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Abstract: In this paper, we describe the solution approaches based on Ho-
motopy Analysis Method for the follwing Nonlinear Mixed Volterra-Fredholm
integro-differential equation of fractional order

Cpou(t) = t+>\// (z,5)F (u(s))dzds, (1)
u(O)—c u(( =0,i=1,....,n—1,

where t € Q@ = [0;T], k: QxQ — R, ¢ : & — R, are known functions,
F : C(Q,R) — R is nonlinear function, ¢ and \ are constants, “D® is the
Caputo derivative of order a with n — 1 < a < n. In addition some examples
are used to illustrate the accuracy and validity of this approach.
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1 Introduction

To be completed.
The reader is advised to read the references [1-8].

2 Preliminaries

Definition 1 Let a € RY and f € L'{a,b]. The Riemann-Liouville fractional
integral of ordre a for a function f is defined as

(17 f) (t) = ﬁ / (t— )" f (r) dr, (2)



with T' is Gamma FEuler function defined as

+o00
INa) = / t* e tdt
0

where t € [a, b]

Definition 2 Let f € L'[a,b] and a € RT wheren—1 < a < n, The Riemann-
Liouwville fractional derivative of ordre «.for a function f is defined as

FEDRf(t) = DT f (), 3)
with D" = 4=

Definition 3 The Caputo fractional derivative of ordre o € R .for a function
f is defined as

°D37 (0 =1 (4 ©). (@

where € L[a,b],n — 1 < a <n, n € N*.

Remark 4 Let a > 0 and B > 0, for all f € L'[a,b], we have the follewing
properties:

T (E) = I3 (8 = 1 (1) )
DS L F (0] = S0 )

n—1 (k) a _a k
I (002 0] = 1) - 3 T ™

Jﬁtuz F(u+1) tBtu

CETES N )

3 Basic idea of Homotopy Analysis Method
Now we construct the zero-order deformation equation

(1 - Q) £[9(t: @) — uo ()] = GhH (N6 (5 0)], (9)
subject to the following initial conditions

ug(t) = ¢(t;0), (10)

where £ is the linear operator, ¢ € [0, 1] is the embedding parameter, i # 0 is
an auxiliary parameter, uo(t) is an initial guess of the solution w(t) and ¢(¢; q)
is an unknown function on the dependent variables ¢ and q.

Zeroth-order deformation equation

When the parameter ¢ increases from 0 to 1, then the homotopy solution ¢(¢; q)



varies from ug(t) to solution w(t) of the original equation (1). Using the para-
meter g, ¢(t; q) can be expanded in Taylor series as follows:

—+oo
Bt q) = uo(t) + Y um(t)g™, (11)
m=1
where 1 omé(ta)
_ 1 0™9(tq
U (t) = o 7E)q’” q:o. (12)

Assuming that the auxiliary parameter £ is properly selected so that the above
series is convergent when ¢ = 1, then the solution u(t) can be given by

+oo
u(t) = uo(t) + 3 i (2). (13)

m=1

Hight-order deformation equation
Define the vectore:

Wy = {ug(t), ur (t), us(t), ..., un (t)} . (14)

Differentiating the zero-order deformation eauqtion (9) m times with respective
to ¢ and then dividing by m! and finally setting ¢ = 0, we have the socalled
mth-order deformation equation:

£[Um(t) - Xmum—l(t)] = hH(t)éRm(Um—l(t))’ (15)
where 1 Im I N[p(t; q)]
_ B m—1 1 q
%m(umfl(t)) = (m* 1)' aqm—l q:O’ (16)
and <
Xm{ (1) ﬁ;i .

4 Main results

We Consider the Nonlinear Mixed Volterra-Fredholm integro-differential equa-
tion of fractional order.

t T
CDou(t) = ot) + A / / k(2. 5)F (u(s))ds | da,
o \Jo (18)
uD0)=¢, i=0,1,..,n—1,
where © D is the Caputo derivative of order a,with n —1 < o < n, Q = [0;77],

T>0,k:0%xQ—R, p:Q— R, are known functions, F : C (Q,R) — R
is nonlinear function, ¢, A is constants.



Note that the high-order deformation Eq.(9) is governing by the linear op-
erator £ and the term R,,(W ,,_1(t)), can be expressed simply by (15) for any
nonlinear operator N. We are now ready to construct a series solution corre-
sponding to the integro-differential equation (18). For this purpose, let:

N(g(t;q)) = “D*¢(t:q) —A A k (z,5)F(¢(s; q))dwds. (19)

The corresponding m'™-order deformation Eq. (15) reads:

Ll (t) = X um—1(t)] = RH ()R (W -1 (2))- (20)
One has:
m—1
Ros(Tnca(0) = = (1= x) o0+ oty | aaq “potta)
A om 1
= [qu 1/ / k(zx,s) q))dxds] q=0(21)

It is worth to present a simple iteratlve scheme for w,,(t). To this end, the linear
operator £ is chosen to be £ = dtn, as an initial guess ug(t) is taken, a nonzero
auxiliary function H(¢) = 1 are taken. This is substituted into (13) to give the
recurrence relation:

Unn (£) = X Um—1(t) = BT "R (W -1 (1)), (22)

where o <1 < n, and

uD(0)=0, i=0,..,n—1.
By Eq. (21) and Eq.(22) we obtain

AR
(m—1)!

Xjn/otMTk( 887:11 <Zum ) L:odm (23)

5 Applications

U (t) = Xmum—l(t) + R U1 () — (1 — Xm) hJo(t) —

We consider the follwing problem

CDu(t) = 2t + )\/t (/Ol(s — ) [(u(s))2 - u(s)] ds> dr, n—1<a<n

) 0
u(0)=0, i=0,1,....,n — 1.
(24)



Choose £ = ¢ D", we obtain
CDn [um(t) - Xmum—l(t)] = hH(tﬁRm(Wm—l(t)),
and

Rin(Win-1(t) = D1 (t) = (1= xp) (20)

m—1

—Akz_o/ot (/01(8 - x)uk(s)um—l—k(s)ds) do

+)\/Ot (/01(8 - x)um_l(s)ds> dz,

subject to the initial conditions

uD(0)=0, i=0,1,...,.n—1.

m

5.1 Convergence theorem

+oo

(25)

Theorem 5 Let the serie Zum(t) is converge where u,, € C(Q,R) is pro-

m=0
+oo

duced by high-order deformation (25) and the serie ZDaum(t) also converge.

m=0

“+oo
Then Zum(t) is the exact solution of the problem (24)

m=0

“+oo
Proof. We have Zum(t) converge, then liI}rl U (t) = 0. And
m=0

Z [Um () = X um—1(t)] = un(t),

m=1
thus .
i 3 fun) = X1 (0] = i un(t) =0 (29)
we obtain
+o0 too
DY fum(t) = Xpptm—1(B)] = D D" [um(t) = Xy um-1 (1)) (30)
m=1 m=1

+oo
= RH®)Y Ro(Trr (1)) = 0.
m=1



By i # 0 and H(t) # 0, we get

Z?R ’LLm 1 =0.

m=1

Using (26), we have

400 +o0 +oo
Z%m(?m—l(t)) = ZDaum—l(t) - Z (1 - Xm) (Qt)
m=1 m=1

+oom—1 .t

= Z/ (/ s — z)ug(s )um—l—k(s)ds> dx

m=1k=0

+A§/Ot (/01(8 - x)uml(s)ds> do

t +oom—1
Y (/ s—zx ZZuk ) Um—1—k )ds)dx

m=1k=0

+>\/0t (/1(5 - :v)mzzluml(s)ds> dx
— ZDaum — 2t
+oo +oo
—)\/ (/ s —) Zum(s)Zuk(s)dS> dx
+A/O (/ s—x Zum ds> da

oo
= ID*Y um(t) -2t
m=0
_)\/Ot (/Ol(s —x) <;2x;um(s)> ds) dx
—|—)\/Ot (/01(8 - x);zoooum(s)ds> dx



“+o0
where S(t) = Zum(t) By Eq. (34) we have
m=0

DSty — 2t — )\/Ot </01(S —2) [$%(s) - S(s)] ds> dz = 0.

Using Eq. (26), the inicial condition

+oo
S(0) = up(0) =0.
m=0

+o0

Therefore Zum(t) is the exact solution of the Eq. (24).

m=0
The proof is complete.

a) If choose to the initial condition

U()(t) = 0,
then we have on
t) = ———t""}
B TR L
wt) = + 2AK2 2 2\H2 2h
[T (n+3)) n+3)[C(m+2) Th+
_ 2h’2 2n—a—+1
2n—a+2) ’

we obtain
u(t) =~ uo(t) +ui(t) +uat)
2MR? 2 2AR? n 4h
T (n+3))° (n+3)[C(n+2)]° Th+2
,L 2n—a+1
T(27—a+2)

) ) t7]+1

2)) o

(35)

(36)

(37)



FIG 1: A=1, a = 0.5 black FIG 2: A=1, 7= a = 0.5 black
line:h = —0.4, n = 0.5, red line:h = —0.7, line:i = 1, red line:i = —0.7, blue
n = 0.75, blue line:h = —1,7n = 0.1. line:h = —1.
FIG 3: A =3, n=a=15 black FIG 4: A =3, a = 1.5 black
line:h = —0.5, red line: h = —0.7, blue line:h = —0.5, n = 1.5, red line:h = —0.7,
line:ih = —1. n = 1.75, blue line:h = —1,n = 2.
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