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Abstract: In this paper, we describe the solution approaches based on Ho-
motopy Analysis Method for the follwing Nonlinear Mixed Volterra-Fredholm
integro-di¤erential equation of fractional order

CD�u(t) = '(t) + �

Z t

0

Z T

0

k(x; s)F (u(s))dxds;

u(0) = c; u(i)(0) = 0; i = 1; :::; n� 1;
(1)

where t 2 
 = [0;T ] ; k : 
 � 
 �! R; ' : 
 �! R; are known functions,
F : C (
;R) �! R is nonlinear function, c and � are constants, CD� is the
Caputo derivative of order � with n � 1 < � 6 n: In addition some examples
are used to illustrate the accuracy and validity of this approach.
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1 Introduction

To be completed.
The reader is advised to read the references [1-8].

2 Preliminaries
De�nition 1 Let � 2 R+ and f 2 L1[a; b]:The Riemann-Liouville fractional
integral of ordre � for a function f is de�ned as

(J�f) (t) =
1

� (�)

Z t

a

(t� �)��1 f (�) d�; (2)

1



with � is Gamma Euler function de�ned as

�(�) =

Z +1

0

t��1e�tdt

where t 2 [a; b]

De�nition 2 Let f 2 L1[a; b] and � 2 R+ where n�1 < � < n, The Riemann-
Liouville fractional derivative of ordre �.for a function f is de�ned as

RLD�
t f(t) = D

nJn��a f(t); (3)

with Dn = dn

dtn .

De�nition 3 The Caputo fractional derivative of ordre � 2 R+.for a function
f is de�ned as

CD�
a f (t) = J

n��
�
dn

dtn
f (t)

�
; (4)

where 2 L1[a; b]; n� 1 < � < n; n 2 N�:

Remark 4 Let � > 0 and � > 0, for all f 2 L1[a; b]; we have the follewing
properties:

J�J�f(t) = J�J�f(t) = J�+�f(t) (5)
CD�

a [J
�
a f (t)] = f(t) (6)

J�a
�
CD�

a f (t)
�
= f (t)�

n�1X
k=0

f (k) (a) (t� a)k

k!
(7)

J�t� =
� (�+ 1)

� (� + �+ 1)
t�+�; � > �1 (8)

3 Basic idea of Homotopy Analysis Method

Now we construct the zero-order deformation equation

(1� q)$[�(t; q)� u0(t)] = q~H(t)N [�(t; q)]; (9)

subject to the following initial conditions

u0(t) = �(t; 0); (10)

where $ is the linear operator, q 2 [0; 1] is the embedding parameter, ~ 6= 0 is
an auxiliary parameter, u0(t) is an initial guess of the solution u(t) and �(t; q)
is an unknown function on the dependent variables t and q.
Zeroth-order deformation equation
When the parameter q increases from 0 to 1, then the homotopy solution �(t; q)
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varies from u0(t) to solution u(t) of the original equation (1). Using the para-
meter q; �(t; q) can be expanded in Taylor series as follows:

�(t; q) = u0(t) +
+1X
m=1

um(t)q
m; (11)

where

um(t) =
1

m!

@m�(t; q)

@qm

����
q=0

: (12)

Assuming that the auxiliary parameter ~ is properly selected so that the above
series is convergent when q = 1, then the solution u(t) can be given by

u(t) = u0(t) +
+1X
m=1

um(t): (13)

Hight-order deformation equation
De�ne the vectore:

�!u n = fu0(t); u1(t); u2(t); :::; un(t)g : (14)

Di¤erentiating the zero-order deformation eauqtion (9) m times with respective
to q and then dividing by m! and �nally setting q = 0; we have the socalled
mth-order deformation equation:

$[um(t)� �mum�1(t)] = ~H(t)<m(�!u m�1(t)); (15)

where

<m(�!u m�1(t)) =
1

(m� 1)!
@m�1N [�(t; q)]

@qm�1

����
q=0

; (16)

and

�m =

�
0; m 6 1;
1; m > 1:

(17)

4 Main results

We Consider the Nonlinear Mixed Volterra-Fredholm integro-di¤erential equa-
tion of fractional order.8><>:

CD�u(t) = '(t) + �

Z t

0

 Z T

0

k(x; s)F (u(s))ds

!
dx;

u(i)(0) = c; i = 0; 1; :::; n� 1;
(18)

where CD� is the Caputo derivative of order �;with n� 1 < � 6 n; 
 = [0;T ] ;
T > 0; k : 
� 
 �! R; ' : 
 �! R; are known functions, F : C (
;R) �! R
is nonlinear function, c; � is constants.
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Note that the high-order deformation Eq.(9) is governing by the linear op-
erator $ and the term <m(�!u m�1(t)); can be expressed simply by (15) for any
nonlinear operator N . We are now ready to construct a series solution corre-
sponding to the integro-di¤erential equation (18). For this purpose, let:

N [�(t; q)] = CD��(t; q)� '(t)� �
Z t

0

Z T

0

k(x; s)F (�(s; q))dxds: (19)

The corresponding mth -order deformation Eq. (15) reads:

$[um(t)� �mum�1(t)] = ~H(t)<m(�!u m�1(t)): (20)

One has:

<m(�!u m�1(t)) = � (1� �m)'(t) +
1

(m� 1)!

�
@m�1

@qm�1
CD��(t; q)

�
q=0

� �

(m� 1)!

"
@m�1

@qm�1

Z t

0

Z T

0

k(x; s)F (�(s; q))dxds

#
q=0

:(21)

It is worth to present a simple iterative scheme for um(t). To this end, the linear
operator $ is chosen to be $ = d�

dt� , as an initial guess u0(t) is taken, a nonzero
auxiliary function H(t) = 1 are taken. This is substituted into (13) to give the
recurrence relation:

um(t)� �mum�1(t) = ~J�<m(�!u m�1(t)); (22)

where � 6 � 6 n; and

u(i)m (0) = 0; i = 0; :::; n� 1:
By Eq. (21) and Eq.(22) we obtain

um(t) = �mum�1(t) + ~J���um�1(t)� (1� �m) ~J�'(t)�
�~

(m� 1)!

�J�
Z t

0

"Z T

0

k(x; s)
@m�1

@qm�1
F

 
+1X
m=0

um(s)q
m

!
ds

#
q=0

dx (23)

5 Applications

We consider the follwing problem8<: CD�u(t) = 2t+ �

Z t

0

�Z 1

0

(s� x)
h
(u(s))

2 � u(s)
i
ds

�
dx; n� 1 < � 6 n;

u(i)(0) = 0; i = 0; 1; :::; n� 1:
(24)
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Choose $ = CD�, we obtain

CD� [um(t)� �mum�1(t)] = ~H(t)<m(�!u m�1(t)); (25)

and

<m(�!u m�1(t)) = CD�um�1(t)� (1� �m) (2t)

��
m�1X
k=0

Z t

0

�Z 1

0

(s� x)uk(s)um�1�k(s)ds
�
dx

+�

Z t

0

�Z 1

0

(s� x)um�1(s)ds
�
dx; (26)

subject to the initial conditions

u(i)m (0) = 0; i = 0; 1; :::; n� 1: (27)

5.1 Convergence theorem

Theorem 5 Let the serie
+1X
m=0

um(t) is converge where um 2 C (
;R) is pro-

duced by high-order deformation (25) and the serie
+1X
m=0

D�um(t) also converge.

Then
+1X
m=0

um(t) is the exact solution of the problem (24)

Proof. We have
+1X
m=0

um(t) converge, then lim
m!+1

um(t) = 0: And

nX
m=1

[um(t)� �mum�1(t)] = un(t);

thus

lim
n!+1

nX
m=1

[um(t)� �mum�1(t)] = lim
n!+1

un(t) = 0; (29)

we obtain

CD�
+1X
m=1

[um(t)� �mum�1(t)] =
+1X
m=1

CD� [um(t)� �mum�1(t)] (30)

= ~H(t)
+1X
m=1

<m(�!u m�1(t)) = 0:
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By ~ 6= 0 and H(t) 6= 0; we get

+1X
m=1

<m(�!u m�1(t)) = 0: (34)

Using (26), we have

+1X
m=1

<m(�!u m�1(t)) =
+1X
m=1

D�um�1(t)�
+1X
m=1

(1� �m) (2t)

��
+1X
m=1

m�1X
k=0

Z t

0

�Z 1

0

(s� x)uk(s)um�1�k(s)ds
�
dx

+�

+1X
m=1

Z t

0

�Z 1

0

(s� x)um�1(s)ds
�
dx

=
+1X
m=1

D�um�1(t)� 2t

��
Z t

0

 Z 1

0

(s� x)
+1X
m=1

m�1X
k=0

uk(s)um�1�k(s)ds

!
dx

+�

Z t

0

 Z 1

0

(s� x)
+1X
m=1

um�1(s)ds

!
dx

=

+1X
m=0

D�um(t)� 2t

��
Z t

0

 Z 1

0

(s� x)
+1X
m=0

um(s)

+1X
k=0

uk(s)ds

!
dx

+�

Z t

0

 Z 1

0

(s� x)
+1X
m=0

um(s)ds

!
dx

= CD�
+1X
m=0

um(t)� 2t

��
Z t

0

0@Z 1

0

(s� x)
 
+1X
m=0

um(s)

!2
ds

1A dx
+�

Z t

0

 Z 1

0

(s� x)
+1X
m=0

um(s)ds

!
dx

= CD�S(t)� 2t� �
Z t

0

�Z 1

0

(s� x)
�
S2(s)� S(s)

�
ds

�
dx;
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where S(t) =
+1X
m=0

um(t). By Eq. (34) we have

CD�S(t)� 2t� �
Z t

0

�Z 1

0

(s� x)
�
S2(s)� S(s)

�
ds

�
dx = 0: (35)

Using Eq. (26), the inicial condition

S(0) =
+1X
m=0

um(0) = 0: (35)

Therefore
+1X
m=0

um(t) is the exact solution of the Eq. (24).

The proof is complete.
a) If choose to the initial condition

u0(t) = 0; (36)

then we have

u1(t) = �
2~

� (� + 2)
t�+1; (37)

u2(t) = +
2�~2

[� (� + 3)]
2 t
�+2 �

 
2�~2

(� + 3) [� (� + 2)]
2 +

2~
� (� + 2)

!
t�+1

� 2~2

� (2� � �+ 2) t
2���+1; (38)

...

we obtain

u(t) ' u0(t) + u1(t) + u2(t)

' 2�~2

[� (� + 3)]
2 t
�+2 �

 
2�~2

(� + 3) [� (� + 2)]
2 +

4~
� (� + 2)

!
t�+1

� 2~2

� (2� � �+ 2) t
2���+1 (39)
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FIG 1: � = 1; � = 0:5 black
line:~ = �0:4; � = 0:5; red line:~ = �0:7;
� = 0:75; blue line:~ = �1; � = 0:1:
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FIG 2: � = 1; � = � = 0:5 black
line:~ = 1; red line:~ = �0:7; blue

line:~ = �1:
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FIG 3: � = 3; � = � = 1:5 black
line:~ = �0:5; red line: ~ = �0:7; blue

line:~ = �1:
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FIG 4: � = 3; � = 1:5 black
line:~ = �0:5; � = 1:5; red line:~ = �0:7;

� = 1:75; blue line:~ = �1; � = 2:
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