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Abstract

We define a unique geometrical poisson bracket for classical physics
and construct geometrical quantum operators.

1 Introduction.

Consider a particle moving in a complex bundle E over spacetimeM, which lo-
cally trivializes as as Cn×V where V is an open set in R, and consider the vector
valued sections (vi(x))i:1...n which take values in the flat fiber which is endowed
with the sesquilinear Cartan metric and Cn carries an irreducible representation
of a compact gauge G with generators τa. The vector sections are prone to lo-
cal gauge transformations which require the introduction of a gauge connection
Aaµ(x). We shall do two things in this short paper: (a) we choose our kinematical
variabls as such that everyghing is poored into manifestly quantum mechanical
form with the standard Heisenberg commutation relations apart from a factor
of ~ (b) the equations of motion are defined in a manifestly covariant fashion
without recourse to any slicing or simplectic geomtry whatsoever. Everything
is expressed in terms of evolution of the worldline with as physical momentum,
the four momentum of the particl itself. The “Hamitonian” is of first order
in the momenta and of rather trivial nature. Technically, we shall not need
a single worldline but a slight “thickening” thereof meaning that we consider
worldvolumes γ : (t, ~s) → M where, say, ~s ∈ (−ε,+ε)3 and of course we are
only interested in teh equation at s = 0. Nothing depends upon that thickening
but it is mandatory to make the math well defined. We shall be interested here
with the time evolution of bundle vector sections. Before we proceed, let us
make the following basic observations: as mentioned alreqdy, you should regard
the wordline as an immersion γ : R × (−ε,+ε)3 → M and the momentum as
the push forward of ∂t which we denote by (∂t)?. Given that we shall work with
functions f, g :M→ C we can define the linear operator γf by

[(γf )(g)](t, ~s) := f(γ(t, ~s))g(γ(t, ~s))

and

[pγg](t, ~s) := i
d

dt
g(γ(t, ~s)).
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We have moreover,
γf (gh) = γf (g)γf (h)

and

i[(∂t)(γfg)](t, ~s) := i[(∂t)?f ](t, ~s)g(γ(t, ~s)) + if(γ(t, ~s))[(∂t)?(g)](t, ~s).

This suggests to extend the definition of the momentum in this way to functions
R× (−ε,+ε)3 → R× (−ε,+ε)3. The same comment holds for γf . In this vein,

[γgγfh](t, ~s) = g(γ(t, ~s))f(γ(t, ~s))h(γ(t, ~s))

[pγγfh](t, ~s) := i∂t(f(γ(t, ~s))h(γ(t, ~s)))

as well as
[γfpγh](t, ~s) := if(γ(t, ~s))∂th(γ(t, ~s)).

Finally,
[pγpγh](t, ~s) = −(∂t)

2h(γ(t, ~s))

which induces a complex algebra generated by

γg, pγ

where γ varies over all immersions. This algebra is represented by means of
linear operators on the function algebra

B := C∞(R× (−ε,+ε)3)⊗ C∞(M)

which may be given the structure of an Hilbert algebra in the usual L2 sense.
Concretely

[γf , γh] (g) = 0 = [pγ , pγ ] (g), [pγ , γf ] (g) = pγ(f)γ?(g) = γpγ(f)(g)

where γ? is the pull back defined by the immersion γ. Here, the commutation
relations employ the full B action but are understood to apply on f, g, h ∈
C∞(E) and result in an element of C∞(R). So, here we have the standard
Heisenberg commutation relations without ~ of course.

2 Classical dynamics.

Covariant dynamics requires dynamics without “potential energy” terms; there-
fore, any force has to be implemented in the momentum what explains the bun-
dle E . Moreover, according to Einstein, the gravitational field can be gauged
away in some point so that physically every particle is a free one meaning that,
in absence of other force fields, the correct equation is the geodesic equation.
Therefore, in that case, the covariant “Hamiltonian” becomes trivially the mo-
mentum pγ ; indeed

[
D

dt
γf ](g) := [

D

dt
4γf ](g) = [pγ , γf ](g) = γpγ(f)(g)

and

[
D

dt
(∂t)?](g) := [

D

dt
4pγ ](g) = [pγ , pγ ](g) = 0
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where

[
D

dt
4ζ](g) = [

D

dt
, ζ](g).

So, in this view the geodesic equation D
dt (∂t)? = 0 is implemented and the correct

Hamiltonian is pγ . There is nothing more to say really apart from the constraint
g(pγ , pγ) = m2 which is the mass energy relation. In case you consider gauge
fields, the picture becomes slightly more complicated. Here, we are interested in
the action of the Lie algebra on vector sections v(x). We propose as Hamiltonian

H = i(∂t)? −
q

m
γτaAaµ(γ(t,~s))γ̇µ(t,~s)

which is nothing but the gauge covariant derivative along the worline and we
have extend our notion of γ to the action of matrices on vector sections given
by

γτaAaµ(γ(t,~s))γ̇µ(t,~s)v := τaA
a
µ(γ(t, ~s))γ̇µ(t, ~s)v(γ(t, ~s)).

Now, the momenta we shall ve interested in are gauge covariant derivatives in
commuting “space” directions V (γ(t, ~s)) such that [V, (∂t)?] = 0. Hence, we
define

pγ,V := iV − q

m
γτaAaµ(γ(t,~s))V µ(t,~s).

Hence, we propose as equations of motion

g

(
D

dt
pγ , V

)
= w(γ(t, ~s))† [H, pγ,V ]w(γ(t, ~s))

and
Hw(γ(t, ~s)) = 0

where w is again a vector bundle section over M. A small and elementary
computation yields

g

(
D

dt
pγ , V

)
= w(γ(t, ~s))†

(
− q

m
τa(∇A)a[να](γ(t, ~s))γ̇ν(t, ~s)

)
V α(γ(t, ~s))w(γ(t, ~s))

+w(γ(t, ~s))†
(
q2

m2
fabcτcAa,ν(γ(t, ~s))Ab,α(γ(t, ~s))γ̇ν(t, ~s)

)
V α(γ(t, ~s))w(γ(t, ~s))

which is equivalent to the standard classical non abelian Yang Mills equations,
see [1] given that one can safely drop V α from all considerations. Here, I mention
that

[τa, τb] = ifabcτc

and the Cartan metric is just δab. Finally, we must insist upon

g((∂t)?, (∂t)?) = 1

where g is the Lorentzian metric of signature + − −−. This is all what is
allowed in classical physics of point particles really and we now proceed to the
quantum theory. Notice that the dynamical content is completely implied by
the commutator algebra which is precisely the same as in quantum mechanics.
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