i (Notation: (x | y) space-i)

i.e., within space-i the first occurrence of

Literal x in Clause Set S comes before the

first occurrence of Literal y. When space-i

is known, its subscript is omitted.

Mappings subscribed by space-i:

(Mspace-i) refer to the mapping created by

a CRA operation within space-i.

Abdelwahab, N.

35

35

Example:

For S = {{0,5}{0,2}{1,3}{1,4}{2,3}}

and S' = Apply (M,S) =

{{0,1}{0,2}{3,4}{3,5}{2,4}} in the

example of Definition 7, Mapping M is:

{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}},

Stable-Set = {0,2}

Definition 8.7: A mapping Mspace-i is

called monotone Mapping in space-i

(mMspace-i), when ∀x,y∈LIT(Sspace-i):

if (x | y) space-i then also Mspace-i

(x)<Mspace-i (y)

Definition 9: Clauses Renaming &

Ordering Algorithm, CRA-Form

The Clauses Renaming & Ordering

Algorithm (CRA+) is a procedure which

takes an arbitrary 2CNF Clause Set S in

a space-i as input and applies CRA

repetitively generating a new mapping

and a new space each time. After each

step the intermediate Clause Set is sorted

as required by Definition 1b) before

iterating back. This is done until

renaming Literal indices in two

consecutive steps yields tMapping, i.e,

the Stable Set becomes equivalent with

the Set LIT(S), while the output Clause

Set S' becomes l.o.

The following recursive pseudo-formal

description of this procedure is used in

the below proofs:

CRA+:

Inputs: An arbitrary 2CNF Clause Set S

Output: l.o. Clause Set S’

Steps:

1- set CurrentMapping = null, CurrentSet=S

2- while (CurrentMapping != tMapping)

i. currentSet=CRA(CurrentSet)

ii. sort CurrentSet as instructed in

Definition 1 b)

iii. set CurrentMapping=Mapping

passed by CRA

3- S’=CurrentSet

4- return S’, S’ is called the CRA-Form of S.

Example: Following this procedure for

the above Set S = {{0,5}{0,2}{1,3}

{1,4}{2,3}} applying CRA to get S' =

{{0,1}{0,2}{3,4}{3,5}{2,4}} and a

sorting step giving the above S''={{0,1}

{0,2}{2,4}{3,4}{3,5}}.

A new CRA-iteration will yield the

following Connection Matrix:

 C0 C1 C2 C3 C4

0 True True False False False

1 True False False False False

2 False True True False False

4 False False True True False

3 False False False True True

5 False False False False True

It is then transformed to:

 C0 C1 C2 C3 C4

0 True True False False False

1 True False False False False

2 False True True False False

3 False False True True False

4 False False False True True

5 False False False False True

Mapping:

{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}},

Stable Set: {0,1,2,5} yields

S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when

applied on S''. S''' is l.o. already and

needs no further sorting. Note that in the

last matrix all literals are forming an

ordered sequence which means that any

further renaming would result in

tMapping. This is the termination

condition.

Definition 10: Sequentially-Ordered,

Multi-Space SR-DAG, Multiple Space Block,

Multi-spaced Symmetric Block, Target Space,

Multiple Space Common-node

An MST whose Clause Sets are all l.o. is

called: Sequentially-Ordered, Multi-

Space Resolution Tree/SR-DAG

(MSRTs.o.), if ∀nspace-i:NodeSR-DAG:-

(2CNFn)space-i is l.o. A block Bx whose

Clause Set or derivations thereof (all or

part of them) belong to more than one VS

is called a Multiple Space Block, MSB

(Notation also: Bx
S1,S2,..,S1,S2,.. Variable

Spaces). Similar to Single Space Blocks:

Abdelwahab, N.

36

36

An MSB may be symmetric or

dissymmetric.

Formally: MSB = {

(Bx1)space-i:2CNF Clause Set |

∃space-j, (Bx2)space-j:2CNF Clause Set,

M: Mapping, where:

((Bx1)space-i ⇔M (Bx2)space-j) Or ((B’x1)space-i

⇔M (B’x2)space-j)), B’x1, B’x2 are Derivations

of Bx1, Bx2, in respective Spaces}

Definition 10.1: An MSB Bx is called

Multi-spaced Symmetric Block (MSSB)
- MSSB = {

(Bx1)space-i:2CNF Clause Set |

∃space-j, (Bx2)space-j:2CNF Clause Set,

M: Mapping, where

((Bx1)space-i ⇔M (Bx2)space-j

Or

(B’x1)space-i ⇔M (B’x2)space-j)

B’x1, B’x2 are Derivations of Bx1, Bx2, in

respective Spaces and ∃Aspace-i, Aspace-j:

Assignment such that:

instSimple(Aspace-i:{X1=TRUE},

(Bx1)space-i) ⇔M

instSimple(Aspace-j:{X2=FALSE},

(Bx2)space-j)

}

Definition 10.2: A node in a space ST

(called: Target Space, TS) which is

target of two or more Variable Spaces is

called Multiple Space Common Node,

MSCN (Notation: [q]ST
S1,S2,..,S1,S2,..,ST

Variable Spaces to which the node

belongs). Formally: A node is called

MSCN if ∃n1,n2 ∈ MSRTs.o not

necessarily of the same space: [q]

adjacent to both n1 and n2, i.e., in step

k of the resolution it becomes common

child/adjacent to two or more nodes,

possibly of different spaces [x]S1, [y]S2,

[z]S3, … in (Figure 11)28 generated in

steps <k. This happens when there exist

mappings M1,M2,M3…, such that:

x=M1(x’),y=M2(y’),z=M3(z’),…, where

x, y, z are literals in ST, and x’, y’, z’ are

literals replaced by TRUE or FALSE in

28 The notation [x]S1 is read: Node [x] in Variable

Space S1.

their respective Clause Sets and

respective Spaces.

The common-node [q]ST
S1,S2,.. contains

the first appearance of its name Literal

(NL) q in all branches of the MSRTs.o

containing [x’]S1, [y’]S2, [z’]S3, … etc.

and there exist literals q’, q’’, q’’’, etc. in

Spaces S1,S2,S3,… such that:

q=M1(q’)=M2(q’’)=M3(q’’’)=… etc.

Figure 12: Illustration of Definition 10 where

ST=Space1,M0 is the trivial Mapping,

[b]ST
Space1={{b,d}{e,f}} is a

MSCN,[c]Space1={{¬c}{b,d}{e,f}},

[a]Space2={{¬a}{b,c}{d,e}} for M={(c>a),

(b>b),(d>c){e>d}{f>e}}. Then it is clear that

[c]Space1=[a]Space2=[q]Space1,Space2,where

q=M0(c)=M(c). Also: [b]ST
Space2 is obviously

child to both, [a]ST=BS and [a]Space2 with edge-

literals a=M0(a) and a=M(c) respectively.

S2 S3 S1

ST

X=M1(X’)

Y=M2(y’) ……

X’ Y’ Z’ ……..

Q
Figure 11: Multiple Space

 Common-Node

 (MSCN)

Abdelwahab, N.

37

37

Definition 11: Double-Sided MSCN with

respect to Literal z, Single-Sided MSCN

with respect to Literal z, trivial MSCN

An MSCN [q]space-i is called DS-MSCNz

(Double-Sided MSCN with respect to

Literal z) if ∃n1,n2 ∈ MSRTs.o of 2CNF

Clause Set S, ∃xspace-j , yspace-k:Literal,

∃M1,M2: Mapping, such that: [q]space-i is

adjacent to both n1 and n2 and

zspace-i =M1(xspace-j), zspace-i =M2(yspace-k),

where yspace-k has the opposite sign of

xspace-j, i.e., there exist at least two edge-

or branch-literals x, y from Spaces space-

j, space-k respectively and a Literal z

from the target space-i such that both

literals are translated to z within their

respective spaces and have opposite

signs. Literals x and y are also called

distinguished (c.f. Definition 4,

(Distinguished Literal)).

if ∃n1,n2 ∈ MSRTs.o of 2CNF Clause Set

S, ∃xspace-j , yspace-k, ∃M1,M2:Mapping,

such that: [q]space-i is adjacent to both n1

and n2 and zspace-i =M1(xspace-j), zspace-i

=M2(yspace-k), where yspace-k has the same

sign as xspace-j, i.e., a MSCN is formed

through only +ve or only -ve

instantiations of edge- or branch-literals

z or its images in respective spaces, z is

not distinguished, then the MSCN is

called SS-MSCNz (Single-Sided MSCN

with respect to z). [b]ST
Space2 in the

example above of (Figure 12) is thus a

SS-MSCNa.

An MSCN [q] is called trivial MSCN,

(tMSCN), if ∃n ∈ MSRTs.o whose

Clause Set is a MSSB, Child([q],n)=TRUE,

i.e., [q] is formed through a newly

resolved clause in step k, who belongs to

a MSSB to which one or more of its

parents belonged in steps <k.

Concepts defined here are used mainly in

(Lemma 8), (Lemma 9-a), (Lemma 9-b)

and (Lemma 9-c)

Definition 12: Aligned Trees,

Alignment Clause

A MSRTs.o of a 2CNF Clause Set S is

said to be aligned if ∃C S, C’

derivation of C such that:∀n MSRTs.o.,

S’ is 2CNFn, ∀Cx S’ the following is

true:
a) SortOrder(C’, S’)>SortOrder(Cx,S’)

b) S’ is l.o.

In other words: Either C or one of its

derivations C’ are the last clauses in any

Clause Set of the MSRTs.o. C is called

Alignment-Clause.

Definition 13: Aligned Nodes,

Alignment Clause Set of S, Alignment

MSRTs.os

A node n of size M is said to be aligned

if:

a) For M<=2: n possesses a Clause

Set with an aligned MSRTs.o

b) For M>2:

(i) All nodes or sub-trees of size

M possesses Clause Sets

which are l.o.

(ii) All nodes or sub-trees of size

<M are aligned

The Set of all unique clauses and their

derivations used for the alignment of all

nodes of a MSRTs.o of an arbitrary 2CNF

Clause Set S is called Alignment Clause

Set of S (ACS). It is formally given by:

ACS=∪ permCiS for all CiS.

Obviously, ACS cannot have more than

RCC2-SAT*M elements/clauses

containing all possible permutations of

literals in linear- or non-linear sequence.

An MSRTs.o whose nodes are all aligned

is called Alignment MSRTs.o

Abdelwahab, N.

38

38

Definition 14: Resolution procedures:

2SAT-GSPRA+, Align

2SAT-GSPRA+:

Inputs: Arbitrary 2CNF Clause Set S of size M

Output: MSRTs.o

Steps: -

1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).

2- choose a clause C0 S

3- convert S to a l.o. Set using CRA+)the

version with DB-Sorting, c.f. Section III,

Lemma 8)

4- convert C0 to a SR-DAG using Convert(C0)

5- set IRT (Intermediate Resolution Tree) =

SR-DAG produced in 4

6- ∀ Ci S (one by one)

a. IRT=Align(IRT , Ci)

7- return IRT

Align (SR-DAG, C):

Inputs: An MSRTs.o with base-node n and S the

Clause Set of n, an a.a. 2CNF clause C

Outputs: MSRTs.o

Data Structure: List of Tuples: <Clause Set,

Node index> (called: LCS) initially empty

Steps: -

- If (MSRTs.o =FALSE-DAG)

Return FALSE-DAG

else

 If (MSRTs.o =TRUE-DAG)

 {

- Result = Convert(C)

- Store S=C in LCS in its CRA-Form,

 index is the base node of Result

 Return Result

 }

else

{ <bracket-1>

a- Update S in node n with C: S=S ∪ C

b- If (S is in LCS)

Return

SubTree(foundNodeIndex)

c- If (S is l.o.)

{<bracket-2>

- X=least Literal in S

- leftC=instSimpleC({X=TRUE},C)

- rightC= instSimpleC({X=FALSE},C)

- if (leftC=empty)

(i..e. C evaluated to TRUE via

InstSimple)

leftResult=LeftDAG(n)

 else

 If (leftC=Nil)

(i..e. C evaluated to FALSE

via InstSimple)

leftResult=FALSE-DAG

else

{<bracket-3>

leftResult=

Align(LeftDAG(n), leftC)

}<bracket-3>

- if (rightC=empty)

rightResult=RightDAG(n)

 else

 If (rightC=Nil)

rightResult=FALSE-DAG

else

{<bracket-3>

rightResult=

Align(RightDAG(n), rightC)

}<bracket-3>

- Result= MSRTs.o formed from node n, left- and

rightResult

- Store S in LCS in its CRA-Form giving it as

index the node n

- Return Result

}<bracket-2>

else (of step c-)

If (S is not l.o.)

{<bracket-2>

1- Choose a clause C0 S,

S’=CRA+(S), the version with DB

Sorting

2- If S’ has already been stored in LCS,

erase its entry

3- C may have changed its place due to

sorting in CRA+. MSRTs.o for all clauses

except the last one must be created

again: Let S’’=S’\A, A is the last clause

in S’

4- NewDAG=2SAT-GSPRA+(S’’),

Construct all nodes whose Clause Sets

start with S’’ again, assigning to them

NewDAG and updating LCS with

adequate information.

5- Result=Align(NewDAG,A)

6- Store S’ in LCS in its CRA-Form

giving it as index the base node of

Result

7- Return Result

}<bracket-2>

}<bracket-1>

Abdelwahab, N.

39

39

Definition 15: 2SAT Fast Generic

Pattern Resolution Algorithm

2SAT-FGPRA:

Inputs: Arbitrary 2CNF Clause Set S of size M

Output: MSRTs.o

Data Structure: List of Tuples: <Clause Set,

Node index> (called: LCS) initially empty

Steps: -

1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).

2- choose a clause C0 S

3- convert S to a l.o. Set using CRA+)the

version with DB-Sorting, c.f. Section III,

Lemma 8)

4- Create base node n, Set S to be the Clause

Set of n,

5- Process n as follows:

- if (size of n > 1) && (clauses are neither

evaluated all to TRUE nor containing a

clause evaluated to FALSE))

 {<bracket-1>

(Form left- and right Clause Sets for n

instantiating the least Literal to TRUE

and FALSE respectively. Make sure the

resulting Clause Sets are l.o.)

a. X=Least Literal of S

b. leftClauseSet=

InstSimple({X=TRUE},S)

c. rightClauseSet=

InstSimple({X=FALSE},S)

d. leftClauseSet=

CRA+(leftClauseSet)

e. rightClauseSet=

CRA+(rightClauseSet)

f. Search for leftClauseSet in LCS

 if (leftClauseSet found)

leftResult=

SubTree(foundIndex)

 else

{

1-leftResult=2SAT-

FGPRA(leftClauseSet)

2- Store leftClauseSet in LCS

in its CRA-Form giving it as

index the base node of

leftResult

}

g. Search for rightClauseSet in LCS

 if (rightClauseSet found)

rightResult=

SubTree(foundIndex)

 else

if (S has only one clause C)

{

1-rightResult=2SAT-

FGPRA(rightClauseSet)

2-Store rightClauseSet in LCS

in its CRA-Form giving it as

index the base node of

rightResult

}

- Result= MSRTs.o formed from node n,

left- and rightResult

- Store S in LCS in its CRA-Form

giving it as index the node n

- Return Result

} <bracket-1>

else

if (S has only one clause C)

{

- Result = Convert(C)

- Store S in LCS in its CRA-Form

giving it as index the node n

Return Result

}

Else {

If (clauses are evaluated all to TRUE)

 Return TRUE-DAG

Else (clauses contain a clause evaluated

 to FALSE)

 Return FALSE-DAG

}

Abdelwahab, N.

40

40

III-2 Converting arbitrary 2CNF Sets

 to l.o.u and l.o. ones

Can we always convert arbitrary Sets to

s.o. or lo.o. ones? To answer this

question we need to investigate how to

convert a.a. Clause Sets29 to l.o.u. and

l.o. ones.

Lemma 1: CRA is guaranteed to convert

an a.a. Clause Set S into a l.o.u. Clause

Set. It takes O(N*M) steps30 to do so for

M = number of clauses, N = number of

variables. Moreover:
a. CRA always produces monotone

mappings (mM).

b. (x | y) iff (x<y) for literals x,y∈ Lit(S) in

any l.o. Clause Set S.

c. In sequential, clause by clause resolution:

Let x,y∈ Lit(S), S is l.o., S=2CNFBN,

x∈C1,y∈C2,C1≠C2, FIRSTC(x)=1,
FIRSTC(y)=2,

SortOrder(C1,S)<

SortOrder(C2,S)
and

∃n:Node,space-i:VS where: S’=2CNFn,

Child(n,BN)=TRUE such that:

xspace-i,yspace-i∈Lit(S’), S’ is l.o.,

xspace-i∈C1
’,yspace-i∈C2’, C1

’≠C2’,
FIRSTC(xspace-i)=1,

FIRSTC(yspace-i)=2,

SortOrder(C1’,S’)<
SortOrder(C2’,S’)

and

C1’, C2’∈S’ images or derivation of images

of C1, C2∈S then:

(xspace-i | yspace-i) iff (x | y)31

Proof: c.f. the three conditions of

(Definition 1) for a Clause Set to be

l.o.u.:

a) ∀ai,bij∈Ci+j: ai<bij

c) ∀x ∈ LIT(S), ∀C ∈ S:

if x not ∈ LEFT(x,C) then

∀y ∈ LEFT(x,C): x>y

29 Converting an arbitrary Clause Set to an

almost arbitrary one (a.a.) being a trivial exercise

needing only sorting literals inside each clause in

ascending order and taking care that clauses have

unique occurrences.
30 Steps are invocations of primitive operations

as normally perceived in complexity analysis.

d) Clauses appear only once in S

It is clear that a) and d) are fulfilled by any

output of CRA as they constitute the mere

definition of a.a. Sets. For Condition c):

Suppose some Literal L in a clause Ci={...

L ...} ∈ S' (S' = output Set) breached

Condition c): This means that L is new in

the clause sequence starting with C0 until

Ci, but there exists L' to its left where L<L'.

This cannot be the case, since any such L'

would have to appear in a row before L in

the connection matrix (step 2-b, Definition

7) and thus get a smaller index in the

renaming step 3-. For the complexity

assertion: The number of cells to be created

in a Connection Matrix is always N*M.

To show the mM property a-: ∀x,y literals

in a Clause Set: CRA’s way of giving them

new names is - as seen - to assign each one

a row in the connection matrix in the order

of their appearance and then rename the

rows by counting from 0-n, finishing up

with a strict order (c.f. Definition 7, steps

2-a, 3 and 4 as well as the example).

Therefore: If (x | y), then, unless clauses are

re-ordered, after one application of CRA:

M(x)<M(y).

For b-: (x | y) iff (x<y) in any l.o. Clause

Set. To see this, the only direction we still

need to show is: (x<y)>(x | y). Suppose in

a l.o. Set: (x<y). Either (x | y) or (y | x). In

case (y | x), this means that the first

occurrence of y comes before the first

occurrence of x and both appear in different

clauses. But then, x should have been > y

as per condition c in Definition 1 which

prescribes that in a l.o. Clause Set a new

Literal must be strictly greater than all

literals occurring to its left.

This means (x | y).

31 Intuitively: If two literals x, y belonging to

different, subsequent clauses of S, a l.o. Base Set,

have images in another l.o. Set S’ of some Space-

i, and the order of clauses in S’ preserves the

relative precedence of images of Literal x on

images of Literal y, this always means that xspace-i

proceeds yspace-i in S’. The other direction is also

true.

Abdelwahab, N.

41

41

For c-: First direction: Suppose xspace-i

appears in C1’ for the first time in step

k. X must also appear for the first time

within C1 in S in step k, because C1’ is

the image or a derivation of an image

of C1 and FIRSTC(x)=1. yspace-i appears

then in S’ in a step j>k, because

C1
’≠C2’,SortOrder(C1’,S’)<SortOrder

(C2’,S’), S’ is l.o. and resolution is

sequential. Suppose now (y | x) in S.

This means that C2 must have

appeared in a step <k contradicting the

fact that C2’, its image, appeared in

j>k. Therefore it must be that: (x | y).

The other direction is similar: When (x

| y), then (yspace-i | xspace-i) cannot be the

case unless either the order of S is not

preserved in S’ or yspace-i appears for

the first time in a clause other than C2’.

Both conditions contradict the

assumptions.

(Q.E.D.)

Lemma 2: For a 2CNF Clause Set S it is

true that:

a- S is l.o. iff CRA+(S) reaches a Stable-

Set of literals equivalent to LIT(S)

b- S is satisfiable iff CRA+(S), the CRA-

Form, is satisfiable

c- S and CRA+(S) are logically

equivalent

Proof: a- Suppose S is l.o. This means

that it is fulfilling all Conditions a)-d) of

Definition 1. Any attempt to use CRA+,

i.e., rename the literals and then sort

them, must generate a Stable-Set =

LIT(S) after only one CRA- and sorting

iteration, since otherwise (i.e., if a Literal

gets a new Name/Index after such an

iteration) this would mean a breach of

one or all of those conditions. Other

direction: Suppose S reached such a

Stable-Set through application of CRA+,

i.e., CRA+ terminated. If S is not l.o.,

then it must be at least l.o.u. (because of

32 The other direction: [CRA+(S) is satisfiable

=>S is satisfiable] can be shown using similar

Lemma 1). The only reason for S not to

be l.o. would thus be that clauses are not

sorted correctly. This is not possible

because CRA+ can only become a Stable-

Set equivalent to LIT(S) if two

consecutive renaming iterations assign

literals with the same names/indices, the

first of which is followed per definition

by a sorting operation.

b- The proof is by induction on M, the

number of clauses in S.

Base-Case: M=1: For S={{a,b}} CRA+

terminates after one iteration yielding the

Clause Set S’={{a’,b’}} with a’,b’ new

Indices/Names for a,b, a’=M(a),

b’=M(b), M the mapping produced by

CRA+. Let A be an Assignment

satisfying S, A={{a=v1}{b=v2}},

v1,v2∈{TRUE, FALSE}. If we set
A’={{a’=v1}{b’=v2}}, then S’ is

satisfied by A’, since nothing has

changed except variable names. The

other direction is similar.

Induction Hypothesis: S is satisfiable

iff CRA+(S) is satisfiable for SizeS=M

Induction step: If SizeS=M+1: Suppose

A is the Assignment which satisfies S32.

We distinguish two cases:

Case 1- S’=CRA+(S), CRA+ does not

alter the order of clauses in S. Assume

S={C0,..,CM}, S’={C0’,..,CM’}, where

CM={a,b}, CM’={M(a),M(b)}. A must

also satisfy S’’=S\CM which is of size M

and per induction hypothesis there exists

A’ satisfying S’’’=S’\CM’. The following

cases can then occur:

a- Literals a,b ∈ CM are new, i.e., a,b ∉
Lit(S’’). M(a) and M(b) are also ∉
Lit(S’’’) per monotone mapping

property of M. Extend A’ to include

{M(a)=v1,M(b)=v2}, where

v1,v2∈{TRUE, FALSE} are values given to

a, b in assignment A. This extended A’

arguments and is not included here to avoid

unnecessary length.

Abdelwahab, N.

42

42

satisfies CM’ and thus also S’33,

otherwise A couldn’t be satisfying CM

(remembering that names of variables

are different in CM and CM’, but signs are

the same).

b- Either Literal a or b or both are ∈

Lit(S’’). It must be then the case that

v1,v2∈{TRUE, FALSE} used in

assignment A for any such a or b to

satisfy S’’ do not falsify CM, otherwise A

wouldn’t be satisfying S. Per induction

hypothesis: A’ satisfies S’’’ using, per

definition, for any of M(a) or M(b) the

same values v1 and/or v2. They can only

falsify CM’ if they falsify CM which is not

the case.

Case 2- S’=CRA+(S) alters the order of

clauses in S. Let S’={C0’,..,CM’}. Re-

arrange S such that clauses are ordered

like in S’. Call the new Clause Set S’’,

i.e., S’’={C0,..,CM}. S is, per definition,

satisfiable iff S’’ is satisfiable. Apply the

same arguments used in Case 1 on S’ and

S’’.

c- S has a CRA-Form S’=CRA+(S) and

thus S ⇔M S’, (Definition 8.3), i.e.,

∃M:Mapping such that: Apply(M,S)=S’,

S’ is the exact syntactic image of S. This

means: Any Truth Assignment A

satisfying S can be converted to a Truth

Assignment A’ satisfying S’ by simply

substituting variables x with M(x). The

other direction is also possible.

(Q.E.D.)

Lemma 3: CRA+ takes a number of

steps which is in O(M2(logM+N)). More

precisely M CRA-iterations and M

sorting operations34 (M = number of

clauses in S, an a.a Set).

Proof: (by induction on M)

33 Since the truth value of S’’’ is not affected by

the new variables
34 Assuming that a sorting operation takes

O(M log M) primitive operations.

Base-Case: M=1: For S={a,b} CRA+

takes one CRA and one sorting operation

to generate tMapping per definition

(Definition 8.4).

Illustration Case: M=235

Let S={{a,b},{d,e}}={C0,C1}

Case 1: No literals in common between

C0 and C1: In that case a<b<d<e.

S is l.o. No CRA- or sorting iterations

needed.

Case 2: Only head-Literal in common:

S={{a,b}{a,e}} for example: Same as

Case 1, S is also l.o. No CRA or sorting

needed.

Case 3: Only tail-Literal in common

(Case I): S={{a,b}{b,e}} for example:

S’ is converted after one CRA-iteration

to S={{a,b}{a,c}}, because of

Definition 7, 2a, Renaming Precedence

Condition (RPC). Thus, no sorting

needed.

Case 4: Only tail-Literal in common

(Case II): S={{a,b}{c,b}} for example:

S’ is converted after one CRA-iteration

to S={{a,b}{a,c}}, because of

Definition 7, 2a), Renaming Precedence

Condition (RPC), no sorting needed.

Resuming Base-Cases M=1,2:

Although we may not need CRA or

sorting, CRA+ takes at most one iteration

(i.e., one CRA- and one sorting

operation) to generate tMapping and to

terminate.

Induction Hypothesis: For M clauses:

M CRA-iterations (M2*N) as well as M

sorting operations (M2logM) are needed

in the worst case to make S l.o.

Induction step: For any additional

clause CM+1 = {x,y} we have the

following cases (c.f. Definition 9,

pseudo formal procedure):

35 Monotone +ve 2-SAT case is used here and in

the next Lemma (w.l.o.g.), since CRA+’s

behavior does not depend neither on Literal signs

nor on clause breadth.

Abdelwahab, N.

43

43

1. x,y are new literals not appearing

before in any Clause Ci: This case is

straightforward in that no sorting is

needed, i.e., only CRA (renaming) in

the worst case.

2. One or more literals of x,y appeared

in a previous clause: For Example:

Suppose S={{0,1} {0,2} {0,4} {0,6}

{2,8} {9,10} {11,12}} which is l.o.

adding the clause {4,6}, the following

steps are required:

a) S={{0,1}{0,2}{0,4}{0,6}

{2,8}{9,10}{11,12}{4,6}}

input

b) S={{0,1}{0,2}{0,4}{0,6}

{2,8}{4,6}{9,10}{11,12}}

sort

c) S={{0,1}{0,2}{0,3}{0,4}

{2,5}{3,4}{6,7}{8,9}}

CRA, S in step c) is already l.o.

For a Clause Set of size M: S={{a,b}

{b,…} {d,…}…} where, as per

induction hypothesis, it is assumed that it

is l.o. and we add a clause containing one

or more literals which appeared before,

we note that S is l.o.u. A sorting step is

what is required to align the new clause

to its right place. If this step is done, then

another CRA-step guarantees l.o.u (per

Lemma 1). This means that we need an

additional CRA (renaming) as well as a

sorting step for this case.

Resuming the induction step: One

additional CRA- and one additional

sorting step is needed in the worst case

for M+1

(Q.E.D.)

This section concludes with a Lemma

showing that any a.a. Set can be

converted to a l.o. Set, i.e., application

of CRA+ on any a.a. Set always

terminates yielding the right result.

36 CRA renders S ∪ C l.o.u., i.e., any new literal

v of C is > LEFT(v, C) after such an iteration.

Lemma 4: CRA+ terminates always

converting any arbitrary 2CNF Clause

Set S of size M to a Stable-Clause Set.

Proof: (by induction on M)

Base-Case M=1: For S={{a,b}} as seen

in the Base-Case of (Lemma 3) CRA+

terminates after one iteration yielding the

Clause Set S’={{a’,b’}} where a’,b’ are

new indices/names for a,b. S’ is stable.

Illustration Case M=2: Let

S={{a,b}{x,y}}. As seen in all Base-

Cases for M=2 of (Lemma 3): One

iteration of CRA and one sorting

operation converts S to a l.o. Set. This

means any further iteration of CRA+

yields a Stable-Set (per definition of

CRA+) letting the algorithm terminate.

Induction Hypothesis: Application of

CRA+ for a number of iterations k on a

2CNF Clause Set S of size M converts S

to a Stable-Clause Set (i.e., CRA+

produces M stable clauses after k

iterations).

Induction Step: Per induction

hypothesis for S having M+1 clauses,

there are M stable clauses in iteration k.

Let C={x,y} be the clause which is not

stable. After step k the position of C

cannot be before any other stable clause

C’={i,j}, e.g., as in {{a,b}…{x,y}

{i,j}…}, because this would mean that

CRA-operations will have to change

indices i,j to new ones for C’

contradicting its stability assumption,

i.e., C has to be the last clause in S.

In that case, even if literals in C would

not fulfill the l.o. condition for whatever

reason other than sorting (because C is

already in its place), further CRA-steps

in iterations >=k guarantee to convert C

into a stable clause (per definition of

CRA+)36 causing CRA+ to terminate

with a Stable-Clause Set of size M+1.

(Q.E.D.)

Abdelwahab, N.

44

44

III-3 Way of work of 2SAT-GSPRA+

The main difference between 2SAT-

GSPRA and 2SAT-GSPRA+ is that the

latter uses CRA+ to convert Clause Sets

to l.o. ones. It is necessary to understand

what 2SAT-GSPRA+ really does when it

imposes the l.o. condition on clauses.

Central in this respect are the following

points:

i- Counting the number of new

nodes created in each step is essential.

As resolution is sequential, a new

clause resolved in such a step has to

traverse all nodes of the previous IRT

if necessary (c.f. Figure 10 for an

illustration). It is therefore clear that,

unless nodes are left untouched or are

copied (i.e., Splits occur), the

contribution of the new clause is either

to augment sizes of already existing

nodes or to add new size-1 ones.

ii- It is also imperative to

understand how 2SAT-GSPRA+

recognizes equivalent Clause Sets so

that it is not obliged to repeat similar

calculations. The equivalence notion

adopted in [Abdelwahab 2016-2] is

structural (algorithmic), i.e., two

Clause Sets are equivalent only when

their generated resolution trees are37.

As we are always trying to minimize

nodes in generated trees, this notion is

sufficient for our purpose. 2SAT-

GSPRA+ implements it (compare with

Definition 14, Align function, Point b,)

by requiring a Clause Set to be stored

in the LCS list only when CRA+ is

applied to it. This has the advantage of

normalizing all stored Clause Sets so

that their sub-trees can be retrieved

37S1={{a, ¬b}{b,d}{¬d,e}},

S2={{¬d,e}{b,d}{a, ¬b}} are for example

considered to be different from the structural

point of view although they are logically the

same.
38 In this present work RPC is restrained to HLs

only while in [Abdelwahab 2016-2] it is applied

easily when encountered again during

resolution, remembering that all

resolution steps may require using

CRA+. [Abdelwahab 2016-2] calls this:

(CRA-form).

iii- Sorting condition b) in

(Definition 1) prescribes distinguishing

+ve and –ve literals of the same

variable while ordering a Clause Set

without giving any preference to the

best way of doing that, leaving it to

implementations of CRA+. Some

implementations may have the effect of

building SBs and tCNs as seen in

(Definition 4) and (Figure 7) which

may split. It is shown here that this

situation can always be avoided

without disturbing the essential (RPC)

condition of CRA by appropriately

choosing which sign to prioritize while

applying the (DB Sorting) Condition38.

The following lemmas allow us to get a

more precise picture of the above ideas.

Lemma 5 (Expansion of MSRTs.os):

a- ∀n1,n2 nodes ∈ MSRTs.o: if n1,n2 are

not directly connected in steps <=k then

they cannot be directly connected in

steps >k, if the sort order of their Clause

Sets is not altered, except in the trivial

case when the new clause belongs to a

block, parents of n1,n2 were instantiating

in steps <=k and n1, n2 become

equivalent (tCN, tMSCN).

b- ∀M>1: A node [q] of size M is

CN/MSCN iff ∃CN/MSCN [q’] of size

M-1 augmented in size by a clause C

such that: [q]=[q’]

c- Let up1,upj be upper bounds of nodes

generated during the whole process of

to all literals. There, a stronger property than the

one seen in Lemma 8 is shown, namely: That

appropriately sorting blocks to avoid tCNs (there

called the l.o.s condition) produces the same

amount of unique nodes as not doing any extra

sorting. This was necessary there to imply that

tCNs and their Splits don’t harm the near-to-

minimal node counts of GSPRA+ trees.

Abdelwahab, N.

45

45

resolution in size-levels 1 and j,

respectively, where 1<j<=M. If Splits are

not accounted for in any size-level j,

then: upj<=up1

Proof:

a- When 2SAT-GSPRA+ is applied on a

BS, it uses (LLRBS) in the Align

Algorithm. This rule is applicable within

a space as well as between spaces in the

following way: If nodes n1 and n2 belong

to different spaces and were not directly

connected in step k, then, unless the sort

order of their Clause Sets is not altered,

they cannot be directly connected in

steps >k, because newly resolved clauses

don’t affect old results of an application

of the least-Literal-rule, i.e., least literals

in old nodes remain the same for l.o.

Clause Sets (c.f. Definition 4 and Figure

7 for an illustration). tCN and tMSCN

exception cases are explicitly dealt with

in (Lemma 8) below.

b- ∀M>1: If ∃CN/MSCN [q’] of size M-

1 constructed in steps<k and augmented

in size by a clause C in step k such that:

[q]=[q’], then per (Definition 4), [q] is a

CN/MSCN and its size is M. Other

direction: We need only to investigate the

case when a node [q] of size M was not a

CN/MSCN in steps <k and became

CN/MSCN in step >=k. As per a- this

cannot happen unless the sort order of one

of at least two nodes involved is altered.

Let [q’] be the node of size M whose sort

order is changed in step k and whose SR-

DAG is completed in steps>k such that

2CNF[q]=2CNF[q’]. This can only happen

in 2SAT-GSPRA+ if [q’], when passed to

the Align-Algorithm is not found to be

l.o. and CRA+ is used (Definition 14,

bracket-2, steps: 1-7). In this case: The

last clause A of the re-arranged Clause

Set is separated (step 3) and the SR-DAG

of node [q’] is formed again, first with

2CNF[q’]= 2CNF[q]\A (step 4), before a

recursive call of Align is attempted (step

5). In those first steps: Size[q’]=M-1.

Since: 2CNF[q’]=2CNF[q]\A and as per

(step 4) all nodes whose Clause Sets

begin with 2CNF[q]\A, i.e., [q] as well, are

reconstructed: [q’] must have been a

CN/MSCN of size M-1, before its size is

augmented by A. When Align is called

then in (step 5) with the last clause A,

Size[q’]=Size[q]=M which was to be

shown.

c- If Splits are not accounted for at any

size-level j>1, then: Per (Definition 14)

of 2SAT-GSPRA+: A node can have in

any step only one copy which either

remains at such a level-j or is propagated

up one level to become part of level-j+1,

but not both. Recall that this is not like

the case of a Split, where one copy of the

node remains as it is and another copy (or

more) is resolved with a new

clause/Clause Set moving up the

hierarchy (recall Definition 6, Splits).

Hence, we can show the property using

induction on j: 1<j<=M as follows:

Base-Case: For j=2: Since up1 is the

upper bound of nodes generated in size-

level 1 during the whole process of

resolution, the worst case is that all up1

are added to level 2. Since Splits are not

counted at level 2, they must be also the

only nodes added at that level. Therefore:

up2 <= up1

Induction Hypothesis: upj<=up1 for

size-level j, j>1

Induction Step:: Because any node

formed at level j+1 at any step of the

resolution can either come from the

lower j-level, or formed via Split and we

don’t count Splits: upj+1 cannot be > upj,

which means upj+1<= upj and thus per

induction hypothesis upj+1<=up1

(Q.E.D.)

Lemma 6: (Aligned MSRTs.o Base

Cases) All size 1,2 nodes of any

MSRTs.o of a 2CNF Clause Set S

produced by 2SAT-GSPRA+ are aligned.

Abdelwahab, N.

46

46

Proof: For size 1 nodes it is clear that the

MSRTs.o representing any single clause

is aligned per (Definition 12) with the

single clause itself being the Alignment-

Clause. For size 2 nodes of the form

S={{a,b}{x,y}} let's recall that 2SAT-

GSPRA+ converts any such Clause Set to

a l.o. Clause Set using CRA+ (step 3,

Definition 14). This leads to the

following cases:

Case 1 (Figure 13): No literals are

common between the two clauses. {x,y}

is then the Alignment-Clause

Case 2 (Figure 14): There is one Literal

in common independent of the specific

place of this Literal. Because of RPC of

CRA (c.f. Definition 7, 2-a), all Clause

Sets will be converted via CRA+ to the

form {a,b}{a,y} which has {a,y} as

Alignment-Clause.

(Q.E.D.)

Figure 14

b
a

{b}{y}

{a, b}{a,y}

TRUE
{y}

FALSE

TRUE
FALSE

{b11}{x,y}

{a1, b11}{x,y}

{x,z}
{x,y}

a1

b11

FALSE

Figure 13

x

TRUE

{y}

y

TRUE
FALSE

Abdelwahab, N.

47

47

Lemma 7: (Alignment MSRTs.os)

2SAT-GSPRA+ produces MSRTs.os with

aligned nodes39 and if Splits are not

counted, then for the whole process of

resolution: The total number of

generated size-1-level nodes cannot

exceed RCC2-SAT*M2

Proof:

1. Alignment MSRTs.os (Induction on

M)

Base Case: M=3-sized MSRTs.os are

aligned because their M=2-sized

nodes or sub-trees produced by

2SAT-GSPRA+ are all aligned

(Lemma 6) and (as per Definition 13)

their M=3-sized nodes or sub-trees

are l.o. The fact that all size M=3

nodes or sub-trees are aligned makes

in the same way all size M=4 nodes

aligned and so forth. Inductively: All

M-sized nodes are aligned because all

their M-1-sized nodes or sub-trees are

aligned and their M-sized nodes of

sub-trees are l.o. This implies that any

final MSRTs.o is an Alignment

MSRTs.o.

2. Size-1 level nodes created in any step

k<=M can only come from ACS and

ACS cannot have more than RCC2-

SAT*M per (Definition 13) i.e., the

total number of generated size-1

nodes for all steps cannot exceed

RCC2-SAT*M2

(Q.E.D.)

Lemma 8: ∀SB, DB, tCN such that

SB⊆DB and tCN formed in SB: tCN can

always be avoided by appropriately

choosing the DB Sorting Condition.

Similarly: tMSCNs can be avoided as

well.

Proof: According to (Definition 1), a

block is called DB if -ve and/or +ve

39 As per (Definition 12) and (Definition 13):

There is a subtle difference between aligned

MSRTs.os and Alignment MSRTs.os. While the

instantiations of block Literal a result in

Sets S1, S2 respectively and either S1 ⊆

S2 or S2⊆ S1. Figures 15 below shows an

example for such a dissymmetric block

Ba={{a, b}{¬a, b}{¬a, c}{a, c}{a, d}}

(SB={{a, b}{¬a, b}{¬a, c}{a, c}})

sorted in two ways: One prioritizing

clauses with –ve occurrences of a (Figure

15a) and the other prioritizing those with

+ve occurrences (Figure 15b). Only the

first, relevant parts of the resolution trees

are shown. An SB as well as a tCN is

formed in the first case and bound to split

in any further step, while the second case

avoids such formation by utilizing the

dissymmetry in clause {a,e} to prioritize

+ve occurrences of a. Clauses with –ve

occurrences of the block Literal just fill

then the TRUE leaf node in any further

step. As (DB Sorting Condition) does not

affect any special condition used in

CRA+ (especially the RPC condition in

Definition 7 which only relates to HLs

set here to block Literal a), a

constellation like (Figure 15b) can

always be reached w.l.o.g. by letting

clauses with the most common block-

literal-sign (in Figure 15b: +ve) appear

before the others in the sort order.

former represent trees with only one clause or its

derivation entailing all Clause Sets, the latter

represent trees in which all nodes were aligned,

not necessarily with the same clause.

Figure 15-a

Figure 15-b

Abdelwahab, N.

48

48

What if Ba is a MSB, i.e., some of its

Clause Sets belong to more than one

Space (Definition 10)? It suffices to

observe that tCNs cannot be formed in

blocks scattered between different,

mutually exclusive branches of the tree.

I.e., the constellation for Ba in (Figure

16) is not possible: The reason being that

branch Literal a is the head of rank-2

clauses occurring also in the base Set BS.

Thus, to scatter them between different,

mutually exclusive branches an

additional variable would be needed,

contradicting the fact that BS is a 2CNF

Clause Set. Therefore: Ba must occur in

one and only one node which might be

shared by many branches coming from

different spaces. But then: Even if Ba or

any of its Clause Sets were parts of more

than one space, the same arguments used

above would apply, if one of those

spaces is chosen for the node in which Ba

is occurring. In other words: When

2SAT-GSPRA+ reaches this node it can

apply DB-Sorting in CRA+ as instructed

in (Definition 14) and the proof of this

Lemma without any additional effort.

(Q.E.D.)

40 The notation [3] stands for [q], q=3.

III-4 CN-Splits in MSRTs.os

The most important contributions of this

work are the observations related to

Splits of resolution trees on which l.o.

conditions are imposed. As mentioned

before: Only CN-Splits need to be

thoroughly investigated. The other type

of Splits, N-Splits (c.f. Definition 6),

cannot occur during resolution work of

2SAT-GSPRA+, since no node n

containing Clause Set S and formed in

step k, can be duplicated in steps >k,

while S is resolved with a clause whose

least-Literal is new and has an index

strictly smaller than all or any indices of

head-literals in S. Such a case would be

a breach of the l.o. condition imposed by

2SAT-GSPRA+ on all Clause Sets of all

nodes (this is formally shown below in

Lemma 9-b). As for CN- as well as

MSCN-Splits, the following two cases in

(Figure 17 and Figure 18) show practical

situations occurring during resolution of

l.o. Clause Sets, motivating the more

abstract investigations of the Lemma 9.

In (Figure 17), SS-MSCN3 is formed

through instantiation of Clause Sets

{{¬2,3}} and {{2}{¬2,3}} by

substituting TRUE for Literal 2. It is

clear that MSCN [3]40 can be augmented

in size by adding additional clauses of

the form {¬2, 𝑥} to the BS. A clause {2,

x}, on the other hand, does not have any

effect on [3], since it disappears from [3]

the moment it is added to {{¬2,3}} and

{{2}{¬2,3}}, i.e., continuing the

current instantiation block B2 in BS

either augments the size of MSCN [3] or

doesn’t have any effect on it. If we

attempt to split this node using clauses of

the form {1, y} or {¬1, 𝑦} there is yet

another restriction: The fact that BS is

l.o. cannot allow any new blocks Bx

starting after B2 to contain: x<2.

Therefore: [3] cannot be split in any

further step.

Figure 16

{a,b}{a,c}… {a,b}{a,c}..

a a

{b}{c}…

Abdelwahab, N.

49

49

In (Figure 18), DS-MSCN2 Splits the

moment block B1 is continued in any

way in the BS, i.e., when clauses of both

forms {1,x} and {¬1,x} are resolved.

The only way to augment the size of [2]

is by starting a new block Bx which has

to fulfill x>1, because of the l.o.

condition imposed on the BS. However:

When such a block starts, [2] cannot be

split in any further step, since no more B1

or B0 clauses are permitted. Are those the

only possible cases of CN/MSCN Splits?

Or are there other situations in which

Splits can occur after MSCNs are

augmented to big sizes? This is answered

by the next central Lemma which

investigates all possible situations

encountered when Splits are attempted.

Lemma 9: MSRTs.os formed by 2SAT-

GSPRA+ during resolution of a 2CNF

Clause Set have the following properties:

a. CNs and MSCNs containing

clauses belonging to the BS

or their images cannot split.

41 Reads: The first appearance of an image of a

in space-i occurs after the first appearance of an

image of l in any Clause Set S’ of the same space.

b. N-Splits cannot exist, but

Rank-1, size-1 CN/MSCN

Splits can.

c. Rank-1, size-1 CNs and

MSCNs which are not tCNs

or tMSCNs and which are

augmented to sizes>1 in step

k, cannot split in steps >k.

Proof:

We recall the generic form of a MSCN

[q]ST
sp1,sp2,sp3,.. (Figure 19) which is a

generalization of a CN and shall be used

here w.l.o.g. and which - as opposed to

tMSCNs - was not formed in a

symmetric block. Its edge- or branch-

literals can be either distinguished or not

(c.f. Definition 10, Definition 11, Figure

12):

a- If the size of [q]ST
sp1,sp2,sp3,.. gets

augmented by a rank 2 clause

C1’={a’, b’}ST in step k, then,

obviously, there exists a clause

C1={a, b}∈BS and a mapping M

such that: a’=MST(a), b’=MST(b),

i.e., C1’ is an image of C1. In this

step k: All literals of C1 and all

their images were new in all

branches and spaces leading to

the MSCN per Definition 10, i.e.,

∀i,lspace-i,S’, where lspace-i is a

branch- or edge-Literal of

[q]ST
sp1,sp2,sp3,., S’ Clause Set of a

parent node containing lspace-i
:

lspace-i | aspace-i41

Since all Clause Sets and all nodes are l.o., this

means also that lspace-i < aspace-i according to

(Lemma 1-b).

Figure 17: SS-MSCN3

 (....){.., q,...}Sp1

aST=M1(x)

cST=M3(z)

 {..,q,…}..Sp3

{ }ST

 (....){ }Sp2

bST=M2(y)

Figure 19

::

Figure 18: DS-MSCN2

Abdelwahab, N.

50

50

Per (Lemma 1-a) we have:

M(lspace-i)<M(aspace-i) -1

To be able to split [q]ST
sp1,sp2,sp3,..

in any step>k, a subsequent

clause C2={x, y}∈BS must

traverse some or all branches and

spaces leading to the MSCN and

form two different Derivations

(Definition 6, CN-Split). For at

least one of those Derivations:

Some parent node p, Clause Set S

of p, space-i and edge- or branch-

Literal lspace-i must satisfy:

xspace-i=lspace-i or yspace-i=lspace-i

where C2’={x, y}space-i.

Substituting in above formula -1

we have: M(xspace-i)<M(aspace-i) 42

On the other hand: As per the l.o.

condition imposed on BS: a<=x

and we have two cases43:

If a=x then xspace-i=aspace-i and C2’

is added to S and augments the

size of the MSCN instead of

splitting it.

If a<x, then as per (Lemma 1-b):

(a | x), because BS is l.o., such a

BS may have only one of the

following two generic forms

which realize the requirement

that the first appearance of

Literal x comes after that of

Literal a44:
{..{..,a}..{r, x}..{s, ¬x}…{a, b}…{x,y}…}
 – 2

42 The same arguments hold if yspace-i is used

instead of xspace-i or if C2 is a unit clause. Those

cases are omitted here to avoid unnecessary

length.
43 In [Abdelwahab 2016-2] the ‘<’ relationship

alone is used to show a similar contradiction for

the 3CNF case. The reasoning shown there,

which is equally valid here and may be

considered a shorter version of the proof of

Lemma 9-a of this work, goes, informally, as

follows: “If a MSCN is augmented in size by an

image of a clause C from the BS, then all literals

of C or their images must be ‘>’ any branch- or

edge-literals of the MSCN. Since BS is l.o.: Any

clause D from the BS, coming after C, can only

possess literals which are ‘>=’ the HL of C, i.e.,

Or

{…{a, b}…{x, y}…} – 3

We will show in what follows

that both forms lead to

inconsistency with respect to the

given case assumption. To see

this: BS in form-3 satisfies, per

Lemma 1-c for any space-i:

(aspace-i|xspace-i) and thus also:

M(aspace-i)<M(xspace-i), per

monotone property of mappings.

Contradiction. Note that {x,

y}space-i can only come before {a,

b}space-i when it is ‘pulled’ by a

clause {.., x}space-i appearing

before {a, b}space-i In that case:

Clauses are re-arranged through

renaming to guarantee l.o. as

shall be seen. However: Because

x appears in BS for the first time

in {x, y} and not as a TL in any

clause {.., x} prior to {a, b} such

a situation cannot happen and the

relative position of x or any of its

images to an image of Literal a in

an arbitrary space remains the

same for this case.

By contrast: If BS is of form-2,

this means that in some step>k it

may be that: Either Ba comes

before Bx or vice versa.

Constellations like:

S={..{x}..{a,b}..{x,y}..}space-i or

S={..{¬x}..{a,b}..{x,y}..}space-i

also ‘>’ branch- or edge-literals of the MSCN.

To split a MSCN, however, there needs to be at

least one branch- or edge-Literal of the MSCN

‘=’ to a Literal in D. Contradiction” In this work

the precedence relation ‘|’ is used to allow a

thorough investigation of permutation

possibilities of BS, leading all to the same

contradiction as well. For 3CNF a lot more BS

cases are involved, explaining why ‘|’ could not

be used there.
44 Because of the l.o. condition, any l.o. Clause

Set cannot have a form in which blocks Ba or Bx

are interrupted like in: {..{a,

z}..{..,x}{a,b}{x,y}} or

{..{..,a}..{x,..}{a,b}{x,y}} for example.

Abdelwahab, N.

51

51

which are both not l.o. To make

S l.o. in such a step, clauses are

re-arranged, literals renamed and

the sub-tree reconstructed by

2SAT-GSPRA+ such that:

(i)-{{x}..{x, y}}space-i or

(ii)-{{¬x}..{x, y}}space-i comes

either before or after {a, b}space-i.

If {x, y}∈Bx comes after Ba in a

space-i, the situation is similar to

Form-3 discussed above and

leads to a contradiction, when a

split is attempted. The MSCN is

augmented, since {a<x}space-i.

On the other hand: If {x, y}∈Bx

comes before Ba in any one or

more Spaces, it must be the case

that only one Derivation of {x, y}

is generated, otherwise the

MSCN would split, before it is

augmented contradicting the case

assumption.

In Summary: Because of the l.o.

condition which prescribes that

instantiation blocks cannot be

interrupted (c.f. Footnote 44),

Clause C2={x, y}∈BS in Form-2

or Form-3 as well as all its

possible derivations can only

either augment the size of the

MSCN or leave it untouched, but

not split it.

Same Arguments apply for unit

(rank-1) clauses C1={a}∈BS

which have images in

[q]ST
sp1,sp2,sp3,.. 45.

b- (Figures 20) shows a Split of a

rank-1, size-1 MSCN occurring

45 The intuition behind this central observation

of Lemma 9-a is the following: When a clause

C∈BS has an image C’ in a formed MSCN, then,

per definition, all its literals and/or images of

literals must have been new with respect to

branches and edges leading to the MSCN as well

as literals in Clause Sets of parent nodes. In that

case: Any attempt to split the node using another,

subsequent clause D∈BS will be in vain, because

of the l.o. condition imposed on BS by 2SAT-

GSPRA+ which prescribes either that literals

in the MSRTs.os for

S={{0,1}{0,2}{1,2}{1,3}}.

To show that N-Splits cannot

exist: Suppose they do exist, this

means - per definition of a Split

(Definition 6) - that: ∃S’:2CNF

Clause Set such that: For some

n1,n2:Node∈SR-DAG, S1 is

2CNFn1, S2 is 2CNFn2, n1≠n2:

S’⊆ S1, S’⊆ S2 and ∄n:

Child(n,n1)=Child(n,n2)=TRUE

(i.e., there are no common sub-

trees between n1, n2, but there is

a common sub-Set of clauses).

This means also: Neither n1 nor

n2 nor any children of them were

CNs/MSCNs before (S’ was not

the Clause Set of a CN/MSCN).

Let F={..}+C+D+S, be the l.o.

2CNF Clause Set whose

instantiation results in a sub-tree

like in (Figure 20c) in which S is

a Clause Set, S’ a Set containing

Derivations of clauses in S46,

and/or images of literals in D be as new as those

of C or that they be ‘pulled’ by TLs occurring in

clauses before C, contributing thus to the

formation not the splitting of any MSCN

augmented in size by C.
46 Clauses C, D whose images are not common

between the two involved nodes may appear in F

either before or after or bracing Sub-Set S, the

origin of S’. F={..}+S+C+D, assumes S is

resolved to create S’ before C, D. It relates,

therefore, to CN- not N-Splits and is dealt with,

Figure 20b

Abdelwahab, N.

52

52

S1=D’+S’ (left node n1) and

S2=C’+S’ (right node n2), where

C,D∈F and C={x, y}, D={a, b}.

C’ and D’ are Derivations of C,

D and C’,D’ as well as any other

Derivations of C,D ∉S’,

C’≠D’47.

Then: If L is the least Literal used

to instantiate F:

Case-1, L≠x: C’=C should have

been ∈S1 as well as ∈S2 which

means C’∈S’, since in the left

node C’≠D’. Contradiction.

Case-2, L=x: We distinguish

three cases:

i- x≠a, x∉D: D’=D should have

been ∈S1 as well as ∈S2 which

means D’∈S’, since in the right

node C’≠D’. Contradiction.

ii- x=a, x∈D: C’={y}, D’={},

D’’={b} are left- and right-

Derivations of D. Then:

S2={y}+{b}+S’, which

contradicts S2={y}+S’, because

D’’={b}∉S’.

iii- 𝒙 = 𝒂, ¬𝒙 ∈D: C’={y},

D’={b}, D’’={} are left- and

right-Derivations of D. Then:

Because F is l.o., x=a was least

Literal in F: Both y, b must be <=

any literals L∈S’. This means

that clauses {y} and {b} are

going both to appear and get

instantiated before any clauses in

S’ in both branches of the tree

({b} in the left branch, {y} in the

right branch)48. This instantiation

indirectly, in the other two parts of this Lemma

showing that such a Split can only occur if

rankS’<2 (Lemma 9-a) and SizeS’=1 (Lemma 9-

c). Form: F={..}+C+S+D is basically a

combination between F={..}+C+D+S, the

investigated one, and F={..}+S+C+D, i.e., does

not provide substantially different insights and is

therefore skipped here to avoid unnecessary

length.
47 For showing the result it is actually sufficient

to consider the difference between S1 and S2

constituting of only one clause (i.e., putting in the

creates a common sub-tree

between nodes n1, n2 whose

Clause Set is S’ contradicting the

definition of a Split.

c- Suppose [q]ST
sp1,sp2,sp3 is a MSCN

which is augmented in size in step k by a

clause C’. We have just shown that if C’

or images of it are ∈BS, then no Splits

can occur in any steps >k. What about the

case where C’ is a unit clause, say {z},

but ∉BS and there are no clauses D’ in
the Clause Set of the MSCN such that

D’ is image of a D∈BS? Augmenting the

size of [q]ST
sp1,sp2,sp3 with such a C’ in

step k means that there is a Literal L∈ C,
where C={¬L, 𝑧}∈BS such that all

instantiations of C through branches

leading to [q] agree on its truth value,

otherwise a Split would occur in this

step. L is a (Non-Distinguished Literal),

argument above either D’={} or C’={}), if we

bear in mind that 2SAT-GSPRA+ is a sequential

Algorithm and Splits are therefore always

formed in a single step in which only one clause

is processed.
48 This remains the case even if CRA+ is used,

since the (RPC-condition) has no effect on unit

clauses. The reader may have noticed that the

argument used in Lemma 9-b is independent of

renaming and variable spaces and relates only to

the l.o. condition and the application of the Least

Literal Rule on a Clause Set.

L

F: …+C+D+S, C={x,y}

 N1: S1=D’+S’
N2: S2= C’+S’

Figure 20c

t

N4: …{¬𝑦, 𝑧}

...

y

¬x

[]+{z}

N2:…{¬𝑦, 𝑧}

Base-Node:...{¬𝑦, 𝑧}

 N1: …{¬𝑦, 𝑧}

x

y

y

Figure 21a: step k

N3: …{t}{¬𝑦, 𝑧}space-i

Abdelwahab, N.

53

53

because distinguished ones like x in

(Figure 21a) lead to different

instantiations for different branches, i.e.,

Splits, per definition. It is not a Literal

like t which, although non distinguished,

appears only in some, not all branches of

the tree. Such a Literal t would also

create dissymmetry and hence Splits

when C is instantiated. L is called a

CNAL (Definition 4). The Argument

below amounts to showing that, in case

such CNAL L is used to augment the size

of [q]ST
sp1,sp2,sp3 in any step, no Splits can

occur in furtherance, unless Clause Sets

of the form:

{..{..<Literal i>..} {..no < Literal i >..}

{..< Literal i >}…} – wrong-form

are allowed for <Literal i>, used for

splitting the MSCN, a situation which, in

the studied cases, leads to inconsistency

between imposed l.o. conditions on all

sets (including BS) on the one hand and

the to-be induced Split49 on the other.

Intuitively, the Argument goes as

follows: If CNAL L augments the size of

the MSCN through a clause, say

C={¬L, 𝑧}∈BS, then L cannot be used to

split the same node in any further step,

because any clause E containing L and

coming after C in the BS can either

agree with C in the sign of L and shall be

thus augmenting the MSCN, not splitting

it, or disagree and in that case it leaves

the MSCN untouched. If on the other

hand a <Literal i >, different from CNAL

L, is used to split the MSCN, i.e., E={i,

j}, its first appearance in the BS must

come before the instantiation Block of

CNAL L, because otherwise <Literal i>

would be greater than all branch- and

49 Note that Clause Sets similar to wrong-form

are not always breaching l.o. conditions. For

example: S={{0,1}{0,2}{1,3}} (putting <literal

i> = 1).
50 The shown two cases are the only ones,

because <literal i> which causes the

contradiction may here be anyone of the non

edge-literals of the MSCN, including

CNAL L, per the l.o. condition of BS,

and thus not able to split the node. A

block headed by <Literal i> cannot be

interrupted as in the above wrong-form,

which leaves then only one constellation

of the BS to be thoroughly investigated

in which <Literal i> is a TL of some

clause before C such as:
{..{a, i}..{¬L, 𝑧}…{i, j}…}

Although such a constellation is l.o.,

where a<i<L<z, instantiation of least

literals by 2SAT-GSPRA+ necessarily

results in the following non l.o. form:
{..{i}..{¬L, 𝑧}…{i, j}…}

In any space, the conversion of this form

to l.o. (similar to what we have seen in

Lemma 9-a) ‘pulls’ the clause E to a

position in which it can only produce one

single Derivation through all spaces and

contribute to the formation of the MSCN

rather than to splitting it.

Formally, we distinguish the two only50

cases:

CNAL literals x (first case)/y (second case) or t.

With respect to what needs to be shown: Those

literal types are similar. They: 1- must disappear

when the MSCN is augmented in step k and 2-

can theoretically cause Splits in steps>k. The

argument shown uses <literal i>=t to illustrate

the idea w.l.o.g. t can either appear before or after

the CNAL.

Abdelwahab, N.

54

54

Case 1 (step k)- CNAL L=y

appears in BS after <Literal i>

i.e., (x | y), (t | y) and thus also

x<y, t<y, since BS is l.o. (Figure

21a).

To split [q]ST
sp1,sp2,sp3 using t or

any of its images in a step>k and

space-i, two possibilities may

occur with respect to Clause Set

S={..{t}{¬𝑦, 𝑧}}space-i of node

N3:

a) S becomes =

{..{t}{¬𝑦, 𝑧}{t,z’}}space-i,

then either {t} was already

∈BS and thus an image of S

is ⊆ BS indicating a breach of

the l.o. condition, because t

must then be both <y and >=y

(per l.o.) or there exists a

clause D∈BS such that:

D={a, t}. But then the BS

contains a subset of clauses

or images of the form

{..{a,t}..{¬𝑦, 𝑧}..{t,z’}..}

where t>=y also leads to the

same inconsistency.

b) S becomes =

{..{t}{¬𝑦, 𝑧}{z’, t}}space-i.

As t>z’>=y, this means that

we have a contradiction for

all possible cases of the BS

like in a)

Case 2 (step k)- CNAL L=x

appears in BS before <Literal i>

i.e., x | y, x | t and x<y, x<t, (Figure

21b), we have ∀i:tspace-i<zspace-i, as

well since {z}space-i must augment

the size of the MSCN.

51The arguments used in [Abdelwahab 2016-2]

for the corresponding 3CNF case amount to

showing that Clause Sets similar in form to:

{..{t}..{¬x,𝑧}..{t,z’}..}will always occur in

parent sets of [q], if such a node is supposed to be

augmented first in size by a CNAL z, then split

using t, consistently breaching the l.o. condition

and requiring re-arrangement of clauses by CRA+.

To completely avoid the impression that this re-

As before: To split [q]ST
sp1,sp2,sp3 using t

or any of its images in a step>k and

space-i, two cases may occur with

respect to Clause Set S={..{t}{𝑧}..}space-i

of node N3:

a) S becomes = {..{t}{𝑧}..{t,z’}}space-i, then

either {t} was ∈BS and in that case

{..{t}..{¬x,𝑧}..{t,z’}..}⊆ BS is a breach

of the l.o. condition51 or

{..{a,t}..{¬x,𝑧}..{t,z’}}⊆BS and we

have to consider two possibilities:

∀i:(a | x)space-i: In that case BS has only one of

the two forms52:
 {..{a,t}..{¬x, 𝑧}..{t,z’}..}- form1

Or

 {{r, a}..{s,x}..{a,t}..{¬x,𝑧}{t,z’}}- form2

Form1 leads to a contradiction with the

case assumption, since x appears for the

first time in {¬x, 𝑧} and is thus per l.o.

condition > all literals to its left including

t according to (Definition 1-c).

Form2 needs to be transformed by

2SAT-GSPRA+ to S={..{t}{𝑧}}space-i

in steps<= k according to case

assumption. In this form r,s must be

<a, x, t as per l.o. condition of BS.

This transformation, which creates

intermediate spaces, can only be

arrangement may lead to the same node-count as

the one obtained when Splits are allowed, the

arguments used here reflect on the original BS,

rather than any arbitrary parent Set, showing that

all possible l.o. BS forms (used by 2SAT-

GSPRA+) for the constellations shown in Figure

21 cannot allow – without contradiction - first

augmenting the size, then splitting such a [q].
52 C.f. Footnote 44 in point a- of this Lemma.

t

...

𝑥

N2:…{z}

Base-Node: …{¬𝑥, 𝑧}

 N1:…{z}

x

y

¬y

Figure 21b: step k

N3: {…{t}{𝑧}…}space-i

𝑥

[]+{z}

Abdelwahab, N.

55

55

done - using the least Literal rule -

as follows:

Suppose r<s, then form2 yields two

sub-sets:
{{s, x}..{a,t}..{¬x,𝑧}{t,z’}} - subset1

{{a}..{s,x}..{a,t}..{¬x,𝑧}{t,z’}} - subset2

Because subset2 is not l.o., CRA+

converts it giving a form where {a}

and {a, t} are joined in one block Ba

after which clause {t,z’} appears, i.e.:

{{s,x}....{¬x,𝑧}..{a}{a,t}..{t,z’}}space-j - subset2’

Thus, in such a space-j: zspace-j<tspace-j

contradicting the case assumption as

well as (a | x)space-i.

Subset1 yields when resolved two

additional Clause Sets:
{..{a,t}{¬x,𝑧}{t,z’}} - subset3

{{x}..{a,t}..{¬x,𝑧}{t,z’}} - subset4

Subset3 is similar to form1 and leads

to a contradiction with ∀i:tspace-

i<zspace-i. Subset4 needs to be

converted to l.o.:

{..{a,t}..{t,z’}..{x}..{¬x,𝑧}..}space-l - subset4’

Where {x} and {¬x,𝑧} are summed

up in one block Bx which has the

effect in such a space-l that (tspace-l |

xspace-l) contradicting the assumption

that tspace-l splits the MSCN after it is

augmented using the CNAL xspace-l.

Suppose r=s, then form2 becomes:
{{r, a}..{r,x}..{a,t}..{¬x,𝑧}{t,z’}} - form2’

Instantiating this formula in

steps<=k produces two sub-

formulas:
{..{a,t}{¬x,𝑧}{t,z’}} - subset5

{..{a}..{x}..{a,t}..{¬x,𝑧}{t,z’}} - subset6

Subset5 is again similar to form1

above. Subset6 has to be converted

to l.o. yielding blocks Ba, Bx which

are uninterrupted and come behind

each other, since (a < x)space-i as per

case assumption.

{..{a}{a,t}..{t,z’}…{x}{¬x,𝑧}} space-m - subset6’

In such space-m: (tspace-m|xspace-m)

contradicting the assumption that

tspace-m splits the MSCN after it is

53 The reader may wish to verify this for

him/herself in a way similar to the one done for

a). One will find out, that changing the position

augmented using the

CNAL xspace-m.

∀i:(x | a)space-i: In that case BS has only

one of the two forms:
{..{¬x, 𝑧}..{a,t}…{t,z’}..} - form3

Or

{{r, x}..{s,a}..{a,t}..{¬x,𝑧}{t,z’}}- form4

Form3 makes z<t and forbids thus,

because of (Lemma 1-c), in any

formed space-i, that: tspace-i <zspace-i,

unless the precedence of {¬x, 𝑧} on

{a,t} is changed which would be a

breach of the l.o. condition, since

(x | a) for all spaces.

For Form4 there are two cases:

Suppose r<s Then because

x<s<a<t the following two subsets

will result of the application of the

least Literal rule and conversion to a

l.o. set:

{ ..{¬x,𝑧}..{s,a}..{a,t}..{t,z’}} space-n - subset7

{..{x}{¬x,𝑧}..{s,a}..{a,t}..{t,z’}} space-o - subset8

Both forms don’t fulfill case

requirement: tspace-i <zspace-i

Suppose r=s: Then form4 becomes
{{r, x}..{r, a}..{a,t}..{¬x,𝑧}{t,z’}}- form4’

Where r<x<a<t and the following

two sub-forms result from the

application of the least Literal rule

and/or the l.o. condition:

{..{¬x, 𝑧}..{a,t}…{t,z’}..}space-p - subset9

{..{x}{¬x,𝑧}..{a}{a,t}..{t,z’}}space-q - subset10

Both forms don’t fulfill case

requirement: tspace-i <zspace-i

b) S becomes = {..{t}{𝑧}{z’,t}} and since

t>z’>=z, the same contradictions seen in

a) can be shown for all possible BS

constellations.53

Resuming all cases of Lemma 9-c: BS

constellations supporting the intention of

first augmenting the size of [q]ST
sp1,sp2,sp3

using a CNAL L in step k, then splitting

it using <Literal i> all lead to

inconsistencies, if <Literal i>≠ L. Since L

of t in {t, z’} to become {z’,t} does not affect any

argument used here. The case is not extended to

avoid unnecessary length.

Abdelwahab, N.

56

56

itself cannot be used to split [q]ST
sp1,sp2,sp3

in steps >k, as seen above, this means that

such a MSCN cannot be split.

Here is yet another shorter version of

the proof of Lemma 9-c using only the

‘>’ relation for interested readers:

In step k: L is CNAL in a clause {¬L, 𝑧 }

augmenting the size of [q] with {z}. As

per the definition of a MSCN : Literal z is

> all branch and edge literals of [q], i.e.,

z>L,a,b,c,d, where a,b,c,d,.. are all edge-

and/or branch-literals.

In any step >k a clause C={x,..} cannot

use L to split [q], since any +ve

occurrence of L in C will keep [q] as it is.

A –ve occurrence of L in C will only

augment the size of [q].

If (x>z) and (L≠x) then also x>a,b,c,d.

However: To split [q]: X needs to be

equal to either one of them.

Contradiction.

If (x<z) and (L≠x) then per l.o. condition

of BS also x>L and x cannot appear in a

Clause C’ before {¬L, 𝑧 } as a HL, i.e., it

must be that C’={..,x}, L<x<z. Since L, z

are literals of the same clause, they must

be kept together in l.o. Clause Sets of

parent nodes of [q] and their images in

any space will always appear either

before or after Literal x or its images

causing contradictions to the case

assumption in all cases.

To see this : If x or any of its images split

the MSCN there has to be an edge marked

‘x’ of a parent node n in certain space-i

such that

2SATn={..{x}…{¬L, 𝑧}….{x,…}} space-i

which is not l.o.

Making 2SATn l.o. draws

Bx={{x}{x,..}..}space-i together prior to

{¬L, 𝑧}space-i which is supposed to

augment the size of the MSCN before

{x,..}space-i splits it. Contradiction. Even if

Bx is drawn after {¬L, 𝑧}space-i like in:

54 Rank 1 nodes of any size (i.e., nodes

containing only unit clauses) have a linear

number of nodes or sub-trees (in M)

2SATn={..{¬L, 𝑧}..{x}{x,…}}space-i, this

makes (x>z)space-i and thus also xspace-i>all

edge- or branch-literals of the MSCN in

this space, i.e., not able to cause a split,

and augmenting the size of [q] only.

Contradiction. (Q.E.D.)

It is imperative to summarize the

important findings of Lemma 9 before

proceeding to the next section:

a) (Lemma 9-a) shows that BigSps, i.e.,

Splits of rank 2 CN- or MSCN nodes

cannot occur during 2SAT-GSPRA+

resolution. This anchor result of the

work presented here puts a linear

upper bound54 on the number of

nodes which may be created via

duplication (Split) of any existing

CN/MSCN in any single step and

basically means that sub-problems

which need to be solved in different

manners again and again by 2SAT-

GSPRA+ are always strictly easier to

solve than the original problem.

b) (Lemma 9-b) shows cases where size-

1 Splits occur. It also shows another

anchor result, namely: No N-Splits

can occur, because of the l.o.

condition.

c) (Lemma 9-c) shows that the linear

upper bound of point a) is an

exaggeration and only a constant

number of nodes are generated

whenever a CN/MSCN splits in any

step, because Splits cannot occur for

CN/MSCN sizes>1.

Demonstrating then that the maximum

number of such CNs/MSCNs/sub-

problems must also be small suffices for

establishing the main node count result.

This is done in the next section.

Abdelwahab, N.

57

57

III-5 Complexity of 2SAT-FGPRA

We proceed by showing that the number

of unique nodes generated by 2SAT-

GSPRA+ is bounded above by a

polynomial in M, the number of clauses.

As 2SAT-GSPRA+ uses in each iteration

a data structure in which newly created

Clause Sets are stored in their CRA-

Form (LCS, c.f. Definition 14) there is a

guarantee that no more nodes/Clause

Sets are generated than the ones given by

the maximum unique node count.

(Lemma 2-c) makes sure that CRA-

Forms in CNs and/or MSCNs represent

Clause Sets which are logically

equivalent although they may belong to

different spaces.

Lemma 10: In any step i>=0 of 2SAT-

GSPRA+ resolving an arbitrary BS of

size M=i+1 with Clause Ci: Newly added

clauses used to align any nodes/sub-trees

of Clause Sets S’ of size <M produced in

steps <i can only come from ACS. The

total number of unique-nodes produced

by 2SAT-GSPRA+ for S in the final

MSRTs.o, including those generated by

Splits, is, therefore, bounded above by:

2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3,

c<=2, i.e., O(M4)

Moreover: This bound remains

polynomial, i.e., O(M6), even if Splits

are allowed which are not BigSps.

Proof: (by induction on M)

Base-Case: M=1: For size 1 nodes the

MSRTs.o representing a single clause

which is aligned per definition, the single

clause itself being the (Alignment-

Clause). For M=1 we have, therefore:

i=0: 2 <2+ 2*(4)2 *(1)4

Illustration Case: M=2: The alignment

of clause C1 to C0 in step i=1 of the

resolution adds in the worst case 2 to the

nodes of the MSRTs.o of clause C0 which

are also 2 at most (c.f. Lemma 6 and with

Figures 13 and 14). Thus, for step M=2

we have:

i=1: 2+2 <2+ 2*(4)2 *(2)4

The practically used ACS-portion is

comprised of clause C1 and/or its

derivations.

Induction Hypothesis (size M):

An IRT with a base-node of size M (step

i+1) in the form of (Figure 22) (here k=2)

is produced by adding in each step only

elements of the ACS to the size 1 nodes

levels (while aligning clauses to the

intermediate IRTs of previous steps) and

the total number of unique-nodes,

including those resulting from Splits, do

not exceed:

2+c*RCC2-SAT
2 *M4 + RCC2-SAT*M3, c<=2

 Figure 22: IRT with base-node size M

::

Abdelwahab, N.

58

58

Induction Step (size M+1):

When IRT is resolved in step i+2 via

2SAT-GSPRA+ with a clause C:

1. k M-sized nodes shall become k M+1-

sized nodes and l.o. as well (per

definition of 2SAT-GSPRA+ and the

fact that the BS is l.o.). The breadth k

of the first clause C0 in S is not altered

and thus also the number of nodes in

the (Top-part). No other M+1-sized

nodes can be formed.

2. Recall that as per (Lemma 7): The

total number of generated size-1-level

nodes cannot exceed

RCC2-SAT*M2, if Splits are not

counted. In essence we show the same

again here, but in the context of only

one resolution step: For all <M-sized

nodes (when they are resolved with C

forming nodes of Sizes <= M): The

induction hypothesis applies, i.e., step

i+1 produced for each one of them at

most

|ACS|=RCC2-SAT*M

new nodes of size 1 in their respective

sub-trees (not counting Splits).

Suppose now that in step i+2 C is

aligned to such a node n (Figure 23)

needing for the alignment of sub-trees

of n (not necessarily in the same

space) some other clauses C’, C’’

from ACS. If two or more sub-

MSRTs.os of node n and/or any other

node are aligned with the same clause

C, C’ or C’’, then on size-1 level of

55 Trivial CNs/MSCNs are not accounted for,

because they can be avoided altogether w.l.o.g.

as per (Lemma 8).
56 This is a theoretical exaggeration, since CRA-

Forms of clauses like {a,b} and {x,y} are always

the same in reality so that only RCC2-SAT size-1

nodes are practically added to the overall

MSRTs.o in this step. Keeping the factor M lets

us assume that 2SAT-GSPRA+ handles

the final, overall MSRTs.o a

CN/MSCN possessing one unique

CRA-form (c.f. Definition 14 in

which CRA+ is always applied before

storing any Clause Set) will be built

only one time within a space or

between different spaces representing

each one of C, C’ or C’’. In addition:

All such non-trivial CNs/MSCNs55

can only represent members of ACS

per definition of ACS (Definition 13).

Thus, the total number of newly

formed, unique, size 1 nodes for all

trees and sub-trees in this step (which

may or may not become non-trivial

CNs/MSCNs) cannot exceed |ACS| in

the worst case56, i.e.: RCC2-SAT *M.

permutations of different clauses of the base set

differently, storing them in separate places when

they appear. This is of course not how 2SAT-

GSPRA+ works, but gives us a good way to

exaggerate our assumptions about its way of

work so that we can get a more reliable upper

bound. The exaggeration would be then: To leave

the M-factor, while counting any possible Splits

of all those redundant nodes as well.

Space-1

SRT1 SRT2 SRT3

3

……..

C

 Node n

C aligned to n

C’’ C' C

C’ C’’

Space-N

Size-1 Level

Figure 23

::

Abdelwahab, N.

59

59

3. As per 2., the total number of

generated non-trivial CNs/MSCNs at

level 1 cannot exceed RCC2-SAT *M2

in all steps without counting Splits.

To count Splits at level 1: Recall that

one copy of a node remains as it is and

another copy is resolved with a new

clause moving up the hierarchy (c.f.,

e.g., Figure 20). Assuming for the

worst case that each one of those

nodes is split by the newly resolved

clause C in step i+2 and remains in

the same level as it is as well: There

are RCC2-SAT ways to do so for any

CN/MSCN per definition57. Those

Splits can only form Clause Sets of

size 1 and produce only a constant

amount c(=<2) of new nodes each

time58. If we assume (also as an

exaggeration) that step i+2 adds all

ACS-elements of point 2 as new

nodes as well59, this makes the

maximum number of newly added

size 1 nodes in this step:

c*RCC2-SAT
2 *M2+ RCC2-SAT *M

This means that

c*RCC2-SAT
2 *M3 + RCC2-SAT *M2

is an upper bound of nodes added

to size-level 1 during the whole

process of resolution. What about

added nodes of sizes >1?

(Lemma 9-c) assures us that there

are no Splits of nodes at j-size

57 Recall that RCC2-SAT is the cardinality of the

Set of all clauses which are permutations of

Literal arrangements of a 2CNF clause C.
58 We are assuming hence that each newly

resolved clause in each step i+2 comes with a

least-literal equivalent to previously instantiated

block literals of parent-nodes of every non-trivial

CN/MSCN created before in every space and

Splits this non-trivial CN/MSCN in all possible

ways without breaching any l.o. condition. A

clear exaggeration.
59 Even if new nodes coming from ACS in this

step are counted twice this way: It only helps the

exaggeration intended here.

levels, for j>1. This means, we

can apply the (expansion Lemma

5-c) which asserts that in the

worst case and for the whole

resolution process: The upper

bound of the number of new

nodes at all those j-size levels

cannot exceed

c*RCC2-SAT
2 *M3 + RCC2-SAT *M2

confirming thus the given O(M4)

bound for all levels.

Resuming again: The O(M2) nodes

generated in size level 1, which

include (as a worst case) also all

possibilities of Splits of CN/MSCNs

at this level, may in a further

exaggeration all be propagated up the

hierarchy of sizes to form at each step

and for each size-j-level of nodes

O(M2) additional, new ones. If they

are not propagated, they remain in

their respective levels and are not

accounted for further up in the

hierarchy60.

4. What happens if we relax (Lemma

9-c), i.e., allow Splits at size-levels j,

j>1, which are not BigSps? Any such

Split would cause only O(M) new

nodes to be generated each time it

occurs (as the nodes involved can

only be of rank 1). According to

(Lemma 5-b) any CN/MSCN [q] in a

size-level j and step k must be a

CN/MSCN [q’] of size-level j-1

60 Remember that, because there are no Splits at

such levels, a node in any size-level-j, j>1, can

either be propagated up in the hierarchy or left as

it is, but not both, the argument here can also be

expressed as follows: The O(M2) new nodes

formed at size-level 1 in each step may in the

worst case always stop at a certain level j>1 and

not be propagated further up in the hierarchy. In

that case level-j will contain at the end of the

resolution process at most O(M3) unique nodes.

Assuming that all other levels are similar to

level-j (an exaggeration which can never

happen), we get the O(M4) bound.

Abdelwahab, N.

60

60

created in steps<k and augmented by

the new resolved clause in step k. This

means that the number of

CNs/MSCNs which can split in any

size-level j cannot exceed the

maximum number of CNs/MSCNs at

size-level j-1 and ultimately at size-

level j=1, i.e., in the worst case O(M2)

as seen in point 2. Relaxing Lemma 9-

c, we can, therefore, assume as a

worst case that a new resolved clause

at any step k splits all CNs/MSCNs

residing in all levels j>=1 in RCC2-SAT

possible ways creating at each level

the maximum possible amount of

RCC2-SAT*O(M) new nodes for each

CN/MSCN and that those nodes may

all be propagated up the hierarchy as

well. Thus, the upper bound of unique

nodes created through Splits at any

level j>=1 and in any step k is: O(M3),

i.e., O(M4) for all steps. Using a

simple inductive argument on size-

levels 1<=j<=M, we can show that the

overall upper bound of unique nodes

is O(M6), whether nodes are

generated through Splits or through

propagation.

Base Case: Level j=1 contains at the

end of the resolution at most:

O(M3)<=1*O(M4) unique nodes as

just seen.

Induction Hypothesis: Size-level j

contains at the end of the resolution:

j*O(M4) unique nodes, j<=M

Induction Step: For size-level j+1:

As per 2SAT-GSPRA+ (Definition

14) a node can only become of size j

61Definitions: (14) and (15) of both Algorithms

deliberately leave the issue of choosing C0, the

head clause of 2CNF Clause Set S to the

respective implementations of the Algorithms,

thus opening up the possibilities for choices

which may lead to different node counts.

(Lemma 11) shows that whatever those choices

for 2SAT-GSPRA+ are, 2SAT-FGPRA can

simulate them correctly. Since only l.o. Clause

in any step k when either it was of size

j-1 in steps <k and it got augmented in

size or when it was generated via

Split. Unique nodes created through

Splits cannot exceed O(M4) for all

levels as just seen. Per induction

hypothesis: The number of unique,

size-level j nodes never surpasses

j*O(M4), which makes the total

number of unique nodes in size-level

j+1 after resolution terminates:

(j+1)*O(M4). As j<=M, we have in

each such level j at the end: O(M5),

making the overall upper bound for

the whole MSRTs.o: O(M6).

(Q.E.D.)

Finally: The following Lemma shows

that 2SAT-FGPRA (Definition 15) can

simulate 2SAT-GSPRA+ correctly, i.e.,

producing exactly the same MSRTs.o

when taking the same Clause Set sorting

choices. It also gives an asymptotic

upper bound of the number of operations

needed by 2SAT-FGPRA61.

Lemma 11: The following is true:

a- For any arbitrary 2CNF Clause

Set S: ∃G:MSRTs.o such that:

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G.

b- For 2SAT-FGPRA to produce

G shown to exist in point a-: For the main

Assistance Operations62 used by 2SAT-

FGPRA on 2CNF Clause Sets S of size

M: Node creation and returning results

(function SubTree), MSRTs.o creation for

a single clause (function Convert),

CRA+, Forming new Clause Sets using

least-Literal-rule (instantiation), Storing

(nodes), Searching Clause Sets in LCS:

Sets are used in any sub-problems generated by

instantiation operations, 2SAT-FGPRA is

producing a MSRTs.o equivalent to one produced

by 2SAT-GSPRA+, which always has a

polynomial number of unique nodes as just seen

in (Lemma 10).
62 By Assistance Operations we mean modules

and/or sub-functions used in the pseudo-code of

2SAT-FGPRA.

Abdelwahab, N.

61

61

The total, worst case number of

Primitive Operations63 performed by any

single one of them during a run of 2SAT-

FGPRA is: O(M9). Moreover: Relaxing

Lemma 9-c yields an upper bound of

O(M13).

Proof:

a- (induction on M, the size of S).

Assume that both Algorithms use the

same ordering choices in CRA+. Both

Algorithms use CRA+ in their

preparation phases (points 2 and 3 in

Definitions 14 and 15) on the same S,

i.e., they order clauses in S in the same

way. Remember also that they always

convert Clause Sets to l.o., particularly in

Top-Parts of resolution trees, using the

same CRA+ as well.

Base-Case: M=1: Because there is only

one C0 ∈ S, they convert it into the same

MSRTs.o G. In that case obviously:
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.

Induction Hypothesis:

For all 2CNF Clause Sets S of size M:

∃MSRTs.o G such that:

2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.

Induction Step: If S is l.o. of size M+1,

then let S’=S\A, where A is the last

clause in S. Per induction hypothesis:

∃MSRTs.o G such that:

2SAT-FGPRA(S’)=2SAT-GSPRA+(S’)=G

and we distinguish two cases:

1- When A is aligned to G by 2SAT-

GSPRA+ to form G’ of S there is no

breach of any l.o. condition in any

parts of G and A is appended to all

Clause Sets of G in Top- as well as

Bottom-parts. In that case: Top-parts

of G’ are clearly equivalent for both

Algorithms because Literal choices

of C0 ∈ S are not affected by the

addition of clause A in either case

63 Primitive Operations take a constant amount

of time in the RAM computing model.

and A is appended to Clause Sets

which are exactly the same for both

Algorithms. We use the induction

hypothesis for Bottom-parts stating

that there are always graphs G1,

G2,…Gn which are equivalent for

both Algorithms and can be

substituted for Bottom-parts of G’ to

conclude that:
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G’

2- When A is aligned to G by 2SAT-

GSPRA+ to form G’ of S and there is

a breach of the l.o. condition in some

Clause Set S’’ in the Top-part of G’:

Because this breach relates only to A,

while all other clauses Ci ∈ S’’ are as

per induction hypothesis the same for

both Algorithms (and they use same

choices for CRA+ as well), both

Algorithms fix the breach generating

the same exact Clause Sets in Top-

parts of G’ and produce thus the

same, related Bottom-parts. If on the

other hand A causes the breach in

Bottom-parts whose Clause Sets are

all of size M, the induction

hypothesis applies and there are

graphs G1, G2,…Gn which are

equivalent for both Algorithms and

can be substituted for such Bottom-

parts of G’, thus:

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G’.

b- Because of (Lemma 10), we know that

the total number of unique-nodes in G

cannot exceed 2+ c*RCC2-SAT
2 *M4 +

RCC2-SAT *M3, c<=2 (taking the result

obtained without relaxing Lemma 9-c).

Since G is produced by 2SAT-FGPRA as

per point a- as well: The following are

then upper bounds of the total number of

invocations of Primitive Operations for

all Assistance Operations listed above

for that Algorithm (c.f. Definition 15):

Abdelwahab, N.

62

62

1. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3

times CRA+ (each node needs

renaming of its Clause Set so that it

can be stored in LCS in its CRA-

Form). Through (Lemma 3) it is

known that CRA+ takes

O(M2(logM+N)). Since N cannot

exceed c*M, i.e., is in O(M)64, this

makes the total worst case number of

Primitive Operations for this

category: O(M7).

2. 2*(2+ c*RCC2-SAT
2 *M4 + RCC2-SAT

*M3) times instantiation (two new

Clause Sets are formed for each node

in the worst case). Instantiating a

Clause Set by substituting values

TRUE or FALSE for a certain Literal

in all M clauses is an operation in

O(M). This makes the total number of

Primitive Operations for

instantiation: O(M5).

3. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3

times node creation assuming that it is

in O(c), i.e., O(M4). Same amount is

needed for all SubTree function

invocations, since getting from LCS a

stored sub-tree using its index may be

assumed to take O(c) operations.

4. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3

times Storing/Appending in/to LCS

assuming that it is in O(c), i.e.,

O(M4).

5. MSRTs.o creation for a single clause:

O(c), since independent of M any

clause can have at most 2 literals

where 2 nodes are created for each

one of them.

6. 2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3

times Searching Tuples in LCS. This

search operation can be accomplished

64 To c.f. this: Let M=f(N). f can be exponential,

i.e., N=O(log M), polynomial, i.e., N=O(M1/k)

for a given k or linear, i.e., N=c*M, c<=2, which

is the largest count N can reach, representing the

case where all clauses have distinct variables.

in the least efficient way65 by

sequentially comparing the sought

Clause Set with all Clause Sets stored

in the LCS, a single comparison of

two Clause Sets being in O(M). In the

worst case there are 2+ c*RCC2-SAT
2

*M4 + RCC2-SAT *M3 Clause Sets in

LCS, i.e., O(M8) comparisons are

needed. This makes the total number

of Primitive Operations for Searching

O(M9).

If we relax Lemma 9-c we obviously get

O(M13) as the number of unique-nodes in

G would be in O(M6) as per (Lemma 10)

and the search operation in point 6 above

is, as seen, the bottle-neck of 2SAT-

FGPRA, requiring in the worst case:

O((unique-nodes)2*M) operations.

(Q.E.D.)

III-6 Counting Solutions

In this section we show that there exists

an efficient Algorithm which counts

solutions in the final MSRTs.o produced

by 2SAT-FGPRA. We give an example

of its application. Correctness and

efficiency are shown in Lemmas (13) and

(14) respectively.

Count2SATSolutions:

Inputs: The MSRTs.o generated by 2SAT-

FGPRA for a 2CNF Clause Set S

Outputs: Solution Count (Integer)

Steps: -

1- NamedMSRT = Name nodes and edges

starting from 0 and determine their levels.

(Algorithm: DetermineLevels below)

2- Set Solution Count for node n0 = 0, and for

edges on level 1 to be =1

3- For all levels i in NamedMSRT

a. For all edges eij, j is the index of an edge at

level i:

65 The least efficient way is chosen to avoid any

assumptions regarding sort- and search orders of

Clause Sets in LCS.

Abdelwahab, N.

63

63

i. Set Solution Count of eij=Solution Count

of parent node

b. For all nodes nik, k is the index of a node at

level i:

i. If nik is a TRUE leaf:

Solution Count of nik=(∑ex*2i-Le)*2N-i,

where x represents the index of any edge

going into nik, ex is the solution count of such

an edge, Le is edge level of x 66, N number

of variables in S

ii. Else

Solution Count of nik=∑ex*2i-Le
4- Return SolutionCount==∑ Tnd, Tnd is a TRUE

leaf node

Determining levels of nodes in the

MSRTs.o in the first step of

Count2SATSolutions requires

calculating the longest path from the

source node to each other node, since a

node may have several paths and its level

relates only to the longest one as per

(Definition 0.3), a problem which is in

general NP complete [Schrijver 2003]67.

However: The single-source longest path

problem for an un-weighted DAG (like

the MSRTs.o.) has an efficient and even

linear solution (O(|V|+|E|), V vertices

and E edges) which uses topological

ordering. In [Dasgupta 2006] (Ch. 4.7, p.

130), a single-source shortest-path

algorithm for DAGs is described. It only

needs to perform a sequence of updates

that includes every shortest path as a

subsequence. The key source of

efficiency is that in any path of a DAG,

the vertices appear in increasing

linearized order. Therefore, it is enough

to linearize (that is, topologically sort)

the DAG by depth-first search, and then

visit the vertices in sorted order,

updating the edges out of each. The

66 Recall as per (Definition 0.3): Le= LSr+1 if Sr

is the Source of e.

67 The longest path problem for a general graph

is not as easy as the shortest path problem

because it doesn’t have optimal substructure

property, i.e., that sub-paths between two nodes

have themselves to be optimal (enabling the

greedy strategy).

scheme doesn’t require edges to be

positive. In particular, one can find

longest paths in a DAG by the same

Algorithm: Just negating all edge

lengths. The following slightly modified

Algorithm first creates an ordering for

the MSRTs.o and then calculates the

longest distance from the source to each

node (which is then set to the level of that

node). Correctness and efficiency of the

original algorithm is discussed in the

above reference.

DetermineLevels:

Inputs: The MSRTs.o generated by 2SAT-

 FGPRA for a 2CNF Clause Set S

Outputs: Nodes named and their levels

calculated

Steps: -

1- Scan the MSRTs.o recursively, rename edges

and nodes and form the topological, lineralized

order in a depth first traversal manner68.

2- For all u ∈ V:

dist(u) = ∞

dist(s) = 0, s is source node

3- for each u ∈ V , in the linearized order:

 dist(u)= Dist(u, MSRTs.o.)

 Lu=| dist(u)|

Dist:

Inputs: u ∈ V, DAG = (V,E)

Outputs: Integer representing distance from u

to source of DAG

Steps: -

for all nodes v1,v2,..vn ∈V such that (u,vi) ∈E:

Dist (u,DAG) =

min{

[Dist (v1,DAG) + l(u, v1)], ….

68 A topological sort order of nodes is basically

an inequality, which may be formed in the

following way: For any two nodes n1, n2 children

of node n: create the inequality n<n1<n2 and add

it to the final inequality formed recursively

through depth first traversal. When the inequality

is extended: Node n1 and its children comes

before n2 and its children according to

precedence in already constructed inequalities.

Algorithm – A3

Abdelwahab, N.

64

64

[Dist (vn,DAG) + l(u, vn)]

}

l(u,vi,) is the length of the edge from u to vi

(which is always ‘-1’).

Applying this algorithm to the MSRTs.o

produced for Clause Set:

S={{0,1}{0,2}{3,4}} for example yields

after the first step (Figure 24).

In the third step the following example

sequence of operations is performed to

get the longest distance from n0 to n2

whose absolute value corresponds to the

level of n2:

a) The only way to go from n0 to n2 is

through the only direct predecessor node

n1. Thus dist(n2) = Dist(n1,DAG) -1

b) Dist(n1,DAG)=min{Dist(n0,DAG) -

1,Dist(n6,DAG)-1}= min{-1,Dist(n6,DAG)-1}

c) Dist(n6,DAG)= Dist(n5) -1

d) Dist(n5,DAG)= Dist(n0) -1=-1

e) Dist(n6,DAG)=-2

f) Dist(n1,DAG)= min{-1,-3}=-3

g) dist(n2) = -4

h) Ln2=4

(Figure 25) shows all nodes and their

levels.

69 The reader may wish to verify this number by

constructing the truth table and counting the

assignments satisfying S

After levels of nodes are created in step

1 of Count2SATSolutions as just seen,

executing steps 2, 3 through all levels

gives the following sequen ce of

operations completing thus the example:

a) Level-0: n0=0

b) Level-1: e0=1,e5=1,

n5=e5*2i-Le5=1*21-1=1

c) Level-2: e6=n5=1, e9=n5=1,

n6= e6*2i-Le6=1*22-2=1

d) Level-3: e7=n6=1, e8=n6=1,
n1=e0*2i-Le0+e7*2i-Le7=

1*23-1+1*23-3=5

e) Level-4: e1=n1=5, e2=n1=5,

n2=(e1*2i-Le1)*2N-i=

(5*24-4)*25-4=10, n3=e2*24-4=5,

f) Level-5: e3=n3=5, e4=n3=5,

n4=(e3*2i-Le3)*2N-i=

(5*25-5) * 25-5=5

g) Solution Count=n4+n2=1569

In the next Lemma we show that both

2SAT-GSPRA+ and 2SAT-FGPRA are

complete 2SAT-Solver Algorithms. As

per (Lemma 11-a) 2SAT-FGPRA

simulates 2SAT-GSPRA+ correctly

producing the same MSRTs.os. It is thus

sufficient to prove this property for

2SAT-GSPRA+. Doing this will enable

us to focus in the correctness proof of

Count2SATSolutions on MSRTs.os rather

than on truth tables

Algorithm – A4

Figure 24

Figure 25

Abdelwahab, N.

65

65

Lemma 12 (completeness, truth table

equivalence): 2SAT-GSPRA+ and

2SAT-FGPRA are complete, truth table

equivalent Algorithms, i.e.: Let S be a

2CNF Clause Set, A any Assignment of

truth values of literals in S, then:

Applying A on the MSRTs.o produced by

any of the two Algorithms leads to a

TRUE leaf iff A satisfies S.

Proof: We are going to show the result

w.l.o.g. for 2SAT-GSPRA+ only (by

induction on M, the number of clauses in

S)

Base: M=170 for the following MSRTs.o:

If we construct the Truth Table T2

a b S

0 0 1

0 1 0

1 0 1

1 1 1

and use the following propagation rule to

apply any Assignment A to any node in

the MSRTs.o:

"If the input value of the least Literal in

A is TRUE go left, else go right. Apply

this rule to all literals in A and nodes in

the MSRTs.o until you reach a leaf".

Then, the obtained results are equivalent

to the ones found in the truth table.

Check the two marked cases: For

assignment A="01" the base-node will

take us right through edge ¬a, then left

through edge b making the overall value

FALSE as the one indicated in the truth

table. For Assignment A="10" we are

70 The case used here (w.l.o.g.) is not the only

permutation of +ve/-ve literals a,b combined in a

clause. The reader is encouraged to check other

taken by edge a directly to the value

TRUE which is the value of the truth

table as well.

Induction Hypothesis: For all

Assignments A of truth values to literals

in S, SizeS=M: Applying A to the

MSRTs.o using the above propagation

rule returns TRUE iff A satisfies S.

Induction Step: Let S=S’+C,

SizeS=M+1. Remembering that S must

be l.o.: When C= {x,y} is added to S’ the

following cases can be distinguished:

1. x,y are new with respect to S’: 2SAT-

GSPRA+ propagates C until leaves

are reached (per l.o. condition the new

variables are > all literals in branches

of the previous tree). If leaves are +ve

then the tree representing C will

substitute them, otherwise FALSE is

left. Each branch ending with TRUE

stands per induction hypothesis for

the fact that - without the newly added

clause {x,y} - the Set S’ had already a

satisfiable assignment A and what is

missing is to satisfy {x,y} only by

extending A with a partial assignment

giving x, y truth values so that A

becomes A’. This is done through the

extension produced by 2SAT-

GSPRA+ which is a tree T similar to

the one in the base case. Because we

need only to check the two new

variables, it is easily seen (as in the

base case) that for all TRUE leaves of

T, reachable using the propagation

rule: A’ satisfies S’ +{x,y} and vice

versa, i.e., if a given A’ satisfies

S’+{x, y} through giving literals x or

y the value TRUE, then a TRUE leaf

in T must be reachable via the above

procedure. When on the other hand a

branch terminates with FALSE,

reachable through any assignment A,

it is guaranteed by induction

permutations and verify the validity of the

property for M=1 in a similar way to the one

shown here.

Figure 26

{¬b}

{a,¬b}

TRUE

a ¬a

b
¬b

FALSE TRUE

Truth Table - T2

Abdelwahab, N.

66

66

hypothesis also that S’ is not

satisfiable by A even without taking

the new clause into consideration.

Thus, A’ does not satisfy S’+{x,y} as

well for any truth values given to x

and/or y.

2. x exists in S’, while y is new: When C

is propagated through branches of the

tree, those terminating with FALSE

and reachable through assignment A -

as seen in the previous case - are not

dependent on the new clause and will

keep their values and guarantee (per

induction hypothesis) that S’ is not

satisfiable. Therefore for that case:

Any new assignment A’ adding a new

variables to A is not satisfying

S’+{x,y} as well. For all those

branches which terminate with TRUE

it either might be the case that this

truth value is independent of the new

variable y and thus kept as it is per

induction hypothesis (i.e., A satisfies

S’+{x,y}), or it is dependent on y and

the branch (and per induction

hypothesis its corresponding

assignment A) is extended with a sub-

tree containing two possibilities of

partial assignments satisfying the

single new clause {y}: (y=TRUE) and

(y=FALSE).Then: If

A’=A+(y=TRUE) satisfies S’+{x,y},

it leads to a TRUE leaf using the

above procedure and if

A’=A+(y=FALSE) doesn’t it leads to

a FALSE leaf (first direction) while if

S’+{x,y} has to be satisfied and we

are on a TRUE leaf,

A’=A+(y=TRUE) can be used to do

that (other direction).

Resuming the case of C = {x,y}:

Either no new nodes are added to the

71 For illustration: Consider the case where {1,2}

is added to {0,1}{0,2}. The left branch of the tree

for {0,1}{0,2} which is the leaf TRUE,

corresponds to the fact that values of 1&2 are not

relevant for the overall value of the formula

{0,1}{0,2} when literal 0 is set to TRUE

tree in all those branches where x

and/or y already exist and where per

induction hypothesis the tree is

already equivalent to the right truth

table or x and/or y are new in some

branch. In that case they will be added

to the +ve leaves accordingly and

correspond to specifications of truth

table values which were don't cares

before71.

(Q.E.D.)

The following Lemma shows then the

correctness of Count2SATSolutions.

Lemma 13 (Correctness): Let S be a

2CNF Clause Set for which 2SAT-

GSPRA+ or 2SAT-FGPRA produce a

MSRTs.o, AllAssignments the set of all

satisfibale Assignments of S, then:
Count2SATSolutions(S)=|AllAssignments|.

Proof: (by induction on N, the number

of levels of nodes in the MSRTs.o)

Base: N=1: Let S={{a}}, then

Count2SATSolutions produced in step 1

the following tree:

After which the following sequence of

operation steps follow:

a) Level-0: n0=0

b) Level-1: e0=e1=1, n1=e0=1

c) Result =1

Which represents the single assignment

satisfying S, namely: {(a=TRUE)}

following this particular assignment branch, i.e.,

they are Don't Cares. When {1,2} is added, its

tree replaces TRUE indicating for what values of

1 & 2 the same truth table gives truth values

capturing satisfiability conditions of the newly

added clause {1,2}.

Figure 27

{a}

TRUE
FALSE

e1

n0

n1
e0

Abdelwahab, N.

67

67

Induction Hypothesis: For all levels N

in the MSRTs.o.: All node- and edge

values calculated via
Count2SATSolutions for that level represent

the exact number of solutions possible

through the respective node or edge.

Induction Step: For level N+1, when

node- and edge-values of that level are

calculated:

1- Edge values are equivalent to

values of parent nodes which are all

correct per induction hypothesis.

2- Node values are summations

of edge values either from the same

level and in that case (per -1) correct or

from prior levels. Call an edge from prior

levels e. The value of e is also correct per

induction hypothesis, but in need for a

multiplication factor (step 3-b-ii):

2(N+1)-Le representing the number of

exponential possibilities of partial

assignments lost by e through skipping

variables. Trivially: Any skipped

variable is accounted for by the

multiplication factor of 2.

3- Values for nodes which are

TRUE leaves are, with respect to

whatever happened before them, correct

(as per -1 and -2), but in need of another

multiplication factor 2NumberOfVars-(N+1)

representing the number of exponential

possibilities of partial assignments lost

through stopping at that level.

Therefore, the conclusion is that

assuming Count2SATSolutions counts

the solutions correctly for any level N, it

does the same for level N+1.

(Q.E.D.)

This section concludes with an upper

bound on the number of operations

needed by Count2SATSolutions.

Lemma 14 (Efficiency): Let S be a

2CNF Clause Set for which 2SAT-

GSPRA+ or 2SAT-FGPRA produce a

MSRTs.o: The number of steps taken by

Count2SATSolutions to count all exact

solutions of S is in O(M9), M being the

number of clauses (size) of S. If we relax

(Lemma 9-c) we get O(M13).

Proof: Remembering that the number of

nodes/vertices of a MSRTs.o is O(M4) (as

per Lemma 10) and edges cannot exceed

thus O(M8) in this DAG, we have the

following:

 1- Step 1 in Count2SATSolutions,

i.e., DetermineLevels Algorithm, takes

an amount of steps linear in the number

of nodes and edges, i.e., O(M8):

a- Scanning the MSRTs.o

in the first step to rename nodes

and edges and calculate the

topological order is in O(M8)

b- Applying the single-

source shortest-path algorithm

for DAGs is in O(M8) as well

(c.f. [Dasgupta 2006], Ch. 4.7, p.

130)

2- In further steps

Count2SATSolutions loops through all

levels calculating edge- and node-values

for each level. In the worst case, this

would be O(M8*N), where N is the

number of variables in S. Since N is in

O(M) (c.f. Lemma 11 Footnote 64), we

get an upper bound of O(M9). Relaxing

(Lemma 9-c) gives us as per (Lemma 10)

O(M6) for the unique node count, which

makes counting in O(M13) in that case.

(Q.E.D.)

Now we are ready for the main theorem

of this paper.

Abdelwahab, N.

68

68

III-7 Main Result

Theorem 1:

a- Let S be a kCNF Clause Set, k>0,

kSAT-GSPRA+ and kSAT-FGPRA

Algorithms which are generalizations of

2SAT-GSPRA+ and 2SAT-FGPRA

allowing kCNF Clause Sets as input, but

agreeing on all other resolution steps, in

particular those related to:

i- Imposing l.o. conditions via

CRA+ and using least literals for

instantiation

ii- Creating CNs/MSCNs at any

size-level j only from CNs/MSCNs at

size-level j-1

and for which we can show that:

1- No N-Splits can exist

2- No Splits of CN/MSCN nodes

 of rank k can exist

3- kSAT-FGPRA simulates

 kSAT-GSPRA+ correctly

And let Uk denote an upper bound of the

number of unique nodes generated in a

MSRTs.o through anyone of kSAT-

GSPRA+ or kSAT-FGPRA while

resolving S, then:

Uk<=Uk-1*O(M5) where Uk-1 is

polynomial in M, M number of clauses

of S. kSAT-FGPRA is in P, more

particularly in: O(M)*(Uk)2. This implies

that P=NP.

b- Counting the exact number of

Assignments which satisfy Q, a 2CNF

Clause Set, (called the #2SAT problem)

is in P: O(M9), or, if (Lemma 9-c) is

relaxed: O(M13). Because of this also:

P=NP.

Proof:

a- Proof is by induction on k, the

rank of the kCNF Clause Set S:

Base Cases: k=1: Obviously: If S is

a 1CNF Clause Set (i.e., formed

only of unit clauses) we get

MSRTs.os with O(M) unique nodes

which are formed via anyone of

1SAT-GSPRA+ or 1SAT-FGPRA

through instantiation of uniquely

occurring literals one by one (after

converting S to a l.o. 1CNF Clause

Set). Complexity of 1SAT-FGPRA

is O(M3) as searching already

resolved 1CNF Clause Sets

requires: O((unique-nodes)2*M)

operations (c.f. Lemma 11). 1SAT-

FGPRA is in P. CNs do not exist.

Splits don’t exist as well, because

sub-formulas can only appear in one

node.

k=2: (Lemma 10) in this work asserts

that: If S is a 2CNF Clause Set, then even

relaxing the property that Splits

(produced by anyone of 2SAT-GSPRA+

or 2SAT-FGPRA) in size-levels j>1 of a

MSRTs.o cannot exist, shown to be true

in (Lemma 9-c), yields a unique node

count of only O(M6). Recall that this

node count was obtained as follows:

Because rank k=2 CN/MSCNs cannot

split as per (Lemma 9-a) and no N-Splits

can occur as per (Lemma 9-b) as well,

and because CNs/MSCNs at any size-

level j only come from CNs/MSCNs at

the lower size-level j-1 (Lemma 5-b),

only O(M2) rank k=1 CN/MSCNs may

split in the worst case at any one step

forming each O(M) new nodes (the node

count of 1CNF MSRTs.os) at any size-

level j. For all steps this makes them

O(M4) nodes generated via Splits per

size-level. A size-level j<=M

accumulates in the worst case also

whatever may have been generated in the

lower size-level j-1, which is given by

(j-1)*O(M4) making the overall node

count j*O(M4)=O(M5) per size-level.

For all size-levels we get then the O(M6)

bound in (Lemma 10). Putting U1=O(M)

in inequality U2<=U1*O(M5) yields the

same result. For the complexity of

2SAT-FGPRA: O(M13)= O(M)*(M6)2 as

shown in (Lemma 11). 2SAT-FGPRA is

in P.

Abdelwahab, N.

69

69

k=372: In [Abdelwahab 2016-2] it is

shown that:

1- No Splits of CN/MSCN nodes

of rank k=3 can exist (Lemma 9)

2- FGPRA simulates GSPRA+

correctly (both of them conceived for

k=3).

Although it is not explicitly shown

there that N-Splits don’t exist in

MSRTs.os produced by anyone of

FGPRA or GSPRA+, the argument

seen in (Lemma 9-b) in this work

can be extended to demonstrate that

it is indeed the case73. GSPRA+ has

also the feature of reconstructing

sub-trees in case a Clause Set is

found to be not l.o. This is the same

condition which enabled us to

deduce (Lemma 5-b) that:

CNs/MSCNs at any level j can only

come from CNs/MSCNs at the

lower level j-1. Although Lemma

13 in [Abdelwahab 2016-2] shows,

similar to (Lemma 10) in this work,

an upper bound of O(M4) of unique

nodes, because size-j>1 Splits are

not possible, relaxing this condition

enables us to use exactly the same

arguments used for the above k=2

base case. When we do so: Putting

U2=O(M6) in U3<= U2*O(M5),

gives us the unique node count of

O(M11), and a complexity of

O(M23)=O(M)*(M11)2 for FGPRA

which, although larger than the

O(M9) result of [Abdelwahab 2016-

2] is still in P of course.

Induction Hypothesis74: For any kCNF

Clause Set S, k>0, kSAT-GSPRA+ and

kSAT-FGPRA Algorithms satisfying

72 Base cases k=1, k=2 are enough for this

inductive argument and make the results shown

here independent of any investigations given in

[Abdelwahab 2016-2]. It is, nevertheless,

important to show the link to - and thus the

continuity of - ideas presented there as well.

conditions 1, 2 & 3 above:

Uk<=Uk-1*O(M5), where Uk-1 is a

polynomial expression in M, kSAT-

FGPRA is efficient, more particularly its

time complexity is given by:

O(M)*(Uk)2.

Induction Step: Suppose for a

(k+1)CNF formula F that we can show

(k+1)SAT-GSPRA+ has the following

properties:

1- No N-Splits can exist

2- No Splits of CN/MSCN nodes

of rank k+1 can exist

3- (k+1)SAT-FGPRA simulates

(k+1)SAT-GSPRA+ correctly.

We do this, for example, by extending

the arguments used, per induction

hypothesis, to show the same for kSAT-

FGPRA and kSAT-GSPRA+. Then our

argument for k+1 may go as follows:

Because rank k+1 CN/MSCNs cannot

split and no N-Splits can occur as well,

and because CNs/MSCNs at any level j

only come from CNs/MSCNs at the

lower level j-1, only O(M2) rank k

CN/MSCNs may split in the worst case

at any one step forming, per induction

hypothesis, each at most Uk new nodes at

any size-level j. For all steps this makes

Uk*O(M3) nodes generated via Splits per

level. A level j<=M accumulates in the

worst case also whatever may be

generated in the lower level j-1, which is

as already seen above (j-1)*Uk*O(M3)

making the overall count j*Uk*O(M3)=

Uk*O(M4) per level. For all levels we get

then the inequality Uk+1<=Uk*O(M5).

The complexity expression follows, as

73 Recall that this argument only uses the l.o.

condition imposed on all Clause Sets to arrive at

the result (c.f. Lemma 9-b).
74 This induction hypothesis implies P=NP.

Abdelwahab, N.

70

70

seen in all base cases, from the bottle-

neck search condition requiring:

O(M)*(Uk+1)2 operations. Since Uk is,

per induction hypothesis, a polynomial

expression and kSAT, for k>2, an NP-

compete problem, it follows that:

P=NP.

Suppose now that we don’t show for F

that (k+1)SAT-GSPRA+ and (k+1)SAT-

FGPRA Algorithms satisfy conditions

1,2 & 3. Even then, remembering that

kSAT is NP-complete for any k>2: There

is a polynomial time reduction from

(k+1)SAT to kSAT. We could for

example convert F to a kCNF formula F’

via an equisatisfiable transformation and

use kSAT-FGPRA to solve it. The

number of clauses of F’ would be

bounded above by (k+1)*M, M number

of clauses of F, because such

transformations generate always at most

(k+1) clauses for any clause C∈F. As per

induction hypothesis: kSAT-FGPRA’s

time complexity is given by:

O(M)*(Uk)2, where Uk-1 is a polynomial

expression of degree, say, d>0 in M and

Uk<=Uk-1*O(M5). Substituting (k+1)*M

for M in this inequality gives:

Uk<=(k+1)d+1*Uk-1*O(M5) and does not

disturb the polynomial behavior of

kSAT-FGPRA as expected. Since

Uk+1=Uk, this trivially means also that:

Uk+1<=Uk*O(M5) which was to be

shown. F’ can thus be solved by a

polynomial time Algorithm producing a

polynomial number of unique nodes, i.e.,

P=NP.

No surprise since P=NP was already

embedded in the strong induction

hypothesis.

b- The same main result follows also

directly from the following observations:

1- Using 2SAT-FGPRA to

produce a MSRTs.o for Q is, as per

(Lemma 11) in this work, in O(M9) or in

O(M13) if we relax (Lemma 9-c).

2- Counting the exact number of

solutions using Count2SATSolutions is,

for the same reason, also either in O(M9)

or in O(M13) as per (Lemma 14).

3- This means that any Algorithm

solving #2SAT using 2SAT-FGPRA

first to construct the MSRTs.o and then

Count2SATSolutions needs in the worst

case only O(M9) or O(M13) primitive

operations. #2SAT is known to be #P-

complete (c.f. [Valiant 1979]), therefore:

P=NP

(Q.E.D.)

Abdelwahab, N.

71

71

IV DISCUSSION OF RESULTS

This work shows that small FBDDs for

base cases of kSAT: k=1, k=2 are

achievable via SPR-like Algorithms

which neither possess N- nor Big-Splits.

Moreover: The nature of those

Algorithms permits a uniform

expression of result parameters of 2SAT-

GSPRA+/2SAT-FGPRA versions in

terms of 1SAT-GSPRA+/1SAT-FGPRA

versions for both: The upper bound of

the number of unique nodes in generated

FBDDs and the worst case time

complexity. This is sufficient to prove

P=NP in the following two different

ways:

a- FBDDs of polynomial sizes

for arbitrary 2CNF formulas enable the

definition of efficient model counting

solutions resulting in solving #2SAT in a

polynomial number of steps (Theorem 1-

b).

b- Uniformly linking efficient

1SAT- and 2SAT-versions of SPR-

Algorithms, while proving small, upper

bounds on unique node counts, enables

formulating the strongest possible

induction hypothesis, namely: That

kSAT-FGPRA is a polynomial time

Algorithm producing polynomial

number of unique nodes in a FBDD

(which means: P=NP). This in its turn

facilitates using kSAT-FGPRA to solve

(k+1)CNF formulas via equisatisfiable

translations in the induction step,

completing thus a third way of showing

that P=NP in (Theorem1-a)75.

The core work of demonstrating that

FBDDs for a 2CNF formula F can

always be small strongly relates to the

concept of a Split, which expresses the

fact, that some sub-formulas of F may be

repeatedly processed during resolution.

Fatal cases of processing sub-formulas

75 Counting also the solution of 3SAT presented

in [Abdelwahab 2016-2].

of the same difficulty as the original

problem from scratch again and again

(N- and Big-Splits) are shown to be

avoided using imposed l.o. conditions.

The rest of existing rank 1- and/or size 1-

Splits facilitate a uniform formulation of

the relation between k- and (k-1)SAT-

SPR-Algorithms when some lemmas are

relaxed.

Splits are not mere accidents which don’t

have a rational reason. They reflect

consequences of tangible pattern-

properties of variables found in nature

and enforced on Clause Sets to serve, in

addition to usual container-properties, in

the definition of SPR-like procedures.

Finally: Discussing the consequences of

our findings is beyond the scope of this

work.

Abdelwahab, N.

72

72

V REFERENCES

1. [Abdelwahab 2016-1]:

N. Abdelwahab, On the dual Nature

of logical Variables and Clause Sets,

J. Acad. (N.Y.) 2016, Vol. 6, 3:202-

239.

2. [Abdelwahab 2016-2]:

N. Abdelwahab, Constructive

Patterns of Logical Truth, J. Acad.

(N.Y.) 2016, Vol. 6, 2:99.

3. [Gal 1997]: Anna Gal, A simple

function read-once that requires

exponential size branching

programs, Information Processing

Letters 62 (1997), 13-16.

4. [Beame 2013]: Beame, P., Li, J.,

Roy, S. and Suciu, D. 2013. Lower

bounds for exact model counting and

applications in probabilistic

databases. In Proceedings of the

Twenty-Ninth Conference on

Uncertainty in Artificial Intelligence,

UAI 2013, Bellevue, WA, USA,

August 11 - 15 2013.

5. [Bolling 1996]: Bollig, B.; Wegener,

I., Improving the Variable Ordering

of OBDDs is NP-Complete, IEEE

Transactions on Computers, Vol. 45,

1996.

6. [Bryant 1986]: Randal Bryant,

Graph-Based Algorithms for

Boolean Function Manipulation,

IEEE Transactions on Computers, C-

35-8, 677-691, August, 1986

7. [Burch 1991]: Jerry R. Burch, Using

BDDs to verify multipliers, DAC’91

Proceedings of the 28th ACM/IEEE

Design Automation Conference,

408-412.

8. [Darwiche 2002]: Adnan Darwiche,

Pierre Marquis, A knowledge

compilation map, Journal of

Artificial Intelligence Research 17

(2002) 229-264, AI Access

Foundation and Morgan Kaufmann

Publishers.

9. [Dasgupta 2006]: Sanjoy

Dasgupta, Christos H.

Papadimitriou, and Umesh

Vazirani. 2006. Algorithms (1

ed.). McGraw-Hill, Inc., New

York, NY, USA.

10. [DeItaLuna 2012]: De Ita, Guillermo

& Marcial-Romero, J. (2012).

Computing #2SAT and #2UNSAT

by binary patterns. 273-282.

10.1007/978-3-642-31149-9_28.

11. [Fuerer 2007]: Fürer M.,

Kasiviswanathan S.P., Algorithms

for Counting 2-Sat Solutions and

Colorings with Applications. In: Kao

MY., Li XY. (eds.) Algorithmic

Aspects in Information and

Management. AAIM 2007. Lecture

Notes in Computer Science, Vol.

4508. Springer, Berlin, Heidelberg.

12. [Handbook of Satisfiability 2009]:

Armin Biere et al., Handbook of

Satisfiability, Publisher IOS Press,

Nieuwe Hemweg 6B, 1013 BG

Amsterdam Netherlands.

13. [Rudell 1993]: R. Rudell,

Dynamic Variable ordering for

ordered binary decision

diagrams, ICCAD-93. Digest of

Technical Papers., 1993

IEEE/ACM International

Conference on Computer-Aided

Design, 1993.

14. [Sauerhoff 2003]: Sauerhoff and P.

Woelfel, Time-space tradeoff lower

bounds for integer multiplication

and graphs of arithmetic functions.

In Proceedings of the 35th Annual

ACM Symposium on Theory of

Computing (STOC), pp. 186–195.

15. [Sieling 1995]: D. Sieling and I.

Wegener, Graph driven BDDs -

a new data structure for Boolean

functions, Theoretical Computer

Science, 141, 1995,283-310.

http://www.journalacademica.org/?smd_process_download=1&download_id=980
http://www.journalacademica.org/?smd_process_download=1&download_id=980
http://www.journalacademica.org/?smd_process_download=1&download_id=980
http://www.journalacademica.org/?smd_process_download=1&download_id=980
http://www.journalacademica.org/?smd_process_download=1&download_id=954
http://www.journalacademica.org/?smd_process_download=1&download_id=954
http://www.journalacademica.org/?smd_process_download=1&download_id=954
https://www.cs.utexas.edu/users/panni/brpr.ps
https://www.cs.utexas.edu/users/panni/brpr.ps
https://www.cs.utexas.edu/users/panni/brpr.ps
https://www.cs.utexas.edu/users/panni/brpr.ps
https://www.cs.utexas.edu/users/panni/brpr.ps
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://dl.acm.org/citation.cfm?id=3023638&picked=prox
https://ieeexplore.ieee.org/document/537122/
https://ieeexplore.ieee.org/document/537122/
https://ieeexplore.ieee.org/document/537122/
https://ieeexplore.ieee.org/document/537122/
https://ieeexplore.ieee.org/document/537122/
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
https://dl.acm.org/citation.cfm?id=1622817
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31149-9_28
https://link.springer.com/chapter/10.1007/978-3-642-31149-9_28
https://link.springer.com/chapter/10.1007/978-3-642-31149-9_28
https://link.springer.com/chapter/10.1007/978-3-642-31149-9_28
https://link.springer.com/chapter/10.1007/978-3-642-31149-9_28
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://link.springer.com/chapter/10.1007/978-3-540-72870-2_5
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=259802
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://dl.acm.org/citation.cfm?id=780571
https://www.sciencedirect.com/science/article/pii/030439759400078W
https://www.sciencedirect.com/science/article/pii/030439759400078W
https://www.sciencedirect.com/science/article/pii/030439759400078W
https://www.sciencedirect.com/science/article/pii/030439759400078W
https://www.sciencedirect.com/science/article/pii/030439759400078W

Abdelwahab, N.

73

73

16. [Schrijver 2003]: Combinatorial

Optimization: Polyhedra and

Efficiency, Volume 1, Algorithms

and Combinatorics, 24, Springer, p.

114.

17. [Valiant 1979]: Valiant, L. G. The

complexity of enumeration and

reliability problems. SIAM Journal

of Computing 8, 3 (1979), 410–421.

18. [Wegener 1988]: I. Wegener, On the

complexity of branching programs

and decision trees for clique

functions, Journal of the ACM, 35,

1988,461-471.

19. [Wegener 2000]: Ingo Wegener,

Branching Programs and Binary

Decision Diagrams, Theory and

Applications, SIAM 2000.

20. [Zak 1984]: S. Zak, An exponential

lower bound for one-time-only

branching programs, MFCS'84,

LNCS 176, 1984, 562-566.

https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://epubs.siam.org/doi/abs/10.1137/0208032
https://epubs.siam.org/doi/abs/10.1137/0208032
https://epubs.siam.org/doi/abs/10.1137/0208032
https://epubs.siam.org/doi/abs/10.1137/0208032
https://dl.acm.org/citation.cfm?id=46161
https://dl.acm.org/citation.cfm?id=46161
https://dl.acm.org/citation.cfm?id=46161
https://dl.acm.org/citation.cfm?id=46161
https://dl.acm.org/citation.cfm?id=46161
https://epubs.siam.org/doi/book/10.1137/1.9780898719789
https://epubs.siam.org/doi/book/10.1137/1.9780898719789
https://epubs.siam.org/doi/book/10.1137/1.9780898719789
https://epubs.siam.org/doi/book/10.1137/1.9780898719789
https://dl.acm.org/citation.cfm?id=665289
https://dl.acm.org/citation.cfm?id=665289
https://dl.acm.org/citation.cfm?id=665289
https://dl.acm.org/citation.cfm?id=665289

Abdelwahab, N.

74

74

VI APPENDICES

VI-A Formal terms, their definitions and usage

Term/(Acronym,Link) Definition Formally Used in Comment

Variable, Literal, Clause,

2CNF Formula/Clause Set

0.1 Standard Basic ---

Truth Assignment, Partial

Assignment, Restricted

Assignment

0.1 f:Var =>{0,1}. When f is partial it

is called Partial Assignment,

when it is restricted to only one

variable it is called Restricted

Assignment

Basic,

(Lemma 2)

2SAT Decision Problem 0.2 Standard Basic ---

Graphs, Vertices/Nodes,

Edges, adjacent vertex,

Source, Target , reachable,

Child, Parent, Base Node

(BN), Path, Branch,

acyclic, Length of

Path/Branch, Directed

Acyclic Graph (DAG)

0.3 Standard Basic ---

Source Path of node n (SPn) 0.3 SPn:List<Edges> Counting

Models

Used for determining

node levels in the

(Count2SATSolutions)

procedure (Section III-6)

Level of node n (Ln) in a

DAG

0.3 Ln=Max(length(SPn
1)..length(SPn

k))

where any SPn
i is a Source Path of

n.

Counting

Models

Used in the

(Count2SATSolutions)

procedure (Section III-6)

Level of edge e (Le) in a

DAG

0.3 Le=LSR+1, where SR is Source of

e

Counting

Models

Used in the

(Count2SATSolutions)

procedure (Section III-6)

Topological Ordering of a

DAG (TO)

0.3 ∀e:Edge, e=(vi , vj), vi,vjV: i< j Counting

Models

Used in the

(Count2SATSolutions)

procedure (Section III-6)

-Sequential Resolution

DAG (SR-DAG)

- 2CNF Clause Set of a

node (2CNFnode),

- Base Clause Set (BS),

- (TRUE-DAG)

- (FALSE-DAG)

0.3 -SR-DAG: ∀n:Noded:DAG:

∃S, S is 2CNF Clause Set, S is the

Clause Set of n (2CNFn). BS is

2CNFBN.

- TRUE-DAG: SR-DAG with one

node only labeled TRUE.

FALSE-DAG: similar.

Basic ---

-(rankC)

-(rankNode)

-(rank2CNF)

0.3 - rankC: (clause) => N

- rankS=rankNode=

Max(rankC(C1)..rankC(Cm)),

C1-CmS, S is 2CNFNode

Basic - rankC: Number of literals

in clause C

-Size of a node n (Sizen),

-Size of a 2CNF Clause Set

S (SizeS)

0.3 Standard Basic - Sizen: Number of clauses

in the 2CNFn

- SizeS: Number of clauses

in a 2CNF Clause Set S

-(Top-Part) of a SR-DAG 0.3 Topd:SR-DAG={n:Noded | ∃S, S is

2CNFn, SizeS=M or SizeS=M-1,

SizeBNd=M}

Basic ---

Abdelwahab, N.

75

75

-(LeftDAG)

- (RightDAG)

- (SubTree)

0.3 LeftDAG: (n:Node)=>SR-DAG

rightDAG: (n:Node)=>SR-DAG

SubTree: (n:Node)=>SR-DAG

Basic - Functions returning SR-

DAGs of left- and right

Child nodes of a node n

- SubTree: Is a Function

which, given a node n of a

SR-DAG, returns the

portion of the SR-DAG

starting with n.

Literals in a 2CNF Clause

Set S (LIT)

0.4 LIT: (S) => Var

Basic,

(Lemma 1)

(Lemma 2)

Function returning all

literals in S

Left literals of Literal x

(LEFT)

0.4 LEFT:(x:LiteralC,C:ClauseS)

=> Var

Basic - LEFT: Function

returning literals

occurring to the left of a

Literal x in the string

representation of S

(SortOrder) 0.4 SortOrder:(C:ClauseS, S:2CNF

Clause Set)=>int

Basic,

(Lemma 1)

- Function mapping clause

C S and 2CNF Clause

Set S to an integer number

representing the position

of C within S

-Head-Literal, Tail-Literal

(HL,TL)

-Connectivity of a Literal x

in a 2CNF Clause Set S

(Connectx,S)

0.4 HL={L:Literal | C S, S is 2CNF

Clause Set, C={L, t}}

TL={L:Literl | C S, S is 2CNF

Clause Set, C={t, L}}
Connectivity:(x:Literal

S,S)=>int

Basic -First Literal in any clause

is called Head-, last one is

called Tail-Literal

- Connectivity: Is a

Function mapping a

Literal x in a Clause Set S

to the number of clauses

of S in which the Literal x

appears. It is used in CRA

-Permutations of CS, S is

2CNF Clause Set (permC).

-Resolution Complexity

Coefficient (RCC)

- Alignment 2CNF Clause

Set of S (ACS).

0.4, 13 - permC={C S | C={a, b} or

C={b, a} or C={a} or C={b}, a,

b:LiteralC}

-RCCk-SAT=kPk+kPk-1+kPk-2+…kP1

i.e., for 2SAT

RCC2-SAT= 2P2 + 2P1 = 4

- ACS=∪permCiS for all CiS

(Lemma 7)

(Lemma 10)

- permC is the Set of all

clauses which use

permutations of Literals in

C S

- ACS is the Set of all

unique clauses and their

derivations used for the

alignment of all nodes of a

MSRTs.o

-Instantiations of Literals,

- (Derivation) of C S and

S is 2CNF Clause Set,

-(Linear Derivation) of C

S,

-(Empty Derivation) of C

S,

-(Positive Derivation) of

C S,

-(Negative Derivation) of

C S,

-(Every Derivation) of C

S,

-(InstSimple)

- InstSimpleC,

- Satisfiability of S

0.4 -Inst:(A:Assignment,S) => 2CNF

Clause Set

-

InstSimple=Inst(A:RestrictedAss

ignment,S) => 2CNF Clause Set.

-InstSimpleC:

(A:RestrictedAssignment,C:Clau

se) => 2CNF Clause Set

a-

InstSimpleC:(A:Assignment,C:Cl

ause) => Clause

b- Derivation of a clause C

is{C’:Clause | C’ permC}.

c- Linear Derivation of C is

{C’:Clause| C’={a,b} or C’={b} ,

a, b:LiteralC, a<b}

d- Empty Derivation of C is

{C’:Clause| C’={TRUE} or

Basic,

(Lemma 2)

- Instantiations are

functions using Total or

Partial Truth Assignments

to create new Clause Sets.

They substitute literals in

Clause Sets by Boolean

truth values given in the

Assignment.

- The clause resulting

from applying an

instantiation on any C S

is called a derivation of C.

- It is called linear

Derivation if consecutive

instantiations respect the

linear order of literals in

C.

Abdelwahab, N.

76

76

{FALSE} or {TRUE,FALSE} or

{FALSE,TRUE} or

{FALSE,FALSE} or

{TRUE,TRUE}}

e- Positive Derivation of C is

{C’:Clause| TRUE C’}

f-Negative Derivation of C is

{C’:Clause|

C’={FALSE,FALSE} or

C’={FALSE}}

g- Every Derivation of C is

{C’:Clause| C’ permC or C’

Empty Derivation of C}

- If consecutive

instantiations result in a

clause containing only

truth values and no

literals, the derivation is

called: Empty Derivation

- A Derivation containing

one TRUE value is called

Positive Derivation.

- A Derivation containing

only FALSE values is

called Negative

Derivation.

- Derivations can be

directly evaluated to

TRUE or FALSE.

Evaluation is embedded in

the Inst function. If this

evaluation results in the

TRUE, S is said to be

satisfiable by A.

- When Partial

Assignments used by Inst

are related to only one

variable, Inst is called

InstSimple. InstSimple

can be restricted to only

one clause and becomes

InstSimpleC

- S is said to be satisfiable

by A: If Inst(A,S) results

in the overall value TRUE

C.f.: (Lemma 2)

- (Convert) a clause to SR-

DAG,

-(FIRST) occurrence of a

Literal in a 2CNF Clause

Set S,

-(SELECT) a Literal from a

2CNF Clause Set S

0.4 - Convert(C:ClauseS)=>SR-

DAG

- FIRST/FIRSTC(L:Literal,

S)=>int

- SELECT(S)=>int

Basic,

(Lemma 1)

- Convert is a function

mapping a 2CNF Clause

C={a1,b11} to a SR-DAG

by substituting in two

subsequent simple

instantiation steps first a1

with TRUE and FALSE

creating Clause Sets and

placing them in the

respective nodes of the

SR-DAG and then doing

the same for b11 (Figure

2).

- FIRST: is a function

mapping a Literal and a

Clause Set S to the integer

position (starting from the

left) of the Literal in the

string representation of S.

FIRSTC is the version of

this function which

returns the index of the

clause in which L appears

for the first time, c.f.:

(Lemma 1-c)

Abdelwahab, N.

77

77

- SELECT: Is a Function

selecting a Literal from

LIT(S). Although generic,

it is only used in

Algorithms of this work to

select the least Literal

according to LLR

-Linearly Ordered- (l.o.) ,

-Linearly Ordered, but

unsorted (l.o.u.),

-Almost Arbitrary (a.a.)

Clause Sets

1 For a 2CNF formula S, S is called

l.o. if the following Conditions

hold:

a) ∀ai,bij∈ Ci,j: ai<bij

b) ∀i,j,x,y: if i<j then

 L2∈Cj,x >= L1∈Ci,y,

 where L2 is HL of Cj,x

 and L1 HL of Ci,y,

 SortOrder(Cj,x,S)>

 SortOrder(Ci,y,S)

c) ∀xLIT(S),∀Ci,jS:

 if x ∉ LEFT(x,Ci,j) then

 ∀y LEFT(x,Ci,j): x>y

d) S is a Set

If S fulfills Conditions a), c), d),

but not b) it is l.o.u. If S fulfills

Conditions a), d) only it is a.a.

All

Lemmas

a) Literal names/indices

are sorted in

ascending order

within clauses.

b) S is sorted by ai

& bij in

ascending order

taking into

consideration

negation signs.

c) all new

Names/Indices of

literals occurring for

the first time in a

clause C of S are

strictly larger than all

the Literal

Names/Indices

occurring before

them in S

d) Clauses appear only

once in S.

- Blocks (Ba),

- Block-Literal,

- Block-Sequence (Bseq),

- Symmetric Block (SB),

- Dissymmetric Block

(DB),

-(DB Sorting Condition)

1 - Bax={{ax,bx1}{ax,bx2} ..

{ax,bxi,}} is a 2CNF Clause Set.

- ax is Block-Literal

- S={Ba…Bn} is Block-Sequence

- A Block Bx is called SB if ∃A:

Assignment such that:

instSimple(A:{X=TRUE},Bx}=

instSimple(A:{X =FALSE}, Bx}

-It is called DB if ∃A:Assignment

such that:
instSimple(A:{X=TRUE},Bx}=S1,

instSimple(A:{X =FALSE}, Bx}=S2

and either S1 ⊆ S2 or S2⊆ S1.

Basic,

(Lemma 8)

(Lemma 9)

- Blocks are referred to by

the name of the leading

Literal (in this case S is

called ax-Block).

- Clauses having ax as

leading Literal are said to

belong to the ax-Block.

- A Block Bx is called SB

if -ve and/or +ve

instantiations of Block

Literal x result in the same

Clause Set.

- A Block Bx is called DB

if -ve and/or +ve

instantiations of Block

Literal x result in Sets S1,

S2 and one of them is

included in the other.

- DB Sorting Condition: If

a DB Bx is sorted such that

all clauses containing –ve

instances of Literal x are

placed before all those

containing +ve instances

or vice versa
-(2SAT-GSPRA

Procedure),

- (Align Procedure),

2 -2SAT-GSPRA Procedure (c.f.

Section III.1)

(Lemma 5) - A node in a SR-DAG is

symbolized by [x] if the

Abdelwahab, N.

78

78

-Name Literal (NL), -

(Edge Literal)

- (Branch Literal)

- Least Literal Rule of a

2CNF Clause Set S (LLRS),

-Variable Ordering (∏p),

-CanonicalOrdering (∏c
p)

-Align Procedure (c.f. Section

III.1)

- NL=LLRS={i:Literal |∃BS:

2CNF Clause Set, ∃n:NodeSR-

DAGBS, S is 2CNFn,

SELECT(S)=i and ∀xLIT(S):

i<x}

-∏p=<i,j,k,…> where i,j,k,…

integers such that i<j<k<….

lead clause in its Clause

Set is headed by a least-

Literal x. Moreover: x is

called the NL of this

Clause Set/node.

- Edges going out of a SR-

DAG node [x] are marked

with x and represent

instantiations of the NL x

of the Clause Set of that

node (this fact is called

LLR).

-Literals on edges of

branches leading

indirectly to a node n are

called branch-literals of n

while literals on edges

connected directly to n are

called edge-literals of n.

Every edge-Literal is a

branch-Literal, but not

vice versa.

- A variable ordering of a

problem p (∏p) expressed

as a 2CNF Clause Set S

and resolved by any

resolution procedure PR is

a list of integers <i,j,k,…>

representing indices of

Literal/variable names

indicating priorities of

instantiations of

literals/variables of S used

in PR. If ∏p represents the

canonical, truth table

ordering of variables the

following notation is used:

∏c
p.

-(Sequentially ordered SR-

DAG)

- Strongly ordered SR-

DAG (s.o.)

- Loosely ordered SR-DAG

(lo.o.)

3 - Sequentially Ordered SR-

DAG:

∀S, n ∈SR-DAG, S is 2CNFn:

S={Ci,Cj,…CM} for some

i<j<….<M’, M’<=M. M number

of clauses in S, Cx’s are clauses or

derivations of clauses enumerated

from left to right in S

- Strongly Ordered SR-DAG: ∀S,

𝑛 ∈SR-DAG, S is 2CNFn: S is

linearly ordered (l.o.)

- Loosely Ordered SR-DAG: ∀S,

𝑛 ∈SR-DAG, S is 2CNFn: S is

either l.o. or l.o.u.

All

Lemmas

- Strongly ordered Sets are

always linearly ordered,

the inverse is not always

the case, i.e., some l.o.

Sets may have Clause Sets

in their SR-DAGs which

are not l.o.

- If a Set S has a BS which

is l.o. while some other

Clause Sets in its

generated SR-DAG are

l.o.u., then S as well as its

SR-DAG is called loosely

ordered

- Common Node (CN),

- Head-CN (HCN),

- Tail-CN (TCN),

4 -[q]∈SR-DAG is CN if

∃n1,n2 ∈SR-DAG such that: [q]

adjacent to both n1 and n2

(Lemma 8)

(Lemma 9)

A CN [q] is supported in a

step l>k if its Clause Set S

gets clauses appended to

Abdelwahab, N.

79

79

- Trivial-CN (tCN),

- (Supported CN)

- Supporting Parent,

-(Direct Parent),

-(Direct Child),

-Double-Sided CN from

the perspective of x

(DSCNx),

-Single-Sided CN from the

perspective of x (SSCNx),

-(Distinguished Literal),

-(Non-Distinguished

Literal),

-CN-Augmenting Literal

(CNAL)

- A CN [q] ∈SR-DAG is HCN if

its Clause Set has a leading/head

clause C∈S, NL q is HL of C

- A CN [q] ∈SR-DAG is TCN if

its Clause Set has a leading/head

clause C’ which is a derivation of

a clause C∈ S, NL q is TL of C

- [q] ∈SR-DAG is tCN if ∃n ∈
 SR-DAG, S is 2CNFn , S is SB,
Child([q],n)=TRUE

-A CN [q] ∈SR-DAG with

S=2CNF[q], S=Bseq produced in

steps <=k, is said to be supported

in a step l>k if ∃C:Clause, C∈Bx

such that:

S=S ∪ C in step l>k while in steps

<=k: ∃𝑛 ∈SR-DAG,

Parent(n,[q]), S’ is 2CNFn, S’ is

Bseq and Bx ∉ S’

- CN [q] ∈SR-DAGBS is called

DSCNx if ∃n1,n2:Node∈SR-

DAGBS, x,y:Literal, S1 2CNFn1, S2

2CNFn2 such that: LLRS1=x,

LLRS2=y, x=¬y,

Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.

- CN [q] ∈SR-DAGBS is called

SSCNx if ∃n1,n2:Node∈SR-

DAGBS, x,y:Literal, S1 2CNFn1,

S2 2CNFn2 such that:

LLRS1=LLRS2=x,

Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.

 - CNAL={L:Literal∈C:Clause,

[q] is CN∈SR-DAGBS formed in

steps<=k, L is non-distinguished

for [q] | Size[q] is augmented in

steps>k through invocations:

InstSimpleC ({L=TRUE},C) or

InstSimpleC ({L=FALSE},C)}

its head in step l which

don’t belong to any Block

instantiated in steps <=k

by one or more of its

parents. A parent-set of

such a CN is called

supporting.

If a head-clause of a CN is

also a clause of one of the

Clause Sets of its parents,

then this parent is called

direct parent of the CN.

The CN itself is called

direct child of this parent

A CN [q] formed within a

Block Bx through +ve as

well as -ve edge- or

branch-literals x is

DSCNx. Such a x is called

in this case distinguished

Literal for [q].

A CN [q] formed within a

Block Bx through only +ve

or only -ve edge- or

branch-literals x is SSCNx.

x is called in this case non-

distinguished Literal for

[q].

If for a CN [q] there is no

distinguished Literal x

such that the CN is

DSCNx, then [q] is SSCN.

If a non-distinguished

Literal x for a CN [q]

formed in steps <=k is

used to augment the size

of [q] in step l>k, i.e., x is

instantiated in a clause

added to the clauses of [q]

in l, then x is CNAL for

[q].

- Dependency Graph (DG),

- Leaves of Dependency

Graphs,

- Free Binary Decision

Diagram (FBDD)

5 - DG is a DAG <V,E> where V is

the Set of all NLs, E the Set of

ordered pairs <v1,v2> , v1,v2∈ 𝑉

All

Lemmas

- DGs can be deduced

from SR-DAGs in a

canonical way and used as

practical alternatives for

truth tables. They are

equivalent to FBDDs.

- DGs (FBDDs) have the

following properties

a- Each NL can appear

only once in a branch.

b- Branches can have

different Literal/variable

orderings ∏p depending

on the sub-problem p they

belong to c- A leaf of a DG

is a node whose value is

TRUE or FALSE.

Abdelwahab, N.

80

80

- (Splits),

- (N-Splits)

- (CN-Splits)

- (Split Node)

- Big-Splits (BigSps)

6 - Split: A SR-DAG is said to

possess a Split if ∃S’:2CNF

Clause Set such that: For some

n1,n2:Node∈SR-DAGBS, S1 is

2CNFn1, S2 is 2CNFn2, n1≠n2: S’⊆

S1, S’⊆ S2, ∄n:

Child(n,n1)=Child(n,n2)=TRUE

- Splits are called CN-Splits, if, in

addition to the formal condition

above: ∃q:Node, ∃C:Clause: S’ is

2CNF[q] , [q] is CN/MSCN in step

k and C is resolved in steps >k

such that: C1⊆S1, C2⊆S2,

C1,C2∉S’, C1,C2∈Every

Derivation of C, C1≠C2.

- If a Split is not a CN-Split, it is

called a N-Split.

- BigSps: Are Splits of a CN [q]

where rank[q]=rankBN

(Lemma 9) Split: There exists a sub-

Set of clauses common

between two or more

Clause Sets of different

nodes which don’t possess

common sub-trees.

Splits are formed when

either node n containing

Clause Set S constructed

in step k is duplicated one

or more times in steps >k

together with all or parts

of its nodes or sub-trees,

the cause of this

duplication being that S is

resolved with a clause

whose least-Literal was

new in that step and had an

index < all or any indices

of head-literals in S (N-

Split) or a CN [q]

constructed in step k

and/or any of its nodes or

sub-trees are duplicated

with variations one or

more times in steps >k

(CN-Split).

If [q] is a CN of a SR-

DAG which is split in step

k, then the new node

[q]'=[q]+C' formed in k,

because C∈BS is resolved

(C' is a Derivation of C) is

called: Split-Node.

BigSps occur when a CN

is split which has the same

rank as the rank of the

base node. They are

causes of exponential

behavior of 2SAT-

GSPRA.

- Clauses Renaming

Algorithm (CRA),

-(Connection Matrix),

- Renaming Precedence

Condition (RPC)

7 - CRA c.f. Definition 7

(Lemma 1)

(Lemma 3)

(Lemma 6)

(Lemma 8)

Connection Matrix: Rows

are Literal Names/Indices,

Columns are clauses,

Entries are TRUE/FALSE

according to whether the

Literal occurs in the given

clause or not

RPC: Arrange literals in

ascending order within

any Ci ∈ 𝑆 such that

literals which were not

renamed before and

appear more often in other

clauses become HLs

before those which appear

Abdelwahab, N.

81

81

less often or which only

appear in Ci.

- (Mapping),

- (Image),

- Variable Space/Space

(VS),

- 2CNF Clause Set in

space-i (Sspace-i),

- Node in space-i

(Nodespace-i)

8.1 - Mapping: (N) => N

- VS=Mapping*(N)

(Lemma 1)

(Lemma 9)

- Mapping is a bijective

function giving a Literal

Name/Index in a 2CNF

Clause Set S its new

Name/Index after a

renaming operation using

CRA.

- The new Name/Index is

also called: Image of the

Literal. New names of

literals forming single

clauses or Clause Sets are

called Images of clauses

or Clause Sets.

– A VS is a subsequent

application of mappings

starting from the Base

Clause Set of a 2CNF

formula.

- To express that a Clause

Set is formed in a certain

space-i the notation:

S={{..}…{..}}space-i or just

Sspace-i is used.

- To express that a node is

formed in a certain space-

i the notation: Node space-i

is used.

- (Apply)

- (InvApply)

8.2 - Apply: (M:Mapping, S:2CNF

Clause Set) => 2CNF Clause Set

All

Lemmas

- Apply is a function

which replaces

occurrences of literals in a

2CNF Clause Set S with

their Names/Indices given

by the mapping M.

- InvApply is similarly

defined, but applies to S:

M-1 instead of M.

- Equivalence via Mapping

(S1 ⇔M S2),

- (Syntactic Image)

8.3 - S1 ⇔M S2: if ∃M1, M2:Mapping

such that:

Apply(M1,S1)=Apply(M2,S2)=S’.

S’ is called syntactic image of

both S1, S2.

(Lemma 2) - Equivalent via Mapping:

Are 2CNF Clause Sets

which reside in MSCNs,

i.e., CNs which are

formed between different

Variable Spaces

- trivial Mapping

(tMapping),

- (Stable Set of literals),

 - (Stable Clause)

- Stable Clause Set

8.4 - tMapping: ∃M:Mapping, S a

2CNF Clause Set, ∀xLIT(S):

M(x)=x

- Sub is a Stable Set of literals: If

∃M:Mapping produced in step k

such that: ∀xSub, Sub⊆Lit(S):

M(x)=x in any step >k

- Stable Clause: ∀x:LiteralCi,

xSub⊆Lit(S), Sub is a Stable Set

of literals

(Lemma 2)

(Lemma 3)

- tMapping: Each Literal

index is given itself after a

renaming operation using

CRA.

-Stable Set of literals: a

subset of Literal indices is

mapped to itself via CRA

in step k and remains

always mapped to itself

for any step>k,

Abdelwahab, N.

82

82

- Stable Clause Set:

∀CiS:Clause Set, Ci is stable,

then: S is a Stable Clause Set.

- Mixed-Space Node

(MSN),

- Single-Space Nodes

(SSN)

8.5 - MSN: S1, S2 are 2CNF Clause

Sets of nodes n1,n2SR-DAG,

respectively, and S1≠S2, but

n1=n2=n.

(Lemma 9) - MSNs possess two

syntactically non-

equivalent Clause Sets,

because of the application

of CRA+

- SSNs are nodes in which

CRA+ was not applied

- Mixed-Space Tree

(MST),

- Single-Space Tree (SST)

- Literal in space-i

(Lspace-i)

- Literal x proceeds Literal

y in a Clause Set S of space-

i

((x | y)space-i)

- Mapping in space-i

(Mspace-i)

8.6 - (x | y)space-i: If ∃space-i:VS such

that:

Sspace-i is a 2CNF Clause Set

where:

FIRST(x,Sspace-i)<FIRST(y,Sspace-i)

(Lemma 1)

(Lemma 9)

- MST: SR-DAG with

MSN nodes

- SST: SR-DAG with only

SSNs.

– Lspace-i refers to the name

of Literal L given by a

mapping M in space-i.

- x proceeds y in space-i:

Within space-i the first

occurrence of Literal x in a

Clause Set S comes before

the first occurrence of

Literal y. When space-i is

known, its subscript is

omitted. Since S is always

apparent from the context

a reference to it is omitted

as well.

- Mspace-i: Refers to the

mapping created by a

CRA operation within

space-i.

- Monotone Mapping in

space-i (mMspace-i)

8.7 - A mapping is monotone when

∀x,y∈LIT(Sspace-i): if (x | y) space-i

then also Mspace-i (x)<Mspace-i (y)

(Lemma 1)

(Lemma 9)

-This property is intrinsic

in all GSPRA Algorithms

- Clauses Renaming and

Ordering Algorithm

(CRA+),

- (CRA-Form)

- Sequentially-Ordered,

Multi-Space Resolution

Tree/SR-DAG (MSRTs.o.),

- Multiple Space Block

(MSB)

9, 10 - CRA+: Pseudo-Code Definition

9, CRA+(S) is called the CRA-

Form of S.

- MSRTs.o.: Is a SR-DAG such

that:

∀nspace-i:NodeSR-DAG:

(2CNFn)space-i is l.o.

- MSB = {(Bx1)space-i:2CNF Clause

Set |

∃space-j, (Bx2)space-j:2CNF Clause

Set,

M: Mapping, where:

((Bx1)space-i ⇔M (Bx2)space-j) Or

((B’x1)space-i ⇔M (B’x2)space-j)), B’x1,

B’x2 are Derivations of Bx1, Bx2, in

respective Spaces }

(Lemma 2)

(Lemma 3)

(Lemma 8)

(Lemma 9)

(Lemma 10)

 -MSRTs.o is a MST whose

Clause Sets are all l.o.

- MSB: A block Bx whose

Clause Set or derivations

thereof (all or part of

them) belong to more than

one VS (Notation also:

Bx
S1,S2,..,S1,S2,.. Variable

Spaces).

- Similar to Single Space

Blocks: An MSB may be

symmetric or

dissymmetric.

-Multi-spaced Symmetric

Block (MSSB)

10.1 - MSSB = {

(Bx1)space-i:2CNF Clause Set |

∃space-j, (Bx2)space-j:2CNF Clause

Set,

M: Mapping, where

(Lemma 8)

(Lemma 9)

- MSSB is the structure in

which a tMSCN can occur

Abdelwahab, N.

83

83

((Bx1)space-i ⇔M (Bx2)space-j

Or

(B’x1)space-i ⇔M (B’x2)space-j)

B’x1, B’x2 are Derivations of Bx1,

Bx2, in respective Spaces and

∃Aspace-i, Aspace-j: Assignment such

that:
instSimple(Aspace-i:{X1=TRUE},

(Bx1)space-i) ⇔M

instSimple(Aspace-j:{X2=FALSE},

(Bx2)space-j)

}

- Multiple Space Common

Node (MSCN)

- Target Space (TS)

10.2 - MSCN:- if ∃n1,n2 ∈ MSRTs.o not

necessarily of the same space: [q]

adjacent to both n1 and n2

(Lemma 8)

(Lemma 9)

(Lemma 10)

- Target Space: The VS of

a node which is target of

two or more MSNs in a

MSRTs.o.

- Double-Sided MSCN

with respect to Literal z

(DS-MSCNz),
- Single-Sided MSCN with

respect to Literal z (SS-

MSCNz),

- trivial MSCN (tMSCN)

11 - [q]space-i is DS-MSCNz, if

∃n1,n2 ∈ MSRTs.o of 2CNF Clause

Set S, ∃xspace-j , yspace-k:Literal,

∃M1,M2: Mapping, such that:

[q]space-i is adjacent to both n1 and

n2 and

zspace-i =M1(xspace-j), zspace-i

=M2(yspace-k), where yspace-k has the

opposite sign of xspace-j

- [q]space-i is SS-MSCNz, if

∃n1,n2 ∈ MSRTs.o of 2CNF Clause

Set S, ∃xspace-j , yspace-k,

∃M1,M2:Mapping, such that:

[q]space-i is adjacent to both n1 and

n2 and

zspace-i =M1(xspace-j), zspace-i

=M2(yspace-k), where yspace-k has the

same sign as xspace-j,

- [q] is tMSCN, if ∃n ∈ MSRTs.o

whose Clause Set is a MSSB,

Child[q],n)=TRUE

(Lemma 8)

(Lemma 9)

- DS-MSCNz: There exist

at least two edge- or

branch-literals x, y from
Spaces space-j, space-k

respectively and a Literal z

from the target space-i

such that both literals are

translated to z within their

respective spaces and

have opposite signs.

Literals x and y are also

called distinguished (c.f.

Definition 4,

(Distinguished Literal)).

- SS-MSCNz: Similar

definition, but x, y have

same signs

- tMSCN: [q] is formed in

step k and belongs to a

MSSB to which one or

more of its parents

belonged in steps <k

- DS-MSCNz as well as

SS-MSCNz are used to

show that a MSCN cannot

be first augmented to sizes

>1 and then split except in

the trivial case of a

tMSCN (Lemma 9-c)

- tMSCNs are called

trivial, because they can

result in Splits which

happen only inside

symmetric Blocks and

thus can be avoided

altogether when an

appropriate sorting

condition within CRA+ is

Abdelwahab, N.

84

84

chosen (called: DB-

Sorting, (Lemma 8)

(Aligned MSRTs.o,),

(Alignment Clause ,

(Aligned Node)

(Alignment MSRTs.o)

12,13 -Aligned MSRTs.o:- ∃C S, C’

derivation of C such that:∀n

MSRTs.o., S’ is 2CNFn,

∀Cx S’ the following is true:

a-

SortOrder(C’,S’)>SortOrder(Cx,

S’)

b- S’ is l.o.

- A node n of size M is said to be

aligned if:

- For M<=2: n possesses

a Clause Set with an

aligned MSRTs.o

- For M>2:

(iii) All nodes of

sub-trees of size M

are l.o.

(iv) All nodes of

sub-trees of size <M

are aligned

- An MSRTs.o whose nodes are all

aligned is called Alignment

MSRTs.o

(Lemma 6)

(Lemma 7)
(Lemma 10)

- C is called Alignment

Clause

- The fact that a MSRTs.o

produced by 2SAT-

GSPRA+ is always an

Alignment MSRTs.o is

used to show that the

number of new nodes on

size-level 1 in any

inductive step cannot

become more than the

number of elements in

ACS which are linearly

many (Lemma 7)

Resolution procedures:

(2SAT-GSPRA+), (Align)

(LCS)

14 c.f. Section III.1 (Lemma 6)

(Lemma 7)
(Lemma 8)

(Lemma 9)

(Lemma 10)

-Used to study the effect

of resolving one single

clause at a time and count

the number of unique

nodes produced in the

final MSRTs.o

- LCS: List of Tuples:

<Clause Set, Node index>

initially empty used to

store already resolved

Clause Sets and their

generated sub-trees

2SAT Fast Generic Pattern

Resolution Algorithm

(2SAT-FGPRA)

15 c.f. Section III.1 (Lemma 11) -This is the central,

practical Algorithm

proposed in this work (and

a similar one is proposed

in [Abdelwahab 2016-2]

as well). It overcomes the

main drawback of 2SAT-

GSPRA+ of having to re-

construct sub-trees again

and again in case their

respective Clause Sets are

not l.o. Instantiation is

performed always in any

node on the whole

2CNFnode rather than step

wise one clause at a time.

Abdelwahab, N.

85

85

- 2SAT-FGPRA is shown

to correctly simulate

2SAT-GSPRA+ (Lemma

11-a)

Abdelwahab, N.

86

86

VI-B Selected Lemmas and their Dependencies on Formalized Concepts

Lemma 2: For a 2CNF Clause Set S it is true

that:

- S is l.o. iff CRA+(S) reaches a

stable Set equivalent to LIT(S)

- S is satisfiable iff CRA+(S) is

satisfiable

- S is logically equivalent to

CRA+(S)

l.o. Condition

Stable Set

CRA+

Satisfiable

Assignment

LIT

Lemma 3: The complexity of CRA+ is in

O(M2(Log M+N)

l.o. Condition

l.o.u. Condition

CRA+

CRA

RPC

Lemma 4: CRA+ terminates always

converting an arbitrary 2CNF Clause Set to a

stable one

l.o. Condition

l.o.u. Condition

CRA+

CRA

Stable Set

Lemma 1:

- CRA produces monotone

Mappings

- (x | y) iff (x<y)

- (xspace-i | yspace-i) iff (x | y) when

involved Clause Sets are l.o. and

order of clauses and images of

clauses in respective spaces is

preserved

l.o. Condition

monotone Mapping

CRA

VSpace

LIT

(x | y)

FIRSTC

SortOrder

Abdelwahab, N.

87

87

Lemma 5:

a- For all n1,n2 nodes ∈ MSRTs.o: if n1,n2 are not directly connected in

steps <=k then they cannot be directly connected in steps >k, if the sort

order of their Clause Sets is not altered, except in the trivial case when

the new Clause belongs to a block, parents of n1,n2 were instantiating in

steps <=k and n1, n2 become equivalent (tCN, tMSCN).

b- For all M>1: A node [q] of size M is CN/MSCN iff there exist

CN/MSCN [q’] of size M-1 augmented in size by a clause C such that:

[q]=[q’]

c-Let up1,upj be upper bounds of nodes generated during the whole

process of resolution in size-levels 1 and j, respectively, where 1<j<=M.

If Splits are not accounted for in any size-level j, then: upj<=up1

2SAT-GSPRA

LLRBS

CNs/MSCNs

Lemma 9-a: CNs and MSCNs containing clauses belonging to the BS

or their images cannot split.

Proof sketch: in step k: there exists a Clause C1={a, b}∈BS and a

mapping M such that: a’=MST(a), b’=MST(b). In this step also: All

literals of C1 and all their images were new in all branches and spaces

leading to the MSCN [q], i.e., for all i,lspace-i,S: where lspace-i is a branch-

or edge-literal of [q]ST
sp1,sp2,sp3,., S Clause Set of any parent node in space-

i.: (lspace-i | aspace-i) and per Lemma 1-a also: M(lspace-i)<M(aspace-i).

To split [q], in steps>k:: there must exist a Clause C2={x, y}∈BS and a

parent node p of [q] such that: xspace-i = lspace-i for some literal lspace-i in p,

i.e., M(xspace-i)<M(aspace-i). Then: Per l.o. of BS: Either x=a which

means [q] is only augmented in size not split or a<x and thus (a | x) per

Lemma 1-b. BS is then in one of the forms:

1-{..{..,a}..{r, x}..{s, ¬x}…{a, b}…{x,y}…} or

2-{..{a,b}..{x,y},..}. Form 2 leads to (aspace-i | xspace-i), hence: M(aspace-i)

<M(xspace-i). Contradiction. Form 1 causes the MSCN to be augmented

by {x,y}, not split.

(A shorter version of this anchor proof of this work, using the ‘>’

relation, can be found in Footnote 43)

BS, rank, size

CN, MSCN

Mapping , monotone Mapping

Lemma 8: ∀SB, DB, tCN such that SB⊆DB and tCN formed in SB:tCN

can be avoided by appropriately choosing the DB Sorting Condition.

Similarly: tMSCNs can be avoided as well.

Lemma 7: (Alignment MSRTs.o)

2SAT-GSPRA+ produces aligned MSRTs.os and if Splits are not

counted, then during the whole process of resolution:

-The number of newly added size-1-level nodes cannot exceed

RCC2-SAT*M2

- The number of newly added size-j-level nodes, j>1, cannot

exceed RCC2-SAT*M2 as well, for any level j

2SAT-GSPRA+

Lemma 6: (Aligned Base Cases) All size 1,2 nodes of any MSRTs.o of a

2CNF Clause Set S produced by 2SAT-GSPRA+ are aligned.

2SAT-GSPRA+

SB, DB, tMSCN

RPC, Aligned MSRTs.o

ACS

Aligned MSRTs.o

2SAT-GSPRA+

Distinguished-,

non-Distinguished Literal

Lemma 1

Abdelwahab, N.

88

88

CRA-Form

Lemma 10: The total number of unique-nodes produced by 2SAT-

GSPRA+ in the final MSRTs.o, including those generated by Splits, is

bounded above by:

2+ c*RCC2-SAT
2 *M4 + RCC2-SAT *M3, c<=2, i.e., O(M4)

Moreover: This bound remains polynomial, i.e., O(M6), if Splits are

admitted which are not BigSps (i.e., Lemma 9-c relaxed).

Alignment Clause

CN, MSCN

ACS

Lemma 5

Lemma 6

Lemma 9

Lemma 11: The following is true:

a- For any arbitrary 2CNF Clause Set S: ∃MSRTs.o such that:

2SAT-FGPRA(S)=2SAT-GSPRA+(S).

b- For 2SAT-FGPRA to produce the MSRTs.o shown to exist

in point a-: For the main Assistance Operations used by 2SAT-FGPRA

on 2CNF Clause Sets S of size M: The total, worst case number of

Primitive Operations performed by any single one of them during a

run of 2SAT-FGPRA is: O(M9). If Splits are admitted which are not

BigSps, i.e., Lemma 9-c is relaxed, then this bound is O(M13).

Top-parts

l.o. Condition

Lemma 10

2SAT-FGPRA

Lemma 12: 2SAT-GSPRA+ and 2SAT-FGPRA are complete, truth

table equivalent Algorithms, i.e.: Let S be a 2CNF Clause Set, A any

Assignment of truth values of literals in S, then: Applying A on the

MSRTs.o produced by any of the two Algorithms leads to a TRUE leaf

iff A satisfies S.

Assignment

Assignment Satisfies S

	Elnaserledinellah Mahmood Abdelwahab*
	Senior Project Manager, makmad.org e.V., Hanover (Germany)
	Received January 29 2018, Revised May 15, 2018; Accepted June 27 2018
	ABSTRACT
	Keywords: Logic, Duality, Variables, Patterns, Container, kSAT, #2SAT, FBDD, P=NP
	CONTENT
	I INTRODUCTION
	PR:
	Inputs: Arbitrary 2CNF Clause Set S
	How can we explain this?
	2N-i-1(0)2N-i-1(1)
	II USED METHODS
	PR+:
	Inputs: Arbitrary 2CNF Clause Set S
	Output: FBDD
	II-1 Exponential Lower Bounds on FBDD Construction Revisited
	II-2 #2SAT Solution Methodologies
	II-3 Similarities and Differences between previous and current work
	II-4 How to read this paper
	III THEORY
	III-1 Definitions
	HL={L:Literal | C(S,C={L, t}, t:Literal}
	TL={L:Literal | C(S,C={t, L}, t:Literal}
	Connectivity:(x:Literal(S,S)=>int
	2SAT-GSPRA:
	Inputs: Arbitrary 2CNF Clause Set S of size M
	Return FALSE-DAG
	}<bracket-2>
	Figure 4: Common-node generated in <=k.
	Example of a CN-Split:
	CRA:
	Inputs: Arbitrary 2CNF Clause Set S of size M
	CRA+:
	Inputs: An arbitrary 2CNF Clause Set S
	Formally: MSB = {
	M: Mapping, where:
	M: Mapping, where
	Or
	2SAT-GSPRA+:
	Inputs: Arbitrary 2CNF Clause Set S of size M
	Align (SR-DAG, C):
	Return Result
	{<bracket-2>
	Align(LeftDAG(n), leftC)
	Align(RightDAG(n), rightC)
	If (S is not l.o.)
	2SAT-FGPRA:
	Inputs: Arbitrary 2CNF Clause Set S of size M
	III-2 Converting arbitrary 2CNF Sets to l.o.u and l.o. ones
	Proof: (by induction on M)
	Illustration Case: M=2
	Let S={{a,b},{d,e}}={C0,C1}
	Proof: (by induction on M)
	III-3 Way of work of 2SAT-GSPRA+
	Lemma 5 (Expansion of MSRTs.os):
	Proof:
	III-4 CN-Splits in MSRTs.os
	Proof:
	{..{..<Literal i>..} {..no < Literal i >..}
	{..{a, i}..{L,𝑧}…{i, j}…}
	{..{i}..{L,𝑧}…{i, j}…}
	{{s, x}..{a,t}..{x,𝑧}{t,z’}} - subset1
	{{s,x}....{x,𝑧}..{a}{a,t}..{t,z’}}space-j - subset2’
	{..{a,t}..{t,z’}..{x}..{x,𝑧}..}space-l - subset4’
	{{r, a}..{r,x}..{a,t}..{x,𝑧}{t,z’}} - form2’
	{..{a}{a,t}..{t,z’}…{x}{x,𝑧}} space-m - subset6’
	{..{x, 𝑧}..{a,t}…{t,z’}..} - form3
	{ ..{x,𝑧}..{s,a}..{a,t}..{t,z’}} space-n - subset7
	{..{x}{x,𝑧}..{s,a}..{a,t}..{t,z’}} space-o - subset8
	{{r, x}..{r, a}..{a,t}..{x,𝑧}{t,z’}}- form4’
	{..{x, 𝑧}..{a,t}…{t,z’}..}space-p - subset9
	{..{x}{x,𝑧}..{a}{a,t}..{t,z’}}space-q - subset10
	III-5 Complexity of 2SAT-FGPRA
	Proof: (by induction on M)
	Induction Hypothesis (size M):
	Induction Step (size M+1):
	2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G.
	2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.
	Induction Hypothesis:
	2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.
	III-6 Counting Solutions
	Count2SATSolutions:
	DetermineLevels:
	Steps: -
	Dist (u,DAG) =
	If we construct the Truth Table T2
	III-7 Main Result
	Proof:
	IV DISCUSSION OF RESULTS
	V REFERENCES
	VI APPENDICES
	VI-A Formal terms, their definitions and usage
	VI-B Selected Lemmas and their Dependencies on Formalized Concepts

