
RIP-based performance guarantee for low tubal rank
tensor recovery

Feng Zhanga, Wendong Wanga, Jianwen Huanga, Jianjun Wanga,b,∗

aSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, China
bResearch Center for Artificial Intelligence & Education Big Data, Southwest University,

Chongqing, 400715, China

Abstract

The essential task of multi-dimensional data analysis focuses on the tensor de-

composition and the corresponding notion of rank. In this paper, by introducing

the notion of tensor singular value decomposition (t-SVD), we establish a reg-

ularized tensor nuclear norm minimization (RTNNM) model for low tubal rank

tensor recovery. On the other hand, many variants of the restricted isometry

property (RIP) have proven to be crucial frameworks and analysis tools for re-

covery of sparse vectors and low-rank tensors. So, we initiatively define a novel

tensor restrict isometry property (t-RIP) based on t-SVD. Besides, our theo-

retical results show that any third-order tensor X ∈ Rn1×n2×n3 whose tubal

rank is at most r can stably be recovered from its as few as measurements

y = M(X ) + w with a bounded noise constraint ‖w‖2 ≤ ε via the RTNNM

model, if the linear map M obeys t-RIP with

δMtr <

√
t− 1

n2
3 + t− 1

for certain fixed t > 1. Surprisingly, when n3 = 1, our conditions coincide

with Cai and Zhang’s sharp work in 2013 for low-rank matrix recovery via the

constrained nuclear norm minimization. We note that, as far as the authors are

aware, such kind of result has not previously been reported in the literature.
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1. Introduction

Utilizing tensor model, possessed of the ability to make full use of multi-

linear structure, instead of traditional matrix-based model to analyze multi-

dimensional data (tensor data) has widely attracted attention. Low-rank tensor

recovery as a representative problem is not only a mathematical natural gener-5

alization of the compressed sensing and low-rank matrix recovery problem, but

also there exists lots of reconstruction applications of data that have intrinsical-

ly many dimensions in the context of low-rank tensor recovery including signal

processing [1], machine learning [2], data mining [3], and many others.

The purpose of low-rank tensor recovery is to reconstruct a low-rank tensor

X ∈ Rn1×n2×n3 (this article considers only the third-order tensor without loss

of generality) from linear noise measurements y = M(X ) + w, where M :

Rn1×n2×n3 → Rm (m� n1n2n3) is a random map with i.i.d. Gaussian entries

and w ∈ Rm is a vector of measurement errors. To be specific, we consider

addressing the following rank minimization problem

min
X∈Rn1×n2×n3

rank(X ), s.t. ‖y −M(X )‖2 ≤ ε, (1)

where ε is a positive constant. The key to dealing with the low-rank tensor

recovery problem is how to define the rank of the tensor. Unlike in the matrix

case, there are different notions of tensor rank which are induced by different

tensor decompositions. Two classical decomposition strategies can be regarded

as higher-order extensions of the matrix SVD: CANDECOMP/PARAFAC (CP)

decomposition [4] and Tucker decomposition [5]. Those induced tensor ranks

are called the CP rank and Tucker rank, respectively. Tucker decomposition is

the most widely used decomposition method at present. In particular, based

on the Tucker decomposition, a convex surrogate optimization model [1] of the
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non-convex minimization problem (1) that is NP-hard regardless of the choice

of the tensor decomposition has been studied as follows:

min
X∈Rn1×n2×n3

‖X‖SNN, s.t. ‖y −M(X )‖2 ≤ ε, (2)

where ‖X‖SNN :=
∑n3

i
1
n3
‖X{i}‖∗ is referred as the Sum of Nuclear Norms10

(SNN) and X{i} denotes the mode-i matricization of X , ‖X{i}‖∗ is the trace

norm of the matrix X{i}. This popular approach (2), however, has its limita-

tions. Firstly, the Tucker decomposition is highly non-unique. Secondly, SNN is

not the convex envelop of
∑
i rank(X{i}), which leads to a fact that the model

(2) can be substantially suboptimal. Thirdly, the definition of SNN is incon-15

sistent with the matrix case so that the existing analysis templates of low-rank

matrix recovery can not be generalized to that for low-rank tensor recovery.

More recently, based on the definition of tensor-tensor product (t-product)

and tensor singular value decomposition (t-SVD) [6, 7, 8] that enjoys many

similar properties as the matrix case, Kilmer et al. proposed the tensor multi-

rank definition and tubal rank definition [9] (see Definition 2.8) and Semerci et

al. developed a new tensor nuclear norm (TNN) [10] . Continuing along this

vein, Lu et al. given a new and rigorous way to define the average rank of tensor

X by ranka(X ) [11] (see Definition 2.9) and the nuclear norm of tensor X by

‖X‖∗ [11] (see Definition 2.10), and proved that the convex envelop of ranka(X )

is ‖X‖∗ within the unit ball of the tensor spectral norm [11]. Furthermore, they

pointed out that the low average rank assumption for tensor X is weaker than

the CP rank and Tucker rank assumptions and tensor X always has low average

rank if it has low tubal rank induced by t-SVD. Therefore, considering that this

novel and computable tensor nuclear norm can address the shortcoming of SNN,

a convex tensor nuclear norm minimization (TNNM) model based low tubal rank

assumption for tensor recovery has been proposed in [11], which solves

min
X∈Rn1×n2×n3

‖X‖∗, s.t. ‖y −M(X )‖2 ≤ ε, (3)

where tensor nuclear norm ‖X‖∗ is as the convex surrogate of tensor average

rank ranka(X ). In order to facilitate the design of algorithms and the needs
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of practical applications, instead of considering the constrained-TNNM (3), in

this paper, we present a theoretical analysis for regularized tensor nuclear norm

minimization (RTNNM) model, which takes the form

min
X∈Rn1×n2×n3

‖X‖∗ +
1

2λ
‖y −M(X )‖22, (4)

where λ is a positive parameter. According to [12], there exists a λ > 0 such

that the solution to the regularization problem (4) also solves the constrained

problem (3) for any ε > 0, and vice versa. However, model (4) is more commonly20

used than model (3) when the noise level is not given or cannot be accurately

estimated. There exist many examples of solving RTNNM problem (4) based

on the tensor nuclear norm heuristic. For instance, by exploiting the t-SVD,

Semerci et al. [10] developed the tensor nuclear norm regularizer which can be

solved by an alternating direction method of multipliers (ADMM) approach.25

Analogously, Lu et al. [11] and zhang et al. [13] used tensor nuclear norm

to replace the tubal rank for low-rank tensor recovery from incomplete tensors

(tensor completion) and tensor robust principal component analysis (TRPCA).

Two kinds of problems can be regarded as special cases of (4). ADMM algorithm

can also be applied to solve it. While the application and algorithm research of30

(4) is already well-developed, only few contributions on the theoretical results

with regard to performance guarantee for low tubal rank tensor recovery are

available so far. The restrict isometry property (RIP) introduced by Candès

and Tao [14] is one of the most widely used frameworks in sparse vector/low-

rank matrix recovery. In this paper, we generalize the RIP tool to tensor case35

based on t-SVD and hope to make up for the lack of research on low tubal tensor

recovery.

Since different tensor decompositions induce different notions of tensor rank,

and they also induce different notions of the tensor RIP. For example, in 2013,

based on Tucker decomposition [5], Shi et al. defined tensor RIP [15] as follows:40

Definition 1.1. Let S(r1,r2,r3) : {X ∈ Rn1×n2×n3 : rank(X{i}) ≤ ri, i =

1, 2, 3}. The RIP constant δ(r1,r2,r3) of linear operator F is the smallest value
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such that

(1− δ(r1,r2,r3))‖X‖2F ≤ ‖F(X )‖22 ≤ (1 + δ(r1,r2,r3))‖X‖2F

holds for all tensors X ∈S(r1,r2,r3).

Their theoretical results show that a tensor X with rank (r1, r2, r3) can be

exactly recovered in the noiseless case if F satisfies the RIP with the constant

δΛ < 0.4931 for Λ ∈ {(2r1, n2, n3), (n1, 2r2, n3), (n1, n2, 2r3)}. This is the first

work to extend the RIP-based results from the sparse vector recovery to tensor45

case. In addition, in 2016, Rauhut et al. [16] also induced three notions of the

tensor RIP by utilizing the higher order singular value decomposition (HOSVD),

the tensor train format (TT), and the general hierarchical Tucker decomposition

(HT). These decompositions can be considered as variants of Tucker decomposi-

tion whose uniqueness is not guaranteed such that all these induced definitions50

of tensor RIP depend on a rank tuple that differs greatly from the definition of

matrix rank. In contrast, t-SVD is a higher-order tensor decomposition strategy

with uniqueness and computability. So, based on t-SVD, we initiatively define

a novel tensor restrict isometry property as follows:

Definition 1.2. (t-RIP) A linear map M : Rn1×n2×n3 → Rm, is said to

satisfy the t-RIP with tensor restricted isometry constant (t-RIC) δMr if δMr is

the smallest value δM ∈ (0, 1) such that

(1− δM)‖X‖2F ≤ ‖M(X )‖22 ≤ (1 + δM)‖X‖2F (5)

holds for all tensors X ∈ Rn1×n2×n3 whose tubal rank is at most r.55

Our definition of tensor RIP shows the same form with vector RIP [14]

and matrix RIP [17]. In other words, vector RIP and matrix RIP are low-

dimensional versions of our t-RIP when n2 = n3 = 1 and n3 = 1, respectively,

which will result in some existing analysis tools and techniques that can also

be used for tensor cases. At the same time, the existing theoretical results60

will provide us with a great reference. For constrained sparse vector/low rank

matrix recovery, different conditions on the restricted isometry constant (RIC)
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have been introduced and studied in the literature [18, 17, 19], etc. Among these

sufficient conditions, especially, Cai and Zhang [20] showed that for any given

t ≥ 4/3, the sharp vector RIC δMtr <
√

t−1
t (matrix RIC δMtr <

√
t−1
t ) ensures65

the exact recovery in the noiseless case and stable recovery in the noisy case for

r-sparse signals and matrices with rank at most r. In addition, Zhang and Li

[21] obtained another part of the sharp condition, that is δMtr < t
4−t (δ

M
tr < t

4−t )

with 0 < t < 4/3. The results mentioned above are currently the best in the

field. In view of unconstrained sparse vector recovery, as far as we know that70

Zhu [22] first studied this kind of problem in 2008 and he pointed out that r-

sparse signals can be recovered stably if δM4r + 2δM5r < 1. Next, in 2015, Shen

et al. [23] got a sufficient condition δM2r < 0.2 under redundant tight frames.

Recently, Ge et al. [24] proved that if the noisy vector w satisfies the `∞

bounded noise constraint (i.e., ‖M∗w‖∞ ≤ λ/2) and δMtr <
√

t−1
t+8 with t > 1,75

then r-sparse signals can be stably recovered. Although there is no similar result

for unconstrained low rank matrix recovery, the results presented in this paper

also can depict the case of the matrix when n3 = 1.

Equipped with the t-RIP, in this paper, we aim to construct sufficient condi-

tions for stable low tubal rank tensor recovery and obtain an ideal upper bound80

of error via solving (4). The rest of the paper is organized as follows. In Section

2, we introduce some notations and definitions. In Section 3, we give some key

lemmas. In Section 4, our main result is presented. In Section 5, some numerical

experiments are conducted to support our analysis. The conclusion is addressed

in Section 6. Finally, Appendix A and Appendix B provide the proof of Lemma85

3.2 and Lemma 3.3, respectively.

2. Notations and Preliminaries

We use lowercase letters for the entries, e.g. x, boldface letters for vectors,

e.g. x, capitalized boldface letters for matrices, e.g. X and capitalized boldface

calligraphic letters for tensors, e.g. X . For a third-order tensor X , X (i, :, :),90

X (:, i, :) and X (:, :, i) are used to represent the ith horizontal, lateral, and frontal
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slice. The frontal slice X (:, :, i) can also be denoted as X(i). The tube is denoted

as X (i, j, :). We denote the Frobenius norm as ‖X‖F =
√∑

ijk |xijk|2. Defining

some norms of matrix is also necessary. We denote by ‖X‖F =
√∑

ij |xij |2 =√∑
i σ

2
i (X) the Frobenius norm of X and denote by ‖X‖∗ =

∑
i σi(X) the95

nuclear norm of X, where σi(X)’s are the singular values of X and σ(X)

represents the singular value vector of matrix X. Given a positive integer κ, we

denote [κ] = {1, 2, · · · , κ} and Γc = [n1] \ Γ for any Γ ⊂ [n1].

For a third-order tensor X , let X̄ be the discrete Fourier transform (DFT)

along the third dimension of X , i.e., X̄ = fft(X , [], 3). Similarly, X can be

calculated from X̄ by X = fft(X̄ , [], 3). Let X̄ ∈ Rn1n3×n2n3 be the block

diagonal matrix with each block on diagonal as the frontal slice X̄
(i)

of X̄ , i.e.,

X̄ = bdiag(X̄ ) =


X̄

(1)

X̄
(2)

. . .

X̄
(n3)

 ,

and bcirc(X ) ∈ Rn1n3×n2n3 be the block circular matrix, i.e.,

bcirc(X ) =


X(1) X(n3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(n3) X(n3−1) · · · X(1)

 .

The unfold operator and its inverse operator fold are, respectively, defined as

unfold(X ) =
(

X(1) X(2) · · · X(n3)
)T

, fold(unfold(X )) = X .

Then tensor-tensor product (t-product) between two third-order tensors can be

defined as follows.100

Definition 2.1. (t-product [6]) For tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 ,

the t-product A ?B is defined to be a tensor of size n1 × n4 × n3,

A ?B = fold(bcirc(A) · unfold(B)).

7



Definition 2.2. (Conjugate transpose [6]) The conjugate transpose of a ten-

sor X of size n1 × n2 × n3 is the n2 × n1 × n3 tensor X ∗ obtained by conjugate

transposing each of the frontal slice and then reversing the order of transposed

frontal slices 2 through n3.

Definition 2.3. (Identity tensor [6]) The identity tensor I ∈ Rn×n×n3 is105

the tensor whose first frontal slice is the n×n identity matrix, and other frontal

slices are all zeros.

Definition 2.4. (Orthogonal tensor [6]) A tensor Q ∈ Rn×n×n3 is orthogonal

if it satisfies

Q∗ ?Q = Q ?Q∗ = I.

Definition 2.5. (F-diagonal tensor [6]) A tensor is called F-diagonal if each

of its frontal slices is a diagonal matrix.

Theorem 2.6. (t-SVD [6]) Let X ∈ Rn1×n2×n3 , the t-SVD factorization of

tensor X is

X = U ? S ? V∗,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal, S ∈ Rn1×n2×n3 is110

an F-diagonal tensor. Figure 1 illustrates the t-SVD factorization.

Figure 1: An illustration of the t-SVD of an n1 × n1 × n3 tensor.

Remark 2.7. For κ = min(n1, n2), the t-SVD of X can be written

X =
∑κ

i=1
UX (:, i, :) ? SX (i, i, :) ? VX (:, i, :)∗.
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The diagonal vector of the first frontal slice of SX is denoted as sX . The best

r-term approximation of H with the tubal rank at most r is denoted by

Xmax(r) = arg min
rankt(X̃ )≤r

‖X −X̃‖F =
∑r

i=1
UX (:, i, :)?SX (i, i, :)?VX (:, i, :)∗,

and X−max(r) = X −Xmax(r). In addition, for index set Γ, we have

XΓ =
∑

i∈Γ
UX (:, i, :) ? SX (i, i, :) ? VX (:, i, :)∗.

Definition 2.8. (Tensor tubal rank [9]) For X ∈ Rn1×n2×n3 , the tensor tubal

rank, denoted as rankt(X ), is defined as the number of nonzero singular tubes

of S, where S is from the t-SVD of X = U ? S ? V∗. We can write

rankt(X ) = ]{i : S(i, i, :) 6= 0} = ]{i : S(i, i, 1) 6= 0}.

Definition 2.9. (Tensor average rank [11]) For X ∈ Rn1×n2×n3 , the tensor

average rank, denoted as ranka(X ), is defined as

ranka(X ) =
1

n3
rank(bcirc(X )) =

1

n3
rank(bdiag(X̄)).

Definition 2.10. (Tensor nuclear norm [11]) Let X = U ? S ? V∗ be the t-

SVD of X ∈ Rn1×n2×n3 . The tensor nuclear norm of X is defined as ‖X‖∗ :=∑r
i=1 S(i, i, 1), where r = rankt(X ).

Proposition 2.11. For a third-order tensor X , we have the following prop-115

erties

‖X‖F =
1
√
n3
‖X̄‖F , (6)

‖X‖∗ =
1

n3
‖X̄‖∗. (7)

rank(X̄) ≤ n3 rankt(X ). (8)

3. Some Key Lemmas

We present the following lemmas, which will play a key role in proving our

sufficient conditions for low tubal rank tensor recovery.
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Lemma 3.1. [20] For a positive number φ and a positive integer s, define

the polytope T (φ, s) ⊂ Rn by

T (φ, s) = {v ∈ Rn : ‖v‖∞ ≤ φ, ‖v‖1 ≤ sφ}.

For any v ∈ Rn, define the set of sparse vectors U(φ, s,v) ⊂ Rn by

U(φ, s,v) = {u ∈ Rn : supp(u) ⊆ supp(v), ‖u‖0 ≤ s, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ φ}.

Then v ∈ T (φ, s) if and only if v is in the convex hull of U(φ, s,v). In particular,

any v ∈ T (φ, s) can be expressed as

v =

N∑
i=1

γiui

where ui ∈ U(φ, s,v) and 0 ≤ γi ≤ 1,
∑N
i=1 γi = 1.120

This elementary technique introduced by T. Cai and A. Zhang [20] shows

that any point in a polytope can be represented as a convex combination of

sparse vectors and makes the analysis surprisingly simple.

The following lemma shows that a suitable t-RIP condition implies the ro-

bust null space property [25] of the linear map M.125

Lemma 3.2. Let the linear map M : Rn1×n2×n3 → Rn satisfies the t-RIP of

order tr(t > 1) with t-RIC δMtr ∈ (0, 1). Then for any tensor H ∈ Rn1×n2×n3

and any subset Γ ⊂ [κ] with |Γ| = r and κ = min(n1, n2), it holds that

‖HΓ‖F ≤ η1‖M(H)‖2 +
η2√
r
‖HΓc‖∗, (9)

where

η1 ,
2

(1− δMtr )
√

1 + δMtr
, and η2 ,

√
n3δ

M
tr√

(1− (δMtr )2)(t− 1)
.

Proof. Please see Appendix A.

In order to prove the main result we still need the following lemma.
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Lemma 3.3. If the noisy measurements y = M(X ) + w of tensor X ∈

Rn1×n2×n3 are observed with noise level ‖w‖2 ≤ ε, then for any subset Γ ⊂ [κ]

with |Γ| = r and κ = min(n1, n2), the minimization solution X̂ of (4) satisfies

‖M(H)‖22 − 2ε‖M(H)‖2 ≤ 2λ(‖HΓ‖∗ − ‖HΓc‖∗ + 2‖XΓc‖∗), (10)

and

‖HΓc‖∗ ≤ ‖HΓ‖∗ + 2‖XΓc‖∗ +
ε

λ
‖M(H)‖2, (11)

where H , X̂ −X .

Proof. Please see Appendix B.

4. Main Results130

With preparations above, now we present our main result.

Theorem 4.1. For any observed vector y = M(X ) + w of tensor X ∈

Rn1×n2×n3 corrupted by an unknown noise w, with bounded constrain ‖w‖2 ≤ ε,

if M satisfies t-RIP with

δMtr <

√
t− 1

n2
3 + t− 1

(12)

for certain t > 1, then we have

‖M(X̂ −X )‖2 ≤ C1‖X−max(r)‖∗ + C2, (13)

and

‖X̂ −X‖F ≤ C3‖X−max(r)‖∗ + C4, (14)

where X̂ is the solution to (4), and Ci, i = 1, 2, 3, 4 are denoted as

C1 =
2√
rη1

, C2 = 2
√
rη1λ+ 2ε,

C3 =
2
√
rη1(2

√
n3r + 1 + η2)λ+ 2(

√
n3r + η2)ε

rη1(1− η2)λ
,

C4 =
(
√
n3r + 1)η1λ+ (

√
n3r −

√
n3η2 +

√
n3 + 1)ε

(1− η2)λ(2
√
rη1λ+ 2ε)−1

.
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Proof. Please see Appendix C.

Remark 4.2. We note that the obtained t-RIC condition (12) is related to the

length n3 of the third dimension. This is due to the fact that the discrete Fourier135

transform (DFT) is performed along the third dimension of X . Further, we want

to stress that this crucial quantity n3 is rigorously deduced from the t-product

and makes the result of the tensor consistent with the matrix case. For general

problems, let n3 be the smallest size of three modes of the third-order tensor,

e.g. n3 = 3 for the third-order tensor X ∈ Rh×w×3 from a color image with size140

h×w, where three frontal slices correspond to the R, G, B channels; n3 = 8 for

3-D face detection using tensor data X ∈ Rh×w×8 with column h, row w, and

depth mode 8. Specially, when n3 = 1, our model (4) returns to the case of low

rank matrix recovery and the condition (12) degenerates to δMtr <
√

(t− 1)/t

which has also been proved to be sharp by Cai, et al. [19] for stable recovery via145

the constrained nuclear norm minimization for t > 4/3. For unconstrained low

rank matrix recovery, the degenerated sufficient condition δMtr <
√

(t− 1)/t for

t > 1 and error upper bound estimation can be easily derived. Because these

works are trivial, we omit these potential corollaries. We note that, to the best

of our knowledge, results like our Theorem 4.1 has not previously been reported150

in the literature.

Remark 4.3. Theorem 4.1 not only offers a sufficient condition for stably

recovering tensor X based on solving (4), but also provides an error upper bound

estimate for the recovery of tensor X via RTNNM model. This result clearly

depicts the relationship among reconstruction error, the best r-term approxima-155

tion, noise level ε and λ. There exist some special cases of Theorem 4.1 which

is worth studying. For examples, one can associate the `2-norm bounded noise

level ε with the trade-off parameter λ (such as ε = λ/2) as [24, 23, 17]. This

case can be summarized by Corollary 4.4. Notice that we can take a λ which is

close to zero such that C̃2λ and C̃4λ in (16),(17) is close to zero for the noise-160

free case w = 0. Then Corollary 4.4 shows that tensor X can be approximately

recovery by solving (4) if ‖X−max(r)‖∗ is small.
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Corollary 4.4. Suppose that the noise measurements y = M(X )+w of tensor

X ∈ Rn1×n2×n3 are observed with noise level ‖w‖2 ≤ ε = λ
2 . If M satisfies

t-RIP with

δMtr <

√
t− 1

n2
3 + t− 1

(15)

for certain t > 1, then we have

‖M(X̂ −X )‖2 ≤ C̃1‖X−max(r)‖∗ + C̃2λ, (16)

and

‖X̂ −X‖F ≤ C̃3‖X−max(r)‖∗ + C̃4λ, (17)

where X̂ is the solution to (4), and C̃i, i = 1, 2, 3, 4 are denoted as

C̃1 =
2√
rη1

, C̃2 = 2
√
rη1 + 1,

C̃3 =
2
√
rη1(2

√
n3r + 1 + η2) +

√
n3r + η2

rη1(1− η2)
,

C̃4 =
2(
√
n3r + 1)η1 +

√
n3r −

√
n3η2 +

√
n3 + 1

2(1− η2)(2
√
rη1 + 1)−1

.

5. Numerical experiments

In this section, we present several numerical experiments to corroborate our165

analysis. We use the tensor Singular Value Thresholding (t-SVT) algorithm in

[11] to compute the RTNNM model (4). All numerical experiments are tested

on a PC with 4 GB of RAM and Intel core i5-4200M (2.5GHz). In order to

avoid the randomness, we perform 50 times against each test and report the

average result.170

We perform y = Mvec(X )+w to get the linear noise measurements instead

of y = M(X ) + w. Then the RTNNM model can be reformulated as

min
X∈Rn1×n2×n3

‖X‖∗ +
1

2λ
‖y −Mvec(X )‖22, (18)

where y,w ∈ Rm, X ∈ Rn1×n2×n3 , M ∈ Rm×(n1n2n3) is a Gaussian mea-

surement ensemble and vec(X ) denotes the vectorization of X . According to
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Theorem 4.2 in [11], the closed-form of the proximal operator of (18) can be

presented by exploiting the t-SVT.

First, we generate a tubal rank r tensor X ∈ Rn×n×n3 as a product X =175

X 1 ?X 2 where X 1 ∈ Rn×r×n3 and X 2 ∈ Rr×n×n3 are two tensors with entries

independently sampled from a standard Gaussian distribution. Next, we gen-

erate a measurement matrix M ∈ Rm×(n2n3) with entries drawn independently

from a N (0, 1/m) distribution. Using X and M , the measurements y are pro-

duced by y = Mvec(X ) +w, where w is the Gaussian white noise with mean 0180

and variance σ2. We uniformly evaluate the recovery performance of the model

by signal-to-noise ratio (SNR) defined as 20 log(‖X‖F /‖X − X̂‖F ) in decibels

(dB) (the greater the SNR, the better the reconstruction). The key to studying

the RTNNM model (4) is to explain the relationship among reconstruction er-

ror, noise level ε and λ. Therefor, we design two sets of experiments to explain185

it. Case 1: n = 10, n3 = 5, r = 0.2n; Case 2: n = 30, n3 = 5, r = 0.3n. The

number of samples m in all experiments is set to 3r(2n− r)n3 + 1 as [26]. The

results are given in Table 1, Table 2 and Figure 2. It can be seen that there

exist two accordant conclusions for low tubal tensor recovery at different scales.

For a fixed regularization parameter λ, as the standard deviation σ increases190

(the greater σ, the greater the noise level ε), the SNR gradually decreases. In

addition, for each fixed noise level, the smaller the regularization parameter, the

larger the SNR, which means the low tubal rank tensor can be better recovered.

Thus, these experiments clearly demonstrate the quantitative correlation among

reconstruction error, noise level ε and λ.195

6. Conclusion

In this paper, a heuristic notion of tensor restricted isometry property (t-

RIP) has been introduced based on tensor singular value decomposition (t-

SVD). Comparing with other definitions [15, 16], it is more representative as

a higher-order generalization of the traditional RIP for vector and matrix re-200

covery. since the forms and properties of t-RIP and t-SVD are consistent with

14



Table 1: SNR for different noise levels and regularization parameters in Case 1.

n = 10, n3 = 5, r = 0.2n

SNR σ1 = 0.01 σ2 = 0.03 σ3 = 0.05 σ4 = 0.07 σ5 = 0.1

λ1 = 1e− 1 30.15 30.14 30.12 30.04 29.73

λ2 = 1e− 2 40.13 40.11 39.94 39.34 37.34

λ3 = 1e− 3 42.10 42.03 41.66 40.63 37.84

λ4 = 1e− 4 42.18 42.12 41.76 40.77 38.05

λ5 = 1e− 5 42.51 43.43 42.03 40.97 38.16

λ6 = 1e− 6 43.17 43.09 42.64 41.46 38.43

λ7 = 1e− 7 43.76 43.72 43.29 42.03 38.78

λ8 = 1e− 8 44.84 44.76 44.16 42.63 39.04

Table 2: SNR for different noise levels and regularization parameters in Case 2.

n = 30, n3 = 5, r = 0.3n

SNR σ1 = 0.01 σ2 = 0.03 σ3 = 0.05 σ4 = 0.07 σ5 = 0.1

λ1 = 1e− 1 91.95 72.86 63.99 58.14 51.95

λ2 = 1e− 2 92.02 72.93 64.06 58.21 52.02

λ3 = 1e− 3 92.00 72.91 64.04 58.19 52.00

λ4 = 1e− 4 92.28 72.91 64.03 58.19 51.99

λ5 = 1e− 5 97.50 73.19 64.00 58.12 51.91

λ6 = 1e− 6 97.46 78.37 66.04 59.12 52.30

λ7 = 1e− 7 97.51 78.42 69.55 63.70 57.46

λ8 = 1e− 8 97.41 78.34 69.47 63.62 57.43
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Figure 2: SNR for different noise levels and regularization parameters. (a) λ versus SNR with

n = 10, n3 = 5 and r = 0.2n. (b) λ versus SNR with n = 30, n3 = 5 and r = 0.3n.

the vector/matrix case. This point is crucial because this guarantees that our

theoretical investigation can be done in a similar way as sparse vector/low rank

matrix recovery. A sufficient condition was presented, based on the RTNNM

model, for stably recovering a given low tubal rank tensor that are corrupted205

with an `2-norm bounded noise. However, this condition only considers the δMtr

of the map M when t is limited to t > 1. In the future, we hope to provide

a complete answer for δMtr when 0 < t ≤ 1. Another important topic is to

establish the guarantee for stable recovery based on (4) in the context of the

required number of measurements.210

Acknowledgment

This work was supported by National Natural Science Foundation of China

(Grant No. 61273020, 61673015).

Appendix A. Proof of Lemma 3.2

Proof. Step 1: Sparse Representation of a Polytope.215

Without loss of generality, assume that tr is an integer for a given t > 1.

Next we divide the index set Γc into two disjoint subsets, that is,

Γ1 = {i ∈ Γc : SH(i, i, 1) > φ}, Γ2 = {i ∈ Γc : SH(i, i, 1) ≤ φ},
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where φ , ‖HΓc‖∗/((t− 1)r). Clearly,

Γ1 ∪ Γ2 = Γc and Γ1 ∩ Γ = ∅,

which implies that H = HΓ+HΓc = HΓ+HΓ1
+HΓ2

and ‖HΓ‖F ≤ ‖HΓ∪Γ1
‖F ,

respectively. In order to prove (9), we only need to check

‖HΓ∪Γ1
‖F ≤ η1‖M(H)‖2 +

η2√
r
‖HΓc‖∗. (A.1)

Let ‖sHΓ1
‖1 ,

∑
i∈Γ1

SH(i, i, 1) = ‖HΓ1
‖∗, where sHΓ1

is denoted as the diag-

onal vector of first frontal slice of SH whose element SHΓ1
(i, i, 1) = SH(i, i, 1)

for i ∈ Γ1 and SHΓ1
(i, i, 1) = 0 otherwise. Since all non-zero entries of vector

sHΓ1
have magnitude larger than φ, we have,

‖sHΓ1
‖1 = ‖HΓ1

‖∗ > |Γ1|
‖HΓc‖∗
(t− 1)r

≥ |Γ1|
‖HΓ1

‖∗
(t− 1)r

=
|Γ1|

(t− 1)r
‖sHΓ1

‖1.

Namely |Γ1| < (t− 1)r. Besides, we also have

‖sHΓ2
‖1 = ‖HΓ2

‖∗ = ‖HΓc‖∗ − ‖HΓ1
‖∗ ≤ ((t− 1)r − |Γ1|)φ

and

‖sHΓ2
‖∞ , max

i∈Γ2

SH(i, i, 1) ≤ φ.

Now, since sHΓ2
∈ T (φ, (t − 1)r − |Γ1|), applying Lemma 3.1, sHΓ2

can be

rewritten as:

sHΓ2
=

N∑
i=1

γigi,

where gi ∈ U(φ, (t− 1)r − |Γ1|, sHΓ2
) and 0 ≤ γi ≤ 1,

∑N
i=1 γi = 1.

Step 2: Consequence of t-RIP.

Furthermore, define

sBi
= (1 + δMtr )sHΓ∪Γ1

+ δMtr sGi
, sPi

= (1− δMtr )sHΓ∪Γ1
− δMtr sGi

,

Gi =
∑κ

j=1
UH(:, j, :) ? SGi

(j, j, :) ? VH(:, j, :)∗,

Bi =
∑κ

j=1
UH(:, j, :) ? SBi(j, j, :) ? VH(:, j, :)∗,

Pi =
∑κ

j=1
UH(:, j, :) ? SPi

(j, j, :) ? VH(:, j, :)∗.
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Then it is not hard to see that both Bi and P i are all tensors with tubal rank

at most tr for i = 1, 2, · · · , N , and

HΓ2 =
∑N

i=1
γiGi, Bi = (1+δMtr )HΓ∪Γ1+δMtr Gi, Pi = (1−δMtr )HΓ∪Γ1−δMtr Gi.

Now we estimate the upper bounds of

ξ ,
∑N

i=1
γi
(
‖M(Bi)‖22 − ‖M(Pi)‖22

)
.

Applying Definition 1.2, we have220

ξ = 4δMtr
∑N

i=1
γi 〈M(HΓ∪Γ1

),M(HΓ∪Γ1
+ Gi)〉

(a)
= 4δMtr

〈
M(HΓ∪Γ1),M

(
HΓ∪Γ1 +

∑N

i=1
γiGi

)〉
(b)
= 4δMtr 〈M(HΓ∪Γ1

),M(H)〉
(c)

≤ 4δMtr ‖M(HΓ∪Γ1
)‖2‖M(H)‖2

(d)

≤ 4δMtr

√
1 + δMtr ‖HΓ∪Γ1‖F ‖M(H)‖2, (A.2)

where (a) is due to
∑N
i=1 γi = 1, (b) is founded on the fact that HΓ2

=∑N
i=1 γiGi and H = HΓ +HΓ1 +HΓ2 , (c) holds because of the Cauchy-Schwarz

inequality, and (d) follows from (5), |Γ1| < (t − 1)r and the monotonicity of

t-RIC.

Next, we use the block diagonal matrix to estimate the lower bound of ξ.

Let φ̄ , ‖ bdiag(H̄Γc)‖∗/(t− 1)r. Repeat step 1 for the matrix bdiag(H̄) as we

did for tensor H and we have

σ(bdiag(H̄Γ2
)) ∈ T (φ̄, (t−1)r−|E1|), ḡi ∈ U(φ̄, (t−1)r−|E1|, σ(bdiag(H̄Γ2

))),

here, E1 is an index set as the counterpart of Γ1. By further defining225

b̄i = (1 + δMtr )σ(bdiag(H̄Γ∪Γ1)) + δMtr ḡi,

p̄i = (1− δMtr )σ(bdiag(H̄Γ∪Γ1
))− δMtr ḡi,

Ḡi =
∑κ

j=1
(uH̄)j · (ḡi)j · (vH̄)∗j ,

B̄i =
∑κ

j=1
(uH̄)j · (b̄i)j · (vH̄)∗j ,

P̄ i =
∑κ

j=1
(uH̄)j · (p̄i)j · (vH̄)∗j .
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Then we can easily induce that

bdiag(H̄Γ2
) =

∑N

i=1
γiḠi,

B̄i = (1 + δMtr ) bdiag(H̄Γ∪Γ1
) + δMtr Ḡi,

P̄ i = (1− δMtr ) bdiag(H̄Γ∪Γ1)− δMtr Ḡi.

Thus, on the other hand, we also have

ξ
(a)

≥
∑N

i=1
γi
(
(1− δMtr )‖Bi‖2F − (1 + δMtr )‖Pi‖2F

)
(b)
=

1

n3

∑N

i=1
γi
(
(1− δMtr )‖B̄i‖22 − (1 + δMtr )‖P̄ i‖22

)
(c)
=

2

n3
δMtr (1− (δMtr )2)‖σ(bdiag(H̄Γ∪Γ1

))‖22 −
2

n3
(δMtr )3

∑N

i=1
γi‖ḡi‖22

(d)

≥ 2

n3
δMtr (1− (δMtr )2)‖ bdiag(H̄Γ∪Γ1)‖2F −

2(δMtr )3

n3(t− 1)r
‖ bdiag(H̄Γc)‖2∗

(e)
= 2δMtr (1− (δMtr )2)‖HΓ∪Γ1

‖2F −
2n3(δMtr )3

(t− 1)r
‖HΓc‖2∗, (A.3)

where (a) follows from t-RIP, (b) holds because of (6), (c) is due to 〈σ(bdiag(H̄Γ∪Γ1
)), ḡi〉 =

0 for all i = 1, 2, · · · , N , (d) is based on the fact that ‖X‖F = ‖σ(X)‖2 for any

matrix X and

‖ḡi‖22 ≤ ‖ḡi‖0(‖ḡi‖∞)2 ≤ ((t− 1)r − |E1|)φ̄2 ≤ ‖ bdiag(H̄Γc)‖2∗
(t− 1)r

,

and (e) follows from (7).

Combining (A.2) and (A.3), we get

(1− (δMtr )2)‖HΓ∪Γ1
‖2F −

n3(δMtr )2

(t− 1)r
‖HΓc‖2∗ ≤ 2

√
1 + δMtr ‖HΓ∪Γ1

‖F ‖M(H)‖2.

(A.4)

Obviously, (A.4) is a quadratic inequality in terms of ‖HΓ∪Γ1
‖F . Using extract

roots formula, we obtain230

‖HΓ∪Γ1
‖F

≤
2
√

1 + δMtr ‖M(H)‖2 +
√

(2
√

1 + δMtr ‖M(H)‖2)2 + 4(1− (δMtr )2)
n3(δMtr )2

(t−1)r ‖HΓc‖2∗
2(1− (δMtr )2)

≤ 2

(1− δMtr )
√

1 + δMtr
‖M(H)‖2 +

√
n3δ

M
tr√

(1− (δMtr )2)(t− 1)

‖HΓc‖∗√
r

,
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where the last inequality is based on the fact that
√
x2 + y2 ≤ |x|+|y|. Therefor

we prove (A.1). Since we also have ‖H‖F ≤ ‖HΓ∪Γ1‖F , it is easy to induce (9),

which completes the proof.

Appendix B. Proof of Lemma 3.3

Proof. Since X̂ is the minimizer of (4), we have

‖X̂‖∗ +
1

2λ
‖y −M(X̂ )‖22 ≤ ‖X‖∗ +

1

2λ
‖y −M(X )‖22.

Also because X̂ = H + X and y = M(X ) + w, so the above inequality is

equivalent to

‖M(H)‖22 − 2〈w,M(H)〉 ≤ 2λ(‖X‖∗ − ‖X̂‖∗).

It follows from the Cauchy-Schwarz inequality and assumption ‖w‖2 ≤ ε that

‖M(H)‖22 − 2〈w,M(H)〉 ≥ ‖M(H)‖22 − 2ε‖M(H)‖2. (B.1)

On the other hand, we have235

‖X̂‖∗ − ‖X‖∗ = ‖(H + X )Γ‖∗ + ‖(H + X )Γc‖∗ − (‖XΓ‖∗ + ‖XΓc‖∗)

≥ (‖XΓ‖∗ − ‖HΓ‖∗) + (‖HΓc |∗ − ‖XΓc‖∗)− (‖XΓ‖∗ + ‖XΓc‖∗)

≥ ‖HΓc |∗ − ‖HΓ|∗ − 2‖XΓc |∗. (B.2)

Combining (B.1) and (B.2) and by a simple calculation, we get (10). As to

(11), it is obtained by subtracting the term ‖M(H)‖22 from the left-hand side

of (10).

Appendix C. Proof of Theorem 4.1

Proof. For convenience, let

T = supp(sXmax(r)
)
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be an index set with cardinality |T | ≤ r. In addition, if we set H = X̂ −X and240

rank(bdiag(H̄Γ)) = r̄, then by inequality (9) and (10), we would get

‖M(H)‖22 − 2ε‖M(H)‖2 ≤ 2λ(‖HΓ‖∗ − ‖HΓc‖∗ + 2‖XΓc‖∗)
(a)
= 2λ

(
1

n3
‖ bdiag(H̄Γ)‖∗ − ‖HΓc‖∗ + 2‖XΓc‖∗

)
≤ 2λ

(√
r̄

n3
‖bdiag(H̄Γ)‖F − ‖HΓc‖∗ + 2‖XΓc‖∗

)
(b)

≤ 2λ
(√
r‖HΓ‖F − ‖HΓc‖∗ + 2‖XΓc‖∗

)
≤ 2

√
rλ

(
η1‖M(H)‖2 +

η2√
r
‖HΓc‖∗

)
− 2λ‖HΓc‖∗ + 4λ‖XΓc‖∗

= 2
√
rη1λ‖M(H)‖2 − 2(1− η2)λ‖HΓc‖∗ + 4λ‖XΓc‖∗,

where (a) follows from (7) and (b) is due to (6), (8). The assumption (12)

implies that

1−η2 = 1−
√
n3δ

M
tr√

(1− (δMtr )2)(t− 1)
> 1−

√
n3

√
(t− 1)/(n2

3 + t− 1)√
(1− (t− 1)/(n2

3 + t− 1)) (t− 1)
= 0,

and hence

‖M(H)‖22 − 2(
√
rη1λ+ ε)‖M(H)‖2 − 4λ‖XΓc‖∗ ≤ 0,

which implies that

(
‖M(H)‖2 − (

√
rη1λ+ ε)

)2 ≤ (
√
rη1λ+ ε)2 + 4λ‖XΓc‖∗

≤
(√

rη1λ+ ε+
2λ‖XΓc‖∗√
rη1λ+ ε

)2

≤
(√

rη1λ+ ε+
2‖XΓc‖∗√

rη1

)2

.

Therefore, we conclude that (13) holds. Plugging (13) into (11), by ‖HΓ‖∗ ≤
√
r‖HΓ‖F , we get

‖HΓc‖∗ ≤ ‖HΓ‖∗ + 2‖XΓc‖∗ +
ε

λ

(
2‖XΓc‖∗√

rη1
+ 2
√
rη1λ+ 2ε

)
≤
√
r‖HΓ‖F +

2(
√
rη1λ+ ε)√
rη1λ

‖XΓc‖∗ +
ε

λ
(2
√
rη1λ+ 2ε).(C.1)
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Combining (9), (13) and (C.1) yields245

‖HΓ‖F ≤ η1

(
2‖XΓc‖∗√

rη1
+ 2
√
rη1λ+ 2ε

)
+
η2√
r

(√
r‖HΓ‖F +

2(
√
rη1λ+ ε)√
rη1λ

‖XΓc‖∗ +
ε

λ
(2
√
rη1λ+ 2ε)

)
= η2‖HΓ‖F +

2
√
rη1(1 + η2)λ+ 2η2ε

rη1λ
‖XΓc‖∗ + (η1 +

ε

λ
)(2
√
rη1λ+ 2ε).

Note that 1− η2 > 0, so the above inequality leads to

‖HΓ‖F ≤
2
√
rη1(1 + η2)λ+ 2η2ε

rη1(1− η2)λ
‖XΓc‖∗ +

(η1λ+ ε)(2
√
rη1λ+ 2ε)

(1− η2)λ
. (C.2)

To prove (14), application of (C.1) and (C.2) yields

‖H‖F ≤ ‖HΓ‖F + ‖HΓc‖F

≤ (
√
n3r + 1)‖HΓ‖F +

2
√
n3(
√
rη1λ+ ε)√
rη1λ

‖XΓc‖∗ +
ε

λ

√
n3(2
√
rη1λ+ 2ε)

≤ (
√
n3r + 1)

(
2
√
rη1(1 + η2)λ+ 2η2ε

rη1(1− η2)λ
‖XΓc‖∗ +

(η1λ+ ε)(2
√
rη1λ+ 2ε)

(1− η2)λ

)
+

2
√
n3(
√
rη1λ+ ε)√
rη1λ

‖XΓc‖∗ +
ε

λ

√
n3(2
√
rη1λ+ 2ε)

≤
2
√
rη1(2

√
n3r + 1 + η2)λ+ 2(

√
n3r + η2)ε

rη1(1− η2)λ
‖XΓc‖∗

+
(
√
n3r + 1)η1λ+ (

√
n3r −

√
n3η2 +

√
n3 + 1)ε

(1− η2)λ(2
√
rη1λ+ 2ε)−1

,

where the second inequality is because of ‖HΓc‖F = 1√
n3
‖ bdiag(H̄Γc)‖F ≤

1√
n3
‖ bdiag(H̄Γc)‖∗ =

√
n3‖HΓc‖∗. So far, we have completed the proof.
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