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Abstract

We look at some of the details of Cantor’s Diagonal Method and
argue that the swap function given does not have to exclude 9 and 0,

base 10. We next review general properties of decimals and prove the
existence of an irrational number with a modified version of Cantor’s

diagonal method. Finally, we show, with yet another modification of
the argument, that ζ(2) is irrational.

Introduction

Cantor’s diagonal method is typically used to show the real numbers

are uncountable [1, 2]. Here is the reasoning.
If the reals are countable they can be listed. In particular the

decimal, base 10 versions of the real numbers in the open interval
(0, 1) can be listed. List these numbers. Then starting with the upper
left hand corner digit, construct, going down the upper left to lower

right diagonal, a decimal not in the list. Use the following guide: if
the decimal is 7 make your decimal 5 and if it is anything other than

7 make it 5. The number you construct is not in the list. This follows
as the number constructed, per the construction, differs from every

number in the list at least at one decimal place. The only exception
to the uniqueness of these decimal representations occurs with rational

numbers: .20 = .19, but because our swap function doesn’t generate
any 0s or 9s in the constructed number we are assured our constructed

number is not in the list. Therefore the real numbers in (0, 1) are
uncountable and a fortiori R is uncountable.

1



Could use 0 and 9

It is not difficult to see why even with a swap function involving 0 and

9, the construction still works. One must contrive a list of real numbers
in (0, 1) in a particularly pernicious order. Every nth position after a

point must be not 9 in order to build a string of all 9’s. If this could
be true of a list, a number like .000009 could be the one constructed.

If we observe .00001 in the list we have not constructed a number
not it the list. But for any nth position there must be an infinite

number with all possible digits, {0, 1, . . . , 9}, at that position. Hence,
after working down the list, to say the mth number, there is a number

further down that will block, in effect, any construction from being
repeated. Every list will have a repetition of all combinations after
any finite number in the list.

By making the swap with numbers like 5 and 4 or 3 and 7 or any
two that are not 9 and 0, we don’t have to reason this out.

What about convergence?

Cantor’s diagonal method does not address the convergence of the
decimal representation of a real number constructed. Could it be all

5’s (.5) and hence converging to a rational number – a number in the
list. A combination of 4’s and 5’s that represent a infinitely repeating
decimal? These observations are of no concern because the argument

is that the number’s representation is not in the list. Statements
beyond this seem irrelevant.

Of course if we suppose that ambiguity of representation is not
allowed: only finite decimal representations are given of numbers like

.5 and .49, then the infinite decimal we construct might be an excluded
infinite decimal version of a number included in the list. This is when

the use of not 9 and not 0 fix the situation fast. One could do a
reductio ad absurdum argument. Suppose the constructed number

converges to a number in the list, but the number in the list differs by
at least one decimal point. So how close can .5554445454 . . . get to say
.555444454 . . . – they differ at the 7th place. The numbers must differ

by at least .0000001. Another argument: decimal representations are
unique, excluding representations like .59 = .6, but such a situation is

impossible when neither 9 nor 0 are used in the swap function – there
are no 0s or 9s in the constructed number.

But, all of these convulsive reasonings are superfluous: we can have
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redundancy in the representation of the numbers. Both .50 and .49
can be included in the list: in fact, the list is succinctly and efficient

given by all combinations of .x1x2 . . . with xk ∈ {0, 1, . . . , 9}.

Constructing an irrational number

Curiously, Cantor is most famous for his diagonal method and his

construction of a transcendental number. The two are connected.
He proved that all algebraic numbers are countable. If one lists all

algebraic numbers then uses Cantor’s diagonal method (henceforth
CDM) shows there exists numbers that are not algebraic (not in the
list): the number is a transcendental numbers [3]. It is rather curious

that one is at once constructing a transcendental number, but ending
up with just a number only in theory. You can’t list all algebraic

numbers. This is to be contrasted with Liouville’s for real construction
of a transcendental number years after Cantor’s original proof that

they must exist [3], in spirit, so to speak.
It is also curious that no one, apparently till now has thought

to use CDM to prove the existence of an irrational number. This is
most likely because irrational numbers are a type of algebraic number

and proofs that specific numbers like
√

2 are irrational are relatively
easy. There would seem to be little point in proving the existence of
irrational numbers using CDM or any other means. All of this said,

here’s the idea.
List all the rational numbers in (0, 1) using base 10, or any other

decimal base. Hardy gives a nice treatment of decimal bases in his
Chapter 9 [3]. The list will include pure repeating decimals, finite

decimals, and mixed decimals. In base 10, 1/3, 1/4, and 1/6 are
examples of each respectively. Use the swap function that swaps or

writes 4 if the number encountered using CDM is not 4 and 5 if the
number encountered is 4. The number constructed is not in the list;

it differs by at least one decimal point from all numbers listed. As all
the numbers are all the rationals and the number generated is in (0, 1)
it must be irrational. The number will be a non-repeating infinite

decimal, an irrational.
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Proving ζ(2) is irrational

In Table 1 is a modified Cantor’s Diagonal Table. The symbols Dn2

give single decimal points in base n2. So, for example D4 = {.1, .2, .3}
in base 4. How to read the table: All previous columns (left to right)

pertain to the new, right most partial. For example 1/4 + 1/9 + 1/16
is not in D4, D9, or D16. So, like Cantor’s diagonal method as applied

to a list of base ten decimals, we build, not with a swap function, but
with an addition, a number not in any decimal base given by a single

decimal base n2.

+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 modified to exclude
them all via partial sums of ζ(2) − 1.

If this is true, can we conclude that z2 = ζ(2)−1 must be irrational?

Note: for any rational 0 < p/q < 1, (pq)/q2 ∈ Dq2. Thus all partials
with a last term of 1/q2 can’t be given with any single decimal base m2

with m < q. Are we building a infinite series, like the infinite decimal
of Cantor’s original argument, that must be excluded from the list of

all rationals (here-to-for all reals) and thus be irrational? Does the
elimination element of Cantor’s Diagonal Method force an irrational
sum? Like CDM (in its original use) can we ignore the convergence

point of the built infinite series?
Well, to play it safe, can we prove the convergence point is not in

our list? Consider the following use of the triangle inequality: let Cx
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be a single decimal rational in some Dm2, the best, meaning closest
to z2 in Dm2 , then for all n (and m !!!) large enough,

0 ≤
∣

∣

∣

∣

∣

Cx −
n

∑

k=2

1

k2

∣

∣

∣

∣

∣

< ε/2. (1)

and

0 <

∣

∣

∣

∣

∣

n
∑

k=2

1

k2
− z2

∣

∣

∣

∣

∣

< ε/2.

So, in all cases,

0 < |Cx − z2| < ε.

But this says z2 is not rational. Note: any given rational number is

repeated infinitely many times in Dkn . For example, all rationals with
denominators less than n are contained in D(n!)2. The best approxi-

mation of z2 in any Dm2 is never exact and later higher powers of m2

are better.
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The geometric series

In Table 2, the same technique as given for z2 is used to show 1 base

4 is not a finite decimal base 4. We know this, apart from Table 2,
because the geometric series associated with this infinite, repeating

decimal is
∞
∑

k=1

1

4k
=

1

3
.

+1/4 +1/4 +1/4 +1/4 +1/4 . . . +1/4
+1/42 +1/42 +1/42 +1/42 +1/42 . . . +1/42

/∈ D4 +1/43 +1/43 +1/43 +1/43 . . . +1/43

/∈ D42 +1/44 +1/44 +1/44 ...

/∈ D43 +1/45 +1/45 ...

/∈ D44 +1/46 ...
/∈ D45

+1/4(k−1)2

+1/4k2

/∈ D4(k−1)2

. . .

Table 2: A list of all finite decimals base 4. The decimal number .1, base 4
is generated by the sums.

Looking again at Table 1, one can see why the technique shows
that z2 is irrational. In order for the partials to be converging to

a rational, for every ε, there would have to be a rational that all
partials with a given upper limit greater than n gets close to. But

the partials always exceed, with their denominator, all {2, 4, . . . , n2}
denominators. There are denominators further out from any given,

fixed denominator that get consistently closer to such partials. Limits
are unique, so the limit point can’t be both approaching a previous
finite decimal excluded earlier and some other later decimal.

Another way to consider the situation is to note that approxima-
tions to limit points can never be limit points themselves. Finite dec-

imals base 4 are all approximations to 1/3, some better, some worse,
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none equal. In the case of ζ(2) − 1 all rationals are approximations,
some better, some worse, none perfect – that is equal to ζ(2)−1. This

means that ζ(2) is irrational.
Yet from another perspective, each increase in the power of n2,

from n2 to n4 to n6, in Dn2k yields a better approximation that super-
sedes the previous power. That is you really need to use the refinement

of the ruler’s tick marks to get a better approximation than the previ-
ous power of n yielded. This means that an infinite decimal is needed

in all bases, all n2s, but, as the prime divisor of n and n2 are the same,
this implies that an infinite decimal is needed for z2 in all bases. This

is only possible if z2 is irrational.
Attempting the reasoning used in (1), we have 1/3 ∈ D3 and it

is fixed, unlike ζ(2) that requires differing Cx rationals. For sufficient

n, 1/3 will give a better approximation to the partial than any finite
decimal in base 4. With ζ(2) there is no equivalent of 1/3 that is being

approached.

Evens and Bertrand’s postulate

It remains to show that partials escape the denominators of their

terms: the set exclusions in the columns of Table 1 are correct. This is
the juncture of the argument where the fact that all numbers (greater
than 1, to a power of 2) are included in the sum of z2. Every other

number is even so the power of 2 in the denominator is always greater
than 2 and so the reduced denominator always has at least 2 in it. For

example,
1

4
+

1

9
+

1

16
=

61

144

and
61

144
+

1

25
=

25 × 61 + 1 × 144

144× 25

shows how the pattern continues.
Using Bertrand’s postulate [3], we know there exists a prime p

between n2/2 and n2.

Putting these two results together,

n
∑

k=2

1

k2
=

a

b
,
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where a/b is a reduced fraction with b > n2. This established the
set exclusions in the columns of Table 1 are correct. For details and

general ζ(n), n ≥ 2, see [4].

Conclusion

Cantor’s diagonal method applied to show the existence of an irra-

tional number and the proof given here for the irrationality of ζ(2)
can be viewed as the same. The negations of set inclusions in Table

1 show that somewhere the decimal associated with the partial is not
the same as those in each Dk2 set. As the union of all such sets give
all the rationals the irrationality of ζ(2) follows. All decimal bases

n2 are replicated, including base 10 – just like Cantor’s original idea.
You don’t have to use a diagonal to ensure there is no replication: the

wash just requires that as you go down the list, the construction can’t
equal any previously encountered number.
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