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Abstract 
The advancements of mobile devices, public networks and the Internet of 
creature huge amounts of complex data, both construct & unstructured are 
being captured in trust to allow organizations to produce better business de-
cisions as data is now pivotal for an organizations success. These enormous 
amounts of data are referred to as Big Data, which enables a competitive ad-
vantage over rivals when processed and analyzed appropriately. However Big 
Data Analytics has a few concerns including Management of Data, Privacy & 
Security, getting optimal path for transport data, and Data Representation. 
However, the structure of network does not completely match transportation 
demand, i.e., there still exist a few bottlenecks in the network. This paper 
presents a new approach to get the optimal path of valuable data movement 
through a given network based on the knapsack problem. This paper will give 
value for each piece of data, it depends on the importance of this data (each 
piece of data defined by two arguments size and value), and the approach 
tries to find the optimal path from source to destination, a mathematical 
models are developed to adjust data flows between their shortest paths based 
on the 0 - 1 knapsack problem. We also take out computational experience 
using the commercial software Gurobi and a greedy algorithm (GA), respec-
tively. The outcome indicates that the suggest models are active and worka-
ble. This paper introduced two different algorithms to study the shortest path 
problems: the first algorithm studies the shortest path problems when sto-
chastic activates and activities does not depend on weights. The second algo-
rithm studies the shortest path problems depends on weights. 
 
Keywords 
0 - 1 Knapsack Problem, Big Data, Big Data Analytics, Big Dao Ta Inconsistencies 

How to cite this paper: Yosef, E., Salama, A. 
and Wahed, M.E. (2018) Big Data Flow Ad-
justment Using Knapsack Problem. Journal of 
Computer and Communications, 6, 30-39. 
https://doi.org/10.4236/jcc.2018.610003  
 
Received: July 3, 2018 
Accepted: October 26, 2018 
Published: October 29, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.610003
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.610003
http://creativecommons.org/licenses/by/4.0/


E. Yosef et al. 
 

 

DOI: 10.4236/jcc.2018.610003 31 Journal of Computer and Communications 
 

1. Introduction 

Big data is a big deal. We read about it and its promises of insight. But we will 
need a network to collect and distribute big data connected to processing loca-
tions. Many big data applications require real-time communications. Plan for 
big data on your network now; don’t wait until issues arrive. Catch-up costs 
money and results in delayed implementations. 

The only sure predictions around big data’s impact are that the network will 
be busier, need more capacity, and probably cost more. How much capacity will 
be needed is only an estimate. It could wind up being far more than estimated if 
the big data applications are very successful. Educated predictions on traffic may 
look good now, but conditions can change and render them inaccurately.  

Real-time processing of big data will require real-time data delivery; data will 
already be old and historical. One of the advantages of big data, especially in re-
gard to the Internet of Things (IoT), is its enabling of a rapid response to 
changing business functions and conditions such as security alerts, building au-
tomation, location tracking, etc. Big data collected quickly fosters just-in-time 
decisions. 

The United Nations Economic Commission for Europe predicts that data 
growth will be 350% higher in 2019 than it is in 2015; Figure 1 shows the ex-
pected growth of size of data in 2019. Such volume of data means a correspond-
ing 350% growth in network traffic, which may be carried over private LANs 
(wired and wireless) and WANs, the Internet, and cellular networks.  

This paper proposes an applicable method to adjust the optimal path for 
moving big data between source and destination depending on the size and im-
potence of this data, let us suppose that we have more data need to distribute 
through given network, according to the importance or value of each data and  

 

 
Figure 1. Expected growth size of data. 
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total capacity of the network the approach selects the suitable amount of impor-
tance data and insure that it is not exceed the total network capacity by using 
knapsack problem. 

2. Related Work 

The proposed method is concerned with specific topics of resource allocation 
that have been studied in related literatures. In1996, Yu Gang [1], studied the 
Max-Min Knapsack (MNK) problem as a NP-hard for an unbounded number of 
scenarios and pseudo polynomial solvable for a bounded number of scenarios. 

The effective of lower and upper bounds were generated by surrogate relaxa-
tion. The ratio of these two bounds is shown to be bounded by a constant for 
situations where the data range is limited to be within a fixed percentage from its 
mean. A branch-and-bound algorithm has been implemented to efficiently solve 
the MNK problem to optimality. In 2009, Campegiani and Presti [2], suggested a 
generalization model of the classical 0/1 Knapsack Problem. They developed a 
heuristic to obtain very near optimum solutions in a timely manner. In 2013, 
Zhang et al. [3], proposed a new bio-inspired model to solve problems. The 
proposed method has three main steps. First, the 0 - 1 knapsack problem is con-
verted into a directed graph by the network converting algorithm. Then, for the 
purpose of using the amoeboid organism model, the longest path problem is 
transformed into the shortest path problem. Finally, the shortest path problem 
can be well handled by the amoeboid organism algorithm. Numerical examples 
are giving to illustrate the efficiency of the proposed mode. In 2015, Rooderkerk 
and Heerde [4], developed a robust approach to optimize retail assortments 
since retailers face the difficult task of designing a portfolio of products that 
balances risk and return. They proposed a novel, efficient and real-time heuristic 
depends on 0 - 1 Knapsack that solves the problem and offers an optimal balance. 
The heuristic constructs an approximation of the risk-return Efficient Frontier 
of assortments. 

3. Knapsack Problem 
3.1. The Unbounded Knapsack Problem 

As a typical non-deterministic polynomial-time hard (NP-hard) problem, the 
unbounded knapsack problem (UKP) is defined as follows: We are given a set of 
n types { }1 2, , , nO o o o=   of items without quantity restriction. Items of the 
same type share a common weight wi and a common value ϕi. The problem is to 
choose a subset of these items aiming to maximize their overall value, while their 
overall weight does not exceed a given capacity c. Without loss of generality, it 
should be assumed that all values and weights are positive, all weights are small-
er than the capacity c, and the overall weight of all items exceeds c. The model of 
UKP problem can be formulated as follows: 

1Maximi e ,z n
i ii xφ

=∑                        (1) 
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1Constra n ,i n
i ii w x c

=
≤∑                      (2) 

,1ix Z i n+∀ ∈ ≤ ≤                        (3) 

where xi represents the number of items of type oi included in the knapsack. 

3.2. Preliminaries 

In this section, the model of 0 - 1 knapsack problem and the amoeboid organism 
are introduced. 

Mathematical model of the amoeboid organism 
From the experiments on the amoeboid organism as described in [5], the me-

chanism of tube formation can be obtained: tubes thicken in a given direction 
when shuttle streaming of the protoplasm persists in that direction for a certain 
time. It implies positive feedback between flux and tube thickness, as the con-
ductance of the sol is greater in a thicker channel. 

According to the mechanism, two rules describing the changes in the tubular 
structure of the amoeboid organism are: first, open-ended tubes, which are not 
connected between the two food sources, are likely to disappear; second, when 
two or more tubes connect the same two food sources, the longer tube is likely to 
disappear [6]. With these two rules, a mathematical model for maze solving 
problems has been constructed. 

The variable ijQ  is used to express the flux through tube ijM  from iN  to 

jN . Assuming the flow along the tube as an approximately poiseuille flow, the 
flux ijQ  can be expressed as [7]: 

( )ij
ij i j

ij

D
Q p p

L
= − ,                       (4) 

where ip  is the pressure at the node iN , ijD  is the conductivity of the edge 

ijM . 
Assume zero capacity at each node; hence by considering the conservation law 

of sol the following equation can be obtained see [2]: 

( )0, 1,2 , 1, ,ijQ j i n= ≠ =∑                    (5) 

For the source node 1N  and the sink node 2N  the following two equations 
hold 

1 0 0,iQ I+ =∑                          (6) 

2 0 0,iQ I+ =∑                          (7) 

where 0I  is the flux flowing from the source node. It can be seen that 0I  is a 
constant value in this model. 

In order to describe such an adaptation of tubular thickness we assume that 
the conductivity ijD  changes over time according to the flux ijQ . The follow-
ing equation for the evolution of ijD  can be used 

( )d
d ij ij ijD f Q rD
t

= −
                     

 (8) 
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where r is a decay rate of the tube. It can be obtained that the equation implies 
that the conductivity ends to vanish if there is no flux along the edge, while it is 
enhanced by the flux. The f is monotonically increasing continuous function 
( )0 0f = . 
Then the network Poisson equation for the pressure can be obtained from the 

Equations (4)-(7) as follows [8]: 

( )
1 for 1,
1 for 2,

0 /

ij
i ji

ij

j
D

p p j
L

O W

− =
− = + =



∑                  (9) 

By setting 2 0p =  as a basic pressure level, all ip  can be determined by 
solving Equation (9) and ijQ  can also be obtained. 

In this paper, it has been obtained that f is monotonically increasing conti-
nuous function satisfying ( )0 0f =  in Equation (8). Therefore, ( )f Q Q=  is 
used in this paper. With the flux calculated, the conductivity can be derived, 
where Equation (10) is used instead of Equation (8), adopting the functional 
form ( )f Q Q= . 

1
1

n n
ij ij n

ij

D D
Q D

tδ

+
+−

= −                      (10) 

3.3. Problem Description 

Given an acyclic undirected network G(N,A), consisting of a set of nodes 
{ }1,2, ,N n=   and m undirected arcs A N N∈ × . Each arc is denoted by or-

dered pair (i, j), where ,i j N∈ . The weight of arc ( ),i jt v v=  is denoted by a 
interval data ,i i iw t t t− + = =   . Given two nodes iv  and tv , assume P is one 
path from node iv  to node tv  in the network G. The weight of path P is the 
sum of the arcs’ weight in the path and it is stated as w(p). As a result, the short-
est path problem can be formulated as follows [9]: 

( ) ( )0 min pw p w p= ∑                     (11) 

The following equation is defined to convert α  interval data into a crisp 
number [10]. 

{ } ( )1 , 0 1i i iw t t tα α α− += = ∗ + − ∗ ≤ ≤               (12) 

4. A Single-Processor Machine for the 0 - 1 Knapsack 
Problem in Dynamic Programming Method [11] 

Dynamic Programming (DP) solves the problem by producing “ 1 2, , , nf f f ” 
sequentially. As mentioned in the previous section, ( )if x  is a monotone no 
lessening basic step work. “ ( )if x ” may be exemplified as the set iSP  from 
claiming rows from the coordination of that phase focuses of “ ( )if x “. 

The size of the set iS , (i.e. iSP ), is not greater than “C + 1” and rows should 
be planned in growing arrangement x while ( )if x . The series of sets, 
“ 10 , , , nSP SP SP ” is a history of the DP and that should be backtracked through 
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“Algorithm 1” to get the solution vector x see [12].  
 

4.1 Algorithm 1- traditional 0-1 Knapsack Algorithm 

Input Witem : Weight of each item ,Pitem: Profit of each item, C : Capacity 

Output SP : array of subproblem to find an optimal solution, X : 0 or 1 select item or not 

Step 1 SPij ← {0, 0}          // item : number of item , TN :total number of item 

Step 2 for item = 1 to TN do      // Capcount: : Capacity count 
For Capcount ← 0 to C do 
If Witem ≤ C then       // SP : subproblem 
If  Pitem + SPD[item -1, Capcount - Witem] > SP [item-1, Capcount] then 
SPD[item -1, Capcount]  ← Pitem + SP[i - 1, j - Witem]  
Else 
SP [item , Capcount]  ← SP [item -1, Capcount]     // Witem > C 
Endif 
End for   //  Capcount 
End for   //  item 

Step 3 item← TN, Capcount ← C 

Step 4 while item and Capcount > 0 
If SP [item - 1 , Capcount]  ≠ SP [item , Capcount] then 
item ← item-1, Capcount ← Capcount- Witem 
Xtem = 1 
else 
item ← item-1 
Xtem = 0 
end if 
Endwhile 

5. Numerical Example 1 

In this section, a numerical example is used to show the efficiency of the pro-
posed method. 

As can be seen in Figure 2, an example of shortest path problem with interval 
arcs is shown. The shortest path from node 1 to node 12 is needed to be found,  

 

 
Figure 2. An example of undirected graph with 12 nodes. 
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and 0 1α≤ ≤ , but assume that α is set 0.5, Figure 3 can be obtained. The matrix 
corresponding to the converted graph can be obtained as follows. 

From Figure 2 we can obtain this Table 1. 
From Equation (12) assume all the items’ values in the initial conductivity 

matrix are set α = 0.5, the shortest path from node 1 to node 12 can be found 
using the amoeboid organism algorithm and the result in Table 2 obtained from 
the matlab code program applied on the and Figure 3. It can be obtained that 
the shortest path is (1) → (2) → (6) → (8) → (10) → (12). If α is set 1, the shortest 
path in the network is (1) → (2) → (6) → (10) → (12). If α is set 0, the shortest path 
in the network is 1) → (2) → (6) → (8) → (10) → (12). 

It can be seen that different shortest paths are obtained when α has different 
values. 

6. Numerical Example 2 

Consider the problem (X) with the following given data in Table 1, where n is 
number of items (n = 4) and C is the total capacity (C = 5). Each item (i) has a 
knapsack weight (Wi), and a knapsack profit (Pi) obtained by allocating required 
resource to the specified item i. All Pis and Wi’s are positive integer numbers.  

 
Table 1. The expected value to activates. 

0 5 6.5 7.5 0 0 0 0 0 0 0 0
5 0 5 0 7 4.5 0 9 0 0 0 0

6.5 5 0 3 0 10.5 0 0 0 0 0 0
7.5 0 3 0 0 6.5 8.5 0 0 0 0 0
0 7 0 0 0 6 0 7.5 0 6 0 8
0 4.5 10.5 6.5 6 0 5 3 4 8 0 0
0 0 0 8.5 0 5 0 0 5.5 0 0 0
0 9 0 0 7.5 3 0 0 9.5 3.5 0 0
0 0 0 0 0 4 5.5 9.5 0 6 5 0
0 0 0 0 6 8 0 3.5 6 0 0 4.5
0 0 0 0 0 0 0 0 0 5 0 7.5
0 0 0 0 8 0 0 0 0 4.5 7.5 0

L





=







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 3. The converted undirected graph with 12 nodes. 
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Table 2. The shortest path to network in Figure 3 (1) → (2) → (5) → (12). 

0 1.9929 0.0012 0 0 1.9929 0 0 0 0 0 

0.001 0 0.001 0 1.9839 0 0 0.0011 0 0 0 

0.001 0.001 0 0.001 0 0.0012 0 0 0 0 0 

0.001 0 0.001 0 0 0.0011 0.0011 0 0 0 2.0141 

0 0.001 0 0 0 0.001 0 0.001 0.001 0 0 

0 0.001 0.001 0.001 0.001 0 0.001 0.0014 0.001 0 0 

0 0 0 0.001 0 0.0012 0 0 0 0 0 

0 0.001 0 0 0.001 0.001 0 0 0.0027 0 0 

0 0 0 0 0 0.001 0.001 0.001 0.001 0.0012 0 

0 0 0 0 0.001 0.001 0 0.001 0 0 0.0106 

0 0 0 0 0 0 0 0 0.001 0 0.0011 

0 0 0 0 0.001 0 0 0 0.001 0.001 0 

 
Then, the subproblem SP[TN, Capcount] in algorithm 4 will be computed to 
find optimal solution for the list (SP) of the n items. 

The network in the formulation has several layers of nodes: It has one layer 
corresponding to each item and one layer corresponding to a source node s and 
another corresponding to a sink node t. The layer corresponding to an item i has 
W + 1 nodes, 0 1, , , wi i i . Node. 

The knapsack problem assuming that the knapsack has a capacity of W = 6, vj 
is the value of item j, wj is the weight of item j. Figure 4 can be obtained. The 
path in this graph corresponds the feasible solution of the knapsack problem. 
Node S means the start node, node E means the end node. The 1st number in the 
residual circles means the item’s category, the 2nd number in these residual cir-
cles states the capability of the knapsack that the solution has consumed. The 
number along the arc funds the value of the consistent item. For example the 
circle with rate (1, 4) in the first layer means that the item has used 4 units of the 
knapsack’s capacity. At the similar time, each path from node S to node E ex-
plains a possible answer to the problem. For example, the path S − (1, 4) − (2, 6) 
− (3, 6) − (4, 6) − EE means that item 1 and item 2 are involved in the knapsack, 
item 3 and item 4 are omitted. It also shows that the response to the knapsack 
problem match the longest track in the network. 

7. Conclusion 

The shortest path problem shows a substantial role in many usages. In this pa-
per, based on an amoeboid creature algorithm, a new procedure is proposed to 
resolve the shortest path problems with interval bracket. A numeral example is 
explained to show the qualification of the proposed method. The 0 - 1 knapsack 
problem plays a substantial role in real-life applications. In this paper, based on 
amoeboid creature algorithm and classic 0 - 1 Knapsack Algorithm, a new me-
thod is suggested to solve classical 0 - 1 knapsack problems. We have used the  
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Figure 4. The longest path formulation of the knapsack problem with 4 items. 

 
benchmark problems to exam the amoeboid creature algorithm. The computa-
tional outcomes explain the efficiency of the presented approach. One of our 
outstanding studies is to solve other 0 - 1 knapsack problems under additional 
complex situations, such as the multi-objective shortest path problem and the 
knapsack problem with more criteria. 
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