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Abstract

Why does a half-angle-rotation in quaternion space or 1/2 spin space cor-
respond to a whole-angle-rotation in normal 3D space? The question is
equivalent to why a half angle in the representation of SU2 corresponds
to a whole angle in the representation of SO3. Usually we use the com-
putation of the abstract mathematics to answer the question. But now I
will give an exact and intuitive geometry-explanation on it in this paper.

1. Rotation of a vector or the coordinate-system in a plane

It is very intuitive to represent the rotation of a vector in a plane, the 2-D
space. We can chose the complex plane or the real plane. For simplicity, the
length of the vector can be take 1 unit. The position-vector rotates around O
point.

In a complex plane, the vector can be represented by a complex number C:

C = eiα = cosα+ i sinα

Here is the Eulers formula. i2 = −1. (Generally, by Taylor expansion, if
A2 = −1, we can get: eAα = cosα+A sinα.)

And its rotation by an angle θ can be represented by:

eiθC = eiθeiα = ei(α+θ).

Here, the i is the imaginary unit, its geometric significance is to rotate the
vector (in the complex plane) by π/2 anti-clockwise.
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Figure 1

We can also describe these in a real plane. Denote the vector by an ordered
pair of real number as:

V =

(
a
b

)

when it rotate by π/2 anti-clockwise, it changes to the vector:

V′ =

(
−b
a

)

So, the rotation can be represented with:

(
0 −1
1 0

)(
a
b

)
=

(
−b
a

)
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so,

i ∼
(

0 −1
1 0

)

The representation of the rotation by θ is:

eiθ = cos θ + i sin θ ∼(
1 0
0 1

)
cos θ +

(
0 −1
1 0

)
sin θ =

(
cos θ − sin θ
sin θ cos θ)

)
This is the correspodence of U1 with SO2. Notice that the determination of

the 2× 2 matrix above is one, that is why we say SO2, the S means special.

Because of the relativity of motion, a rotation of the coordinate-system by
θ angle (with the vector fixed), is equivalent to the rotation of the vector by −θ
(with the coordinate-system fixed). Thus, when coordinate-system rotate by θ,
the vector will change as:

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)(
a
b

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a
b

)
=

(
a′

b′

)

Notice that the rotation in a plane has only one parameter.
Generally, when we want to rotate a vector to another, we can always put

a reference-frame at the right position so that one of its axis covers the target
vector. From this view, all points on the unit circle are mapping to all operators
of rotations in the plane.

2. How to describe a 3D vector in a 2D plane

A 3D vector has three parameters, x,y,and z in Descartes’ coordinate sys-
tem. But the rotation has two parameters, because rotation must preserve the
length of the vector.

x′
2

+ y′
2

+ z′
2

= x2 + y2 + z2 = 1.

3



Figure 2

(We rotate the unite length vectors.)

Consider the Z unit axis in the X ′′′Y ′′′Z ′′′ reference-frame, its rotation can
form a sphere. In X ′′′Y ′′′Z ′′′ coordinate-system, a specified and fixed unit axis
Z, has two parameters of angle, The azimuth angle φ and the polar angle θ, as
in Figure 2.

The unite axis Z, can have two projections, one is to the Z ′′′ axis, can be
denoted as rz→z′′′ , another is to the X ′′′Y ′′′ plane, denoted as rz→x′′′y′′′ . They
are determined by the polo angle θ,

rz→z′′′ = cos θ, rz→x′′′y′′′ = sin θ

.
Notice: The domain of the θ angle is within π. (We consider the least

positive period).
rz→x′′′y′′′ is always positive or zero,

0 ≤ rz→x′′′y′′′ ≤ 1.

but, rz→z′′′ may be positive or negative, or zero.
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−1 ≤ rz→z′′′ ≤ +1.

Now we give the rz→z′′′ and rz→x′′′y′′′ a common phase, make them to become
two complex numbers:

Figure 3

rz→z′′′ → C ′1 = rz→z′′′e
−iγ′

, rz→x′′′y′′′ → C ′2 = rz→x′′′y′′′e
−iγ′

.

We denote them as an ordered pair:(
C ′1
C ′2

)
=

(
rz→z′′′e

−iγ′

rz→x′′′y′′′e
−iγ′

)
,

here
−1 ≤ rz→z′′′ ≤ 1,

0 ≤ rz→x′′′y′′′ ≤ 1,

r2z→z′′′ + r2z→x′′′y′′′ = 1.

Temporarily, the phase −γ′ is arbitrary, later we can see its significance.

Now we draw them together in a same one complex plane, by the rule:

When rz→z′′′ is positive, we draw C ′1 to the same direction with C ′2,
when rz→z′′′ is negative, we draw C ′1 to the opposite direction with C ′2.
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Does it surely mean that the two vectors in the complex plane must always
have the same phase angle? No. Thats the key problem we will discuss later.

3. Rotation of a 3D Rigid Body

3D vector has three parameters, as x,y and z. Its rotation has at least two
parameters, as φ and θ. But, the rotation of 3D rigid body has three parameters,
because it can have a rotation about the vector Z itself in the reference-frame
X ′′′Y ′′′Z ′′′. The vector Z can be regarded as one of the axises of another
reference-frame XY Z. A 3D reference-frame can be regarded as a 3D rigid
body. Now the X and Y axises can also rotate about Z. As in Figure 4.

Figure 4

And of course, The XY Z frame can also rotate about the Y axis or X axis.
We will consider them successively.

Now we want to rotate the XY Z-frame to the target state: the X ′′′Y ′′′Z ′′′-
frame.

Let us supposed that there are two similar books, one is motionless, another
one is at an arbitrary angle state and it will rotate to coincide right on the
motionless book. Assume X is along the longest edge of the book, Y is along
the middle-length-edge, and Z along the shortest edge.
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Figure 5

As in Figure 5, we can finish the operation with three steps:

Step 1) rotate by α about Z.

Then the XY Z-system becomes X ′Y ′Z ′-system.

Notice: when the step 1 is finished, the Y ′ axis will have been exactly and
directly above (or right below, or coincidence to) the Y ′′′ axis along the vertical
Z axis direction.

Step 2) rotate by β about Y ′.

Then the X ′Y ′Z ′-system becomes X ′′Y ′′Z ′′-system.

Notice: when the step 2 is finished, the X ′′ will have been completely coin-
cide with the X ′′′.

step 3) rotate by γ angle about X ′′ axis.

Then the two coordinate-systems will completely coincide. That is the tar-
get state. (In the Figure , the γ is negative).

The α, β and γ are called the Eulers angles.
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Figure 6

Figure 6 demonstrate the other perspective that the vector rotates but the
coordinate-system is fixed. Its equivalent to the view that the vector is mo-
tionless but the coordinate-system rotates. We need only to take the opposite
directions of the angles.

On the other view, the vector is originally at the A position,

V =

xy
z


Its target is going to the D position. There are also three steps to realize the

target. In step 1, it rotates by α about Z axis, then it comes to the B position,

V ′ =

x′y′
z′


then followed by step 2, the vector rotates by β about Y axis, comes to the

C position, then followed by step 3, it rotates by γ about X axis, finally arrives
at the D position.
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In order to be simple, we can presume that the D position is (although it is
not in the Figure ): 0

1
0


we can always set the coordinate-system to fit this requirement.
Representations of the 3 steps are:
1)

RzV =

 cosα sinα 0
− sinα cosα 0

0 0 1

xy
z

 =

x′y′
z′

 ,

RyV =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

x′y′
z′

 =

x′′y′′
z′′

 ,

Rx =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ

x′′y′′
z′′

 =

x′′′y′′′
z′′′


And we can write simply:

Rz =

 cosα sinα 0
− sinα cosα 0

0 0 1

 =

1 0 0
0 1 0
0 0 1

 cosα+ i

0 −i 0
i 0 0
0 0 0

 sinα

= cosα+ iJz sinα = eiJzα,

because the matrix (iJz)
2 = −1.

In the same way, we can get:

Ry = eiJyβ , Rx = eiJxγ .

The Rz, Ry and Rx belong to SO3, and the Jz, Jy and Jx are their genera-
tors.

4. Describe the Rotations of 3D Rigid Body in a Complex Plane

Now, we consider how to describe the rotations of 3D rigid body in a complex
plane. Let us recall how the vector Z in X ′′′Y ′′′Z ′′′ was represented in a plane.

We have drawn the two projections of unit Z axis, rz→z′′′ and rz→x′′′y′′′ , in
a complex plane as the form of an ordered pare:(

C ′1
C ′2

)
=

(
rz→z′′′e

−iγ

rz→x′′′y′′′e
−iγ

)
When rz→z′′′ ≥ 0, the phase of C ′1 is −γ′, when rz→z′′′ ≤ 0, the phase of

C ′1 is −γ′ + π.
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Now let us rotate C ′1 (change its phase) to correspond to rotate the XY Z-
frame about Z axis in 3D space. As in Figure 7.

Figure 7

The key problem comes out now. When we rotate XY Z-frame about Z axis
in 3D space, that means the Z axis is fixed, so rz→z′′′ is fixed, either positive
or negative.

When rz→z′′′ is positive, the domain of the phase-changing of C ′1 is π,
not 2π, because another π domain is belongs to negative rz→z′′′ . We must
distinguish the positive and negative rz→z′′′ .

But, the domain of changing-angle of rotation about Z axis in 3D space is
2π. Thus, we must take:

α′ = α/2,
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in order to establish the map between the two rotations in different space,
one is in a 3D space, another is in a complex plane.

C ′1 can be C1 at first, when C1 rotates by α/2 phase angle, it will change
to C ′1, and (

C ′1
C ′2

)
corresponds to this state in 3D: Y ′ axis is exactly directly above or right

below Y ′′′ axis, as the result of step 1 in 3D rotation of XY Z-frame.
The representation is:(

eiα/2 0
0 1

)(
C1

C ′2

)
=

(
C ′1
C ′2

)
=

(
rz→z′′′e

−iγ′

rz→x′′′y′′′e
−iγ′

)
but the determinate of the matrix on the left is not 1, although it belongs

to the representations of U2, but not belongs to SU2. In order to obtain the
matrix which belongs to the representations of SU2, we can presume there is a
C2, it will rotate by −α/2 to C ′2.

Figure 8
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(
eiα/2 0

0 e−iα/2

)(
C1

C2

)
=

(
C ′1
C ′2

)
=

(
rz→z′′′e

−iγ′

rz→x′′′y′′′e
−iγ′

)
This operation does not have any influence on the judgment of whether

rz→z′′′ is positive or negative, because the bisector of the angle between C1 and
C2 can act the role helping for the judgment.

The phase of the bisector of the angle between C1 and C2 (or its perpen-
dicular line, when the rz→z′′′ is negative) is always invariable −γ′. As Figure 8.

5. Adjust the relative modulus-lengths of the C ′1 and C ′2 to corre-
spond to the 3D rotion about Y ′

Then let us go back to see the polar angle θ.
Its role is to assign the relative lengths between rz→z′′′ and rz→x′′′y′′′ . As in

Figure 9.

(rz→z′′′)
2 + (rz→x′′′y′′′)

2 = 1,

rz→z′′′ = cos θ, rz→x′′′y′′′ = sin θ.

0 ≤ θ ≤ π.

Figure 9
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Now we presume that when

rz→z′′′ = rz→x′′′y′′′ =
1√
2
,

in other words, their related complex numbers are same completely : C ′′1 = C ′′2,
this state in the complex plane, corresponds to the target-state of step 2 of
rotation of the 3D rigid body: the X ′′ axis coincides with the X ′′′ in the 3D
space. In the complex plane, here is a corresponding representation to realize
this state:

(
cosβ′ sinβ′

− sinβ′ cosβ′

)(
C ′1
C ′2

)
=

(
cosβ′ sinβ′

− sinβ′ cosβ′

)(
rz→z′′′

rz→x′′′y′′′

)
e−iγ

′

=

(
1/
√

2

1/
√

2

)
e−iγ

′
=

(
C ′′1
C ′′2

)
Notice that the domain of β′ is within π, as Figure 9, but the domain of the

angle β by which the 3D coordination-system X ′Y ′Z ′ rotates about Y ′ axis is
2π, so we must take:

β′ = β/2,

in order to establish the corresponding relationship between the two rota-
tions, one is in 3D space, another is in a complex plane.

6.Rotation about X

We have already obtained the two matrices in the complex plane to represent
the 3D rotations about Z axis and about Y ′ successively. They are:

Sz =

(
eiα/2 0

0 e−iα/2

)

Sy =

 cos β2 sin β
2

− sin β
2 cos β2



Now, we can use the two matrices of rotations to derive the third matrix
representing the 3D rotation about X ′′ axis. The method comes from the Feyn-
mans Lecture on Physics, Book 3:
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Figure 10

A rotation by γ about the X ′′ axis, is equivalent to:

a) a rotation by +π/2 about Y , followed by

b) a rotate by γ about Z ′, followed by

c) a rotation by −π/2 about Y ′′.

Figure 10 and Figure 11 relatively demonstrate the subjective and the ob-
jective views.

So we have:

Sx =

(
cos(−π/4) sin(−π/4)
− sin(−π/4) cos(−π/4)

)(
eiγ 0
0 e−iγ

)(
cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
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Figure 11

Figure 12

=

(
cos(γ/2) i sin(γ/2)
i sin(γ/2) cos(γ/2)

)

We have used the Eulers formula:

cosψ =
eiψ + e−iψ

2
,

sinψ =
eiψ − e−iψ

2i
.

Notice that the determinate of the Sx is 1.
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Let us go back to look at the Figure 12, if we take γ′ = γ/2 in it, we get:

Sx

(
C ′′1
C ′′2

)
=

(
cos(γ/2) i sin(γ/2)
i sin(γ/2) cos(γ/2)

)(
1/
√

2

1/
√

2

)
e−iγ

′

=

(
1/
√

2

1/
√

2

)
=

(
C ′′′1
C ′′′2

)

The result corresponds to the final state of 3D rotation: the two coordinates
are coincided (in other words, the 3D rigid body had finished its 3D rotation).

Figure 13

In Figure 13, we review the whole 3 steps in a plane which correspond the 3
steps of rotations in 3D space.

7. Quaternion

In a plane (the 2D space), a rotation of a vector has 1 parameter. In 3D
space, a rotation of a vector has at least 2 parameters. But a rotation of a 3D
rigid body has 3 parameters.

Go ahead, in 4D space, a rotation of a vector has 3 parameters, it is the
same number with the parameter of the rotation of a 3D rigid body. This is the
foundation of the correspondence between them.
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A 4D vector has 4 real parameters, such as w, x, y and z. The 4D axises
W,X, Y and Z are perpendicular each other. A 4D vector has 2 projections
onto two planes, forming an ordered pair of vectors in a complex plane. When
the 4D vector rotates, its length is invariable, thus the sum of the squares of the
two length of the two projections is preserved. Thus it remains 3 parameters
for the rotation of 4D vector. As in Figure 14.

Figure 14

We can draw the two projections in one complex plane, using the ordered
pair of complex numbers, to describe the rotation of a vector in 4D space. That
is what we have discussed already. The ordered pair of vectors on a complex
plane has 3 parameters:

1. the relative angle between the two vectors,

2. the angle which is related with the relative lengths (moduli) of the two
vector,

3. the phase angle of the angular bisector of the two vectors, or the phase
of the perpendicular line of the angular bisector.

In order to change them to the specified state, corresponding to the result
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of the rotation of 3D rigid body, we derived 3 matrices:

Sz =

(
ei(α/2) 0

0 e−i(α/2)

)
=

(
1 0
0 1

)
cos(α/2) + i

(
1 0
0 −1

)
sin(α/2)

= cos(α/2) + iσz sin(α/2) = eiσzα/2

Here the σz is one of the Pauli matrices, and iσz is equivalent to the imagi-
nary unit i of the quaternion. (iσz)

2 = −1.

Sy =

(
cos(β/2) sin(β/2)
− sin(β/2) cos(β/2)

)
=

(
1 0
0 1

)
cos(β/2) + i

(
0 −i
i 0

)
sin(β/2)

= cos(β/2) + iσy sin(β/2) = eiσyβ/2,

the σy is another one of the Pauli matrices, and iσy is equivalent to the
imaginary unit j of the quaternion.

and,

Sx =

(
cos(γ/2) i sin(γ/2)
i sin(γ/2) cos(γ/2)

)
=

(
1 0
0 1

)
cos(γ/2) + i

(
0 1
1 0

)
sin(γ/2)

= cos(γ/2) + iσx sin(γ/2) = eiσxγ/2

the σx is also one of the Pauli matrices, and iσx is equivalent to the imagi-
nary unit k of in the space of the quaternion.

The generators σx/2, σy/2 and σz/2 are half of Pauli matrices, they have
the Lie Algebras (or the commutation relations):

[σx/2, σy/2] = iσz/2, [σy/2, σz/2] = iσx/2, [σz/2, σx/2] = iσy/2,

They obey the same commutation relations of the generators of SO3:

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy.

The intuitive geometry-significance of Pauli matrices and all of the gener-
ators, can be viewed in my article Intuitive Geometric Significance of Pauli
Matrices and Others in a Plane: http://vixra.org/abs/1710.0198 .
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