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Abstract: In this paper, we study nonassociative algebras which satisfy the following iden-

tities: (xy)z = (yx)z,x(yz) = x(zy). These algebras are Lie-admissible algebras i.e., they

become Lie algebras under the commutator [f, g] = fg − gf . We obtain a nonassociative

Gröbner-Shirshov basis for the free algebra LA(X) with a generating set X of the above va-

riety. As an application, we get a monomial basis for LA(X). We also give a characterization

of the elements of S(X) among the elements of LA(X), where S(X) is the Lie subalgebra,

generated by X, of LA(X).
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§1. Introduction

In 1948, A. A. Albert introduced a new family of (nonassociative) algebras whose commutator

algebras are Lie algebras [1]. These algebras are called Lie-admissible algebras, and they arise

naturally in various areas of mathematics and mathematical physics such as differential geome-

try of affine connections on Lie groups. Examples include associative algebras, pre-Lie algebras

and so on.

Let k〈X〉 be the free associative algebra generated by X . It is well known that the Lie

subalgebra, generated X , of k〈X〉 is a free Lie algebra (see for example [6]). Friedrichs [15]

has given a characterization of Lie elements among the set of noncommutative polynomials. A

proof of characterization theorem was also given by Magnus [18], who refers to other proofs by

P. M. Cohn and D. Finkelstein. Later, two short proofs of the characterization theorem were

given by R. C. Lyndon [17] and A. I. Shirshov [21], respectively.

Pre-Lie algebras arise in many areas of mathematics and physics. As was pointed out by

D. Burde [8], these algebras first appeared in a paper by A. Cayley in 1896 (see [9]). Survey

[8] contains detailed discussion of the origin, theory and applications of pre-Lie algebras in

geometry and physics together with an extensive bibliography. Free pre-Lie algebras had already
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been studied as early as 1981 by Agrachev and Gamkrelidze [2]. They gave a construction of

monomial bases for free pre-Lie algebras. Segal [20] in 1994 gave an explicit basis (called good

words in [20]) for a free pre-Lie algebra and applied it for the PBW-type theorem for the

universal pre-Lie enveloping algebra of a Lie algebra. Linear bases of free pre-Lie algebras were

also studied in [3, 10, 11, 14, 25]. As a special case of Segal’s latter result, the Lie subalgebra,

generated by X , of the free pre-Lie algebra with generating set X is also free. Independently,

this result was also proved by A. Dzhumadil’daev and C. Löfwall [14]. M. Markl [19] gave a

simple characterization of Lie elements in free pre-Lie algebras as elements of the kernel of a

map between spaces of trees.

Gröbner bases and Gröbner-Shirshov bases were invented independently by A.I. Shirshov

for ideals of free (commutative, anti-commutative) non-associative algebras [22, 24], free Lie

algebras [23, 24] and implicitly free associative algebras [23, 24] (see also [4, 5, 12, 13]), by H.

Hironaka [16] for ideals of the power series algebras (both formal and convergent), and by B.

Buchberger [7] for ideals of the polynomial algebras.

In this paper, we study a class of Lie-admissible algebras. These algebras are nonassociative

algebras which satisfy the following identities: (xy)z = (yx)z, x(yz) = x(zy). Let LA(X) be

the free algebra with a generating set X of the above variety. We obtain a nonassociative

Gröbner-Shirshov basis for the free algebra LA(X). Using the Composition-Diamond lemma of

nonassociative algebras, we get a monomial basis for LA(X). Let S(X) be the Lie subalgebra,

generated by X , of LA(X). We get a linear basis of S(X). As a corollary, we show that

S(X) is not a free Lie algebra when the cardinality of X is greater than 1. We also give a

characterization of the elements of S(X) among the elements of LA(X). For the completeness

of this paper, we formulate the Composition-Diamond lemma for free nonassociative algebras

in Section 2.

§2. Composition-Diamond Lemma for Nonassociative Algebras

Let X be a well ordered set. Each letter x ∈ X is a nonassociative word of degree 1. Sup-

pose that u and v are nonassociative words of degrees m and n respectively. Then uv is a

nonassociative word of degree m + n. Denoted by |uv| the degree of uv, by X∗ the set of all

associative words on X and by X∗∗ the set of all nonassociative word on X . If u = (p(v)q),

where p, q ∈ X∗, u, v ∈ X∗∗, then v is called a subword of u. Denote u by u|v, if this is the case.

The set X∗∗ can be ordered by the following way: u > v if either

(1) |u| > |v|; or

(2) |u| = |v| and u = u1u2, v = v1v2, and either

(2a) u1 > v1; or

(2b) u1 = v1 and u2 > v2.

This ordering is called degree lexicographical ordering and used throughout this paper.

Let k be a field and M(X) be the free nonassociative algebra over k, generated by X . Then
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each nonzero element f ∈M(X) can be presented as

f = αf +
∑

i

αiui,

where f > ui, α, αi ∈ k, α 6= 0, ui ∈ X∗∗. Then f , α are called the leading term and leading

coefficient of f respectively and f is called monic if α = 1. Denote by d(f) the degree of f ,

which is defined by d(f) = |f̄ |.
Let S ⊂M(X) be a set of monic polynomials, s ∈ S and u ∈ X∗∗. We define S-word (u)s

in a recursive way:

(i) (s)s = s is an S-word of s-length 1;

(ii) If (u)s is an S-word of s-length k and v is a nonassociative word of degree l, then

(u)sv and v(u)s

are S-words of s-length k + l.

Note that for any S-word (u)s = (asb), where a, b ∈ X∗, we have (asb) = (a(s̄)b).

Let f, g be monic polynomials in M(X). Suppose that there exist a, b ∈ X∗ such that

f̄ = (a(ḡ)b). Then we define the composition of inclusion

(f, g)f̄ = f − (agb).

The composition (f, g)f̄ is called trivial modulo (S, f̄), if

(f, g)f̄ =
∑

i

αi(aisibi)

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, (aisibi) an S-word and (ai(s̄i)bi) < f̄ . If this is the

case, then we write (f, g)f̄ ≡ 0 mod(S, f̄). In general, for p, q ∈M(X) and w ∈ X∗∗, we write

p ≡ q mod(S, w)

which means that p − q =
∑

αi(aisibi), where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, (aisibi) an

S-word and (ai(s̄i)bi) < w.

Definition 2.1([22,24]) Let S ⊂ M(X) be a nonempty set of monic polynomials and the

ordering > defined as before. Then S is called a Gröbner-Shirshov basis in M(X) if any

composition (f, g)f̄ with f, g ∈ S is trivial modulo (S, f̄), i.e., (f, g)f̄ ≡ 0 mod(S, f̄).

Theorem 2.2([22,24]) (Composition-Diamond lemma for nonassociative algebras) Let S ⊂
M(X) be a nonempty set of monic polynomials, Id(S) the ideal of M(X) generated by S and

the ordering > on X∗∗ defined as before. Then the following statements are equivalent:

(i) S is a Gröbner-Shirshov basis in M(X);

(ii) f ∈ Id(S)⇒ f̄ = (a(s̄)b) for some s ∈ S and a, b ∈ X∗, where (asb) is an S-word;
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(iii) Irr(S) = {u ∈ X∗∗|u 6= (a(s̄)b) a, b ∈ X∗, s ∈ S and (asb) is an S-word} is a linear

basis of the algebra M(X | S) = M(X)/Id(S).

§3. A Nonassociative Gröbner-Shirshov Basis for the Algebra LA(X)

Let LA be the variety of nonassociative algebras which satisfy the following identities: (xy)z =

(yx)z, x(yz) = x(zy). Let LA(X) be the free algebra with a generating set X of the variety

LA. It’s clear that the free algebra LA(X) is isomorphic to M(X |(uv)w − (vu)w, w(uv) −
w(vu), u, v, w ∈ X∗∗).

Theorem 3.1 Let S = {(uv)w − (vu)w, w(uv) − w(vu), u > v, u, v, w ∈ X∗∗}. Then S is a

Gröbner-Shirshov basis of the algebra M(X | (uv)w − (vu)w, w(uv) − w(uv), u, v, w ∈ X∗∗).

Proof It is clear that Id(S) is the same as the ideal generated by the set {(uv)w −
(vu)w, w(uv) − w(vu), u, v, w ∈ X∗∗} of M(X). Let f123 = (u1u2)u3 − (u2u1)u3, g123 =

v1(v2v3) − v1(v3v2), u1 > u2, v2 > v3, ui, vi ∈ X∗∗, 1 ≤ i ≤ 3. Clearly, f123 = (u1u2)u3

and g123 = v1(v2v3). Then all possible compositions in S are the following:

(c1) (f123, f456)(u1|(u4u5)u6
u2)u3

;

(c2) (f123, f456)(u1u2|(u4u5)u6
)u3

;

(c3) (f123, f456)(u1u2)u3|(u4u5)u6
;

(c4) (f123, f456)((u4u5)u6)u3
, u1u2 = (u4u5)u6;

(c5) (f123, f456)(u1u2)u3
, (u1u2)u3 = (u4u5)u6;

(c6) (f123, g123)(u1|v1(v2v3)u2)u3
;

(c7) (f123, g123)(u1u2|v1(v2v3))u3
;

(c8) (f123, g123)(u1u2)u3|v1(v2v3)
;

(c9) (f123, g123)(v1(v2v3))u3
, u1u2 = v1(v2v3);

(c10) (f123, g123)(u1u2)(v2v3), u1u2 = v1, u3 = v2v3;

(c11) (g123, f123)v1|(u1u2)u3
(v2v3);

(c12) (g123, f123)v1(v2|(u1u2)u3
v3);

(c13) (g123, f123)v1(v2v3|(u1u2)u3
);

(c14) (g123, f123)v1((u1u2)u3), v2v3 = (u1u2)u3;

(c15) (g123, g456)v1|v4(v5v6)(v2v3);

(c16) (g123, g456)v1(v2|v4(v5v6)v3);

(c17) (g123, g456)v1(v2v3|v4(v5v6));

(c18) (g123, g456)v1(v4(v5v6)), v2v3 = v4(v5v6);

(c19) (g123, g456)v1(v2v3), v1(v2v3) = v4(v5v6).

The above compositions in S all are trivial module S. Here, we only prove the following

cases: (c1), (c4), (c9), (c10), (c14), (c18). The other cases can be proved similarly.

(f123, f456)(u1|(u4u5)u6
u2)u3

≡(u2u1|(u4u5)u6
)u3 − (u′

1|(u5u4)u6
u2)u3

≡(u2u
′
1|(u5u4)u6

)u3 − (u′
1|(u5u4)u6

u2)u3 ≡ 0,
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(f123, f456)((u4u5)u6)u3
, u1u2 = (u4u5)u6 =(u6(u4u5))u3 − ((u5u4)u6)u3

≡(u6(u5u4))u3 − ((u5u4)u6)u3 ≡ 0,

(f123, g123)(v1(v2v3))u3
, u1u2 = v1(v2v3) =((v2v3)v1)u3 − (v1(v3v2))u3

≡((v3v2)v1)u3 − (v1(v3v2))u3 ≡ 0,

(f123, g123)(u1u2)(v2v3), u1u2 = v1, u3 = v2v3 =(u2u1)(v2v3)− (u1u2)(v3v2)

≡(u2u1)(v3v2)− (u2u1)(v3v2) = 0,

(g123, f123)v1((u1u2)u3), v2v3 =(u1u2)u3 = v1(u3(u1u2))− v1((u2u1)u3)

≡v1(u3(u2u1))− v1((u2u1)u3) ≡ 0,

(g123, g456)v1(v4(v5v6)), v2v3 =(v4(v5v6)) = v1((v5v6)v4)− v1(v4(v6v5))

≡v1((v6v5)v4)− v1(v4(v6v5)) ≡ 0.

Therefore S is a Gröbner-Shirshov basis of the algebra M(X |(uv)w − (vu)w, w(uv) −
w(uv), u, v, w ∈ X∗∗). 2
Definition 3.2 Each letter xi ∈ X is called a regular word of degree 1. Suppose that u = vw

is a nonassociative word of degree m, m > 1. Then u = vw is called a regular word of degree m

if it satisfies the following conditions:

(S1) both v and w are regular words;

(S2) if v = v1v2, then v1 ≤ v2;

(S3) if w = w1w2, then w1 ≤ w2.

Lemma 3.3 Let N(X) be the set of all regular words on X. Then Irr(S) = N(X).

Proof Suppose that u ∈ Irr(S). If |u| = 1, then u = x ∈ N(X). If |u| > 1 and u = vw,

then by induction v, w ∈ N(X). If v = v1v2, then v1 ≤ v2, since u ∈ Irr(S). If w = w1w2, then

w1 ≤ w2, since u ∈ Irr(S). Therefore u ∈ N(X).

Suppose that u ∈ N(X). If |u| = 1, then u = x ∈ Irr(S). If u = vw, then v, w are regular

and by induction v, w ∈ Irr(S). If v = v1v2, then v1 ≤ v2, since u ∈ N(X). If w = w1w2, then

w1 ≤ w2, since u ∈ N(X). Therefore u ∈ Irr(S). 2
From Theorems 2.2, 3.1 and Lemma 3.3, the following result follows.

Theorem 3.4 The set N(X) of all regular words on X forms a linear basis of the free algebra

LA(X).
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§4. A Characterization Theorem

Let X be a well ordered set, S(X) the Lie subalgebra, generated by X , of LA(X) under the

commutator [f, g] = fg−gf . Let T = {[xi, xj ]|xi > xj , xi, xj ∈ X} where [xi, xj ] = xixj−xjxi.

Lemma 5.1 The set X
⋃

T forms a linear basis of the Lie algebra S(X).

Proof Let u ∈ X
⋃

T . If u = xi, then ū = xi. If u = [xi, xj ], xi > xj , then u = xixj − xjxi

and thus ū = xixj . Then we may conclude that if u, v ∈ X
⋃

T and u 6= v, then ū 6= v̄. Therefore

the elements in X
⋃

T are linear independent. Since [[f, g], h] = (fg)h−(gf)h−h(fg)+h(gf) =

0 = −[h, [f, g]], then all the Lie words with degree ≥ 3 equal zero. Therefore, the set X
⋃

T

forms a linear basis of the Lie algebra S(X). 2
Corollary 5.2 Let |X | > 1. Then the Lie subalgebra S(X) of LA(X) is not a free Lie algebra.

Theorem 5.3 An element f(x1, x2, · · · , xs) of the algebra LA(X) belongs to S(X) if and only

if d(f) < 3 and the relations xix
′
j = x′

jxi,i, j = 1, 2, · · · , n imply the equation f(x1 + x′
1, x2 +

x′
2, · · · , xs + x′

s) = f(x1, x2, · · · , xs) + f(x′
1, x

′
2, · · · , x′

s).

Proof Suppose that an element f(x1, x2, · · · , xs) of the algebra LA(X) belongs to S(X).

From Lemma 4.1, it follows that d(f) < 3 and it suffices to prove that if u(x1, x2, · · · , xs) ∈
X
⋃

T , then the relations xix
′
j = x′

jxi imply the equation u(x1 + x′
1, x2 + x′

2, · · · , xs + x′
s) =

u(x1, x2, · · · , xs) + u(x′
1, x

′
2, · · · , x′

s). This holds since d(f) < 3 and [x′
i, xj ] = [xj , x

′
i] = 0,

x′
i, xj , 1 ≤ i, j ≤ s.

Let d1 be an element of the algebra LA(X) that does not belong to S(X). If d̄1 = xixj

where xi > xj , then let d2 = d1 − [xi, xj ]. Clearly, d2 is also an element of the algebra LA(X)

that does not belong to S(X). Then after a finite number of steps of the above algorithm, we

will obtain an element dt whose leading term is ut where ut = xpxq, xp ≤ xq. It’s easy to see

that in the expression

dt(x1 + x′
1, x2 + x′

2, · · · , xs + x′
s)− dt(x1, x2, · · · , xs)− dt(x

′
1, x

′
2, · · · , x′

s)

the element x′
qxp occurs with nonzero coefficient. 2
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