Solution of a nonlinear mixed Volterra-Fredholm integro-differential equations of fractional order by homotopy analysis method

Zaid Laadjal
Departement of Mathematics and Computer Sciences, University of Khenchela, (40000), Algeria
E-mail: zaid.laadjal@yahoo.com

May, 2018

Abstract

In this paper, we describe the solution approaches based on Homotopy Analysis Method for the follwing Nonlinear Mixed Volterra-Fredholm integro-differential equation of fractional order $$
\begin{align*} & { }^{C} D^{\alpha} u(t)=\varphi(t)+\lambda \int_{0}^{t} \int_{0}^{T} k(x, s) F(u(s)) d x d s \tag{1}\\ & u(0)=c, u^{(i)}(0)=0, i=1, \ldots, n-1 \end{align*}
$$ where $t \in \Omega=[0 ; T], k: \Omega \times \Omega \longrightarrow \mathbb{R}, \varphi: \Omega \longrightarrow \mathbb{R}$, are known functions, $F: C(\Omega, \mathbb{R}) \longrightarrow \mathbb{R}$ is nonlinear function, c and λ are constants, ${ }^{C} D^{\alpha}$ is the Caputo derivative of order α with $n-1<\alpha \leqslant n$. In addition some examples are used to illustrate the accuracy and validity of this approach.

Keywords: Homotopy Analysis Method; Caputo fractional derivative; VolterraFredholm integro-differential equation.

AMS 2010 Mathematics Subject Classifcation: 34A08, 26A33.

1 Introduction

To be completed.
The reader is advised to read the references [1-8].

2 Preliminaries

Definition 1 Let $\alpha \in \mathbb{R}^{+}$and $f \in L^{1}[a, b]$. The Riemann-Liouville fractional integral of ordre α for a function f is defined as

$$
\begin{equation*}
\left(J^{\alpha} f\right)(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau \tag{2}
\end{equation*}
$$

with Γ is Gamma Euler function defined as

$$
\Gamma(\alpha)=\int_{0}^{+\infty} t^{\alpha-1} e^{-t} d t
$$

where $t \in[a, b]$
Definition 2 Let $f \in L^{1}[a, b]$ and $\alpha \in \mathbb{R}^{+}$where $n-1<\alpha<n$, The RiemannLiouville fractional derivative of ordre α.for a function f is defined as

$$
\begin{equation*}
{ }^{R L} D_{t}^{\alpha} f(t)=D^{n} J_{a}^{n-\alpha} f(t) \tag{3}
\end{equation*}
$$

with $D^{n}=\frac{d^{n}}{d t^{n}}$.
Definition 3 The Caputo fractional derivative of ordre $\alpha \in \mathbb{R}^{+}$.for a function f is defined as

$$
\begin{equation*}
{ }^{C} D_{a}^{\alpha} f(t)=J^{n-\alpha}\left(\frac{d^{n}}{d t^{n}} f(t)\right) \tag{4}
\end{equation*}
$$

where $\in L^{1}[a, b], n-1<\alpha<n, n \in \mathbb{N}^{*}$.
Remark 4 Let $\alpha>0$ and $\beta>0$, for all $f \in L^{1}[a, b]$, we have the follewing properties:

$$
\begin{gather*}
J^{\alpha} J^{\beta} f(t)=J^{\beta} J^{\alpha} f(t)=J^{\alpha+\beta} f(t) \tag{5}\\
{ }^{C} D_{a}^{\alpha}\left[J_{a}^{\alpha} f(t)\right]=f(t) \tag{6}\\
J_{a}^{\alpha}\left[{ }^{C} D_{a}^{\alpha} f(t)\right]=f(t)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)(t-a)^{k}}{k!} \tag{7}\\
J^{\beta} t^{\mu}=\frac{\Gamma(\mu+1)}{\Gamma(\beta+\mu+1)} t^{\beta+\mu}, \quad \mu>-1 \tag{8}
\end{gather*}
$$

3 Basic idea of Homotopy Analysis Method

Now we construct the zero-order deformation equation

$$
\begin{equation*}
(1-q) £\left[\phi(t ; q)-u_{0}(t)\right]=q \hbar H(t) N[\phi(t ; q)] \tag{9}
\end{equation*}
$$

subject to the following initial conditions

$$
\begin{equation*}
u_{0}(t)=\phi(t ; 0) \tag{10}
\end{equation*}
$$

where $£$ is the linear operator, $q \in[0,1]$ is the embedding parameter, $\hbar \neq 0$ is an auxiliary parameter, $u_{0}(t)$ is an initial guess of the solution $u(t)$ and $\phi(t ; q)$ is an unknown function on the dependent variables t and q.
Zeroth-order deformation equation
When the parameter q increases from 0 to 1 , then the homotopy solution $\phi(t ; q)$
varies from $u_{0}(t)$ to solution $u(t)$ of the original equation (1). Using the parameter $q, \phi(t ; q)$ can be expanded in Taylor series as follows:

$$
\begin{equation*}
\phi(t ; q)=u_{0}(t)+\sum_{m=1}^{+\infty} u_{m}(t) q^{m} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{m}(t)=\left.\frac{1}{m!} \frac{\partial^{m} \phi(t ; q)}{\partial q^{m}}\right|_{q=0} \tag{12}
\end{equation*}
$$

Assuming that the auxiliary parameter \hbar is properly selected so that the above series is convergent when $q=1$, then the solution $u(t)$ can be given by

$$
\begin{equation*}
u(t)=u_{0}(t)+\sum_{m=1}^{+\infty} u_{m}(t) \tag{13}
\end{equation*}
$$

Hight-order deformation equation

Define the vectore:

$$
\begin{equation*}
\vec{u}_{n}=\left\{u_{0}(t), u_{1}(t), u_{2}(t), \ldots, u_{n}(t)\right\} \tag{14}
\end{equation*}
$$

Differentiating the zero-order deformation eauqtion (9) m times with respective to q and then dividing by m ! and finally setting $q=0$, we have the socalled mth-order deformation equation:

$$
\begin{equation*}
£\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right]=\hbar H(t) \Re_{m}\left(\vec{u}_{m-1}(t)\right), \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\Re_{m}\left(\vec{u}_{m-1}(t)\right)=\left.\frac{1}{(m-1)!} \frac{\partial^{m-1} N[\phi(t ; q)]}{\partial q^{m-1}}\right|_{q=0} \tag{16}
\end{equation*}
$$

and

$$
\chi_{m}= \begin{cases}0, & m \leqslant 1 \tag{17}\\ 1, & m>1\end{cases}
$$

4 Main results

We Consider the Nonlinear Mixed Volterra-Fredholm integro-differential equation of fractional order.

$$
\left\{\begin{array}{l}
{ }^{C} D^{\alpha} u(t)=\varphi(t)+\lambda \int_{0}^{t}\left(\int_{0}^{T} k(x, s) F(u(s)) d s\right) d x \tag{18}\\
u^{(i)}(0)=c, i=0,1, \ldots, n-1
\end{array}\right.
$$

where ${ }^{C} D^{\alpha}$ is the Caputo derivative of order α, with $n-1<\alpha \leqslant n, \Omega=[0 ; T]$, $T>0, k: \Omega \times \Omega \longrightarrow \mathbb{R}, \varphi: \Omega \longrightarrow \mathbb{R}$, are known functions, $F: C(\Omega, \mathbb{R}) \longrightarrow \mathbb{R}$ is nonlinear function, c, λ is constants.

Note that the high-order deformation Eq.(9) is governing by the linear operator $£$ and the term $\Re_{m}\left(\vec{u}_{m-1}(t)\right)$, can be expressed simply by (15) for any nonlinear operator N. We are now ready to construct a series solution corresponding to the integro-differential equation (18). For this purpose, let:

$$
\begin{equation*}
N[\phi(t ; q)]={ }^{C} D^{\alpha} \phi(t ; q)-\varphi(t)-\lambda \int_{0}^{t} \int_{0}^{T} k(x, s) F(\phi(s ; q)) d x d s \tag{19}
\end{equation*}
$$

The corresponding $m^{\text {th }}$-order deformation Eq. (15) reads:

$$
\begin{equation*}
£\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right]=\hbar H(t) \Re_{m}\left(\vec{u}_{m-1}(t)\right) . \tag{20}
\end{equation*}
$$

One has:

$$
\begin{align*}
\Re_{m}\left(\vec{u}_{m-1}(t)\right)= & -\left(1-\chi_{m}\right) \varphi(t)+\frac{1}{(m-1)!}\left[\frac{\partial^{m-1}}{\partial q^{m-1}}{ }^{C} D^{\alpha} \phi(t, q)\right]_{q=0} \\
& -\frac{\lambda}{(m-1)!}\left[\frac{\partial^{m-1}}{\partial q^{m-1}} \int_{0}^{t} \int_{0}^{T} k(x, s) F(\phi(s, q)) d x d s\right]_{q=0} \tag{21}
\end{align*}
$$

It is worth to present a simple iterative scheme for $u_{m}(t)$. To this end, the linear operator $£$ is chosen to be $£=\frac{d^{\eta}}{d t^{\eta}}$, as an initial guess $u_{0}(t)$ is taken, a nonzero auxiliary function $H(t)=1$ are taken. This is substituted into (13) to give the recurrence relation:

$$
\begin{equation*}
u_{m}(t)-\chi_{m} u_{m-1}(t)=\hbar J^{\eta} \Re_{m}\left(\vec{u}_{m-1}(t)\right), \tag{22}
\end{equation*}
$$

where $\alpha \leqslant \eta \leqslant n$, and

$$
u_{m}^{(i)}(0)=0, \quad i=0, \ldots, n-1
$$

By Eq. (21) and Eq.(22) we obtain

$$
\begin{align*}
u_{m}(t)= & \chi_{m} u_{m-1}(t)+\hbar J^{\eta-\alpha} u_{m-1}(t)-\left(1-\chi_{m}\right) \hbar J^{\eta} \varphi(t)-\frac{\lambda \hbar}{(m-1)!} \\
& \times J^{\eta} \int_{0}^{t}\left[\int_{0}^{T} k(x, s) \frac{\partial^{m-1}}{\partial q^{m-1}} F\left(\sum_{m=0}^{+\infty} u_{m}(s) q^{m}\right) d s\right]_{q=0} d x \tag{23}
\end{align*}
$$

5 Applications

We consider the follwing problem

$$
\left\{\begin{array}{l}
{ }^{C} D^{\alpha} u(t)=2 t+\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x)\left[(u(s))^{2}-u(s)\right] d s\right) d x, \quad n-1<\alpha \leqslant n \tag{24}\\
u^{(i)}(0)=0, \quad i=0,1, \ldots, n-1
\end{array}\right.
$$

Choose $£={ }^{C} D^{\eta}$, we obtain

$$
\begin{equation*}
{ }^{C} D^{\eta}\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right]=\hbar H(t) \Re_{m}\left(\vec{u}_{m-1}(t)\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
\Re_{m}\left(\vec{u}_{m-1}(t)\right)= & { }^{C} D^{\alpha} u_{m-1}(t)-\left(1-\chi_{m}\right)(2 t) \\
& -\lambda \sum_{k=0}^{m-1} \int_{0}^{t}\left(\int_{0}^{1}(s-x) u_{k}(s) u_{m-1-k}(s) d s\right) d x \\
& +\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) u_{m-1}(s) d s\right) d x \tag{26}
\end{align*}
$$

subject to the initial conditions

$$
\begin{equation*}
u_{m}^{(i)}(0)=0, i=0,1, \ldots, n-1 \tag{27}
\end{equation*}
$$

5.1 Convergence theorem

Theorem 5 Let the serie $\sum_{m=0}^{+\infty} u_{m}(t)$ is converge where $u_{m} \in C(\Omega, \mathbb{R})$ is produced by high-order deformation (25) and the serie $\sum_{m=0}^{+\infty} D^{\alpha} u_{m}(t)$ also converge. Then $\sum_{m=0}^{+\infty} u_{m}(t)$ is the exact solution of the problem (24)

Proof. We have $\sum_{m=0}^{+\infty} u_{m}(t)$ converge, then $\lim _{m \rightarrow+\infty} u_{m}(t)=0$. And

$$
\sum_{m=1}^{n}\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right]=u_{n}(t)
$$

thus

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sum_{m=1}^{n}\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right]=\lim _{n \rightarrow+\infty} u_{n}(t)=0 \tag{29}
\end{equation*}
$$

we obtain

$$
\begin{align*}
{ }^{C} D^{\eta} \sum_{m=1}^{+\infty}\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right] & =\sum_{m=1}^{+\infty}{ }^{C} D^{\eta}\left[u_{m}(t)-\chi_{m} u_{m-1}(t)\right] \tag{30}\\
& =\hbar H(t) \sum_{m=1}^{+\infty} \Re_{m}\left(\vec{u}_{m-1}(t)\right)=0
\end{align*}
$$

By $\hbar \neq 0$ and $H(t) \neq 0$, we get

$$
\begin{equation*}
\sum_{m=1}^{+\infty} \Re_{m}\left(\vec{u}_{m-1}(t)\right)=0 \tag{34}
\end{equation*}
$$

Using (26), we have

$$
\begin{aligned}
& \sum_{m=1}^{+\infty} \Re_{m}\left(\vec{u}_{m-1}(t)\right)=\sum_{m=1}^{+\infty} D^{\alpha} u_{m-1}(t)-\sum_{m=1}^{+\infty}\left(1-\chi_{m}\right)(2 t) \\
& -\lambda \sum_{m=1}^{+\infty} \sum_{k=0}^{m-1} \int_{0}^{t}\left(\int_{0}^{1}(s-x) u_{k}(s) u_{m-1-k}(s) d s\right) d x \\
& +\lambda \sum_{m=1}^{+\infty} \int_{0}^{t}\left(\int_{0}^{1}(s-x) u_{m-1}(s) d s\right) d x \\
& =\sum_{m=1}^{+\infty} D^{\alpha} u_{m-1}(t)-2 t \\
& -\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) \sum_{m=1}^{+\infty} \sum_{k=0}^{m-1} u_{k}(s) u_{m-1-k}(s) d s\right) d x \\
& +\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) \sum_{m=1}^{+\infty} u_{m-1}(s) d s\right) d x \\
& =\sum_{m=0}^{+\infty} D^{\alpha} u_{m}(t)-2 t \\
& -\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) \sum_{m=0}^{+\infty} u_{m}(s) \sum_{k=0}^{+\infty} u_{k}(s) d s\right) d x \\
& +\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) \sum_{m=0}^{+\infty} u_{m}(s) d s\right) d x \\
& ={ }^{C} D^{\alpha} \sum_{m=0}^{+\infty} u_{m}(t)-2 t \\
& -\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x)\left(\sum_{m=0}^{+\infty} u_{m}(s)\right)^{2} d s\right) d x \\
& +\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x) \sum_{m=0}^{+\infty} u_{m}(s) d s\right) d x \\
& ={ }^{C} D^{\alpha} S(t)-2 t-\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x)\left[S^{2}(s)-S(s)\right] d s\right) d x,
\end{aligned}
$$

where $S(t)=\sum_{m=0}^{+\infty} u_{m}(t)$. By Eq. (34) we have

$$
\begin{equation*}
{ }^{C} D^{\alpha} S(t)-2 t-\lambda \int_{0}^{t}\left(\int_{0}^{1}(s-x)\left[S^{2}(s)-S(s)\right] d s\right) d x=0 . \tag{35}
\end{equation*}
$$

Using Eq. (26), the inicial condition

$$
\begin{equation*}
S(0)=\sum_{m=0}^{+\infty} u_{m}(0)=0 . \tag{35}
\end{equation*}
$$

Therefore $\sum_{m=0}^{+\infty} u_{m}(t)$ is the exact solution of the Eq. (24).
The proof is complete.
a) If choose to the initial condition

$$
\begin{equation*}
u_{0}(t)=0, \tag{36}
\end{equation*}
$$

then we have

$$
\begin{align*}
u_{1}(t)= & -\frac{2 \hbar}{\Gamma(\eta+2)} t^{\eta+1} \tag{37}\\
u_{2}(t)= & +\frac{2 \lambda \hbar^{2}}{[\Gamma(\eta+3)]^{2}} t^{\eta+2}-\left(\frac{2 \lambda \hbar^{2}}{(\eta+3)[\Gamma(\eta+2)]^{2}}+\frac{2 \hbar}{\Gamma(\eta+2)}\right) t^{\eta+1} \\
& -\frac{2 \hbar^{2}}{\Gamma(2 \eta-\alpha+2)} t^{2 \eta-\alpha+1}, \tag{38}
\end{align*}
$$

we obtain

$$
\begin{align*}
u(t) \simeq & u_{0}(t)+u_{1}(t)+u_{2}(t) \\
\simeq & \frac{2 \lambda \hbar^{2}}{[\Gamma(\eta+3)]^{2}} t^{\eta+2}-\left(\frac{2 \lambda \hbar^{2}}{(\eta+3)[\Gamma(\eta+2)]^{2}}+\frac{4 \hbar}{\Gamma(\eta+2)}\right) t^{\eta+1} \\
& -\frac{2 \hbar^{2}}{\Gamma(2 \eta-\alpha+2)} t^{2 \eta-\alpha+1} \tag{39}
\end{align*}
$$

FIG 1: $\lambda=1, \alpha=0.5$ black
line: $\hbar=-0.4, \eta=0.5$, red line: $\hbar=-0.7$, $\eta=0.75$, blue line: $\hbar=-1, \eta=0.1$.

FIG $3: \lambda=3, \eta=\alpha=1.5$ black line: $\hbar=-0.5$, red line: $\hbar=-0.7$, blue line: $\hbar=-1$.

FIG 2: $\lambda=1, \eta=\alpha=0.5$ black line: $\hbar=1$, red line: $\hbar=-0.7$, blue line: $\hbar=-1$.

FIG 4: $\lambda=3, \alpha=1.5$ black
line: $\hbar=-0.5, \eta=1.5$, red line: $\hbar=-0.7$, $\eta=1.75$, blue line: $\hbar=-1, \eta=2$.

References

[1] Liao, S.J., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University. (1992)
[2] Liao, S.J., An explicit, totally analytic approximation of Blasius' viscous flow problems, International Journal of Non-Linear Mechanics, 34 (4): 759778. (1999)
[3] Liao, S.J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Boca Raton: Chapman Hall/CRC Press. (2003)
[4] Liao, S.J., Homotopy analysis method in nonlinear differential equations, Higher education press. book, Springer. (2011)
[5] Hilton, P.J., An Introduction to Homotopy Theory. Cambridge Tracts in Mathematics and Mathematical Physics, no. 43. Cambridge, at the University Press. (1953)
[6] Hilton, P., Homotopy Theory and Duality. Gordon and Breach Science, New York. (1965) .
[7] Hilton, P.J, Stammbach, U., A Course in Homological Algebra, Graduate Texts in Mathematics, vol. 4, second edn. Springer-Verlag, New York. (1997)
[8] Hilton, P.J, Wylie, S., Homology Theory: An Introduction to Algebraic Topology. Cambridge University Press, New York. (1960)

