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Abstract: In this paper, we study nonassociative algebras which satisfy the following iden-
tities: (xy)z = (yz)z,x(yz) = x(zy). These algebras are Lie-admissible algebras i.e., they
become Lie algebras under the commutator [f,g] = fg — gf. We obtain a nonassociative
Grébner-Shirshov basis for the free algebra LA(X) with a generating set X of the above va-
riety. As an application, we get a monomial basis for LA(X). We also give a characterization
of the elements of S(X) among the elements of LA(X), where S(X) is the Lie subalgebra,
generated by X, of LA(X).
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81. Introduction

In 1948, A. A. Albert introduced a new family of (nonassociative) algebras whose commutator
algebras are Lie algebras [1]. These algebras are called Lie-admissible algebras, and they arise
naturally in various areas of mathematics and mathematical physics such as differential geome-
try of affine connections on Lie groups. Examples include associative algebras, pre-Lie algebras
and so on.

Let k(X) be the free associative algebra generated by X. It is well known that the Lie
subalgebra, generated X, of k(X) is a free Lie algebra (see for example [6]). Friedrichs [15]
has given a characterization of Lie elements among the set of noncommutative polynomials. A
proof of characterization theorem was also given by Magnus [18], who refers to other proofs by
P. M. Cohn and D. Finkelstein. Later, two short proofs of the characterization theorem were
given by R. C. Lyndon [17] and A. L. Shirshov [21], respectively.

Pre-Lie algebras arise in many areas of mathematics and physics. As was pointed out by
D. Burde [8], these algebras first appeared in a paper by A. Cayley in 1896 (see [9]). Survey
[8] contains detailed discussion of the origin, theory and applications of pre-Lie algebras in

geometry and physics together with an extensive bibliography. Free pre-Lie algebras had already
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been studied as early as 1981 by Agrachev and Gamkrelidze [2]. They gave a construction of
monomial bases for free pre-Lie algebras. Segal [20] in 1994 gave an explicit basis (called good
words in [20]) for a free pre-Lie algebra and applied it for the PBW-type theorem for the
universal pre-Lie enveloping algebra of a Lie algebra. Linear bases of free pre-Lie algebras were
also studied in [3, 10, 11, 14, 25]. As a special case of Segal’s latter result, the Lie subalgebra,
generated by X, of the free pre-Lie algebra with generating set X is also free. Independently,
this result was also proved by A. Dzhumadil’daev and C. Lofwall [14]. M. Markl [19] gave a
simple characterization of Lie elements in free pre-Lie algebras as elements of the kernel of a

map between spaces of trees.

Grobner bases and Grobner-Shirshov bases were invented independently by A.I. Shirshov
for ideals of free (commutative, anti-commutative) non-associative algebras [22, 24], free Lie
algebras [23, 24] and implicitly free associative algebras [23, 24] (see also [4, 5, 12, 13]), by H.
Hironaka [16] for ideals of the power series algebras (both formal and convergent), and by B.
Buchberger [7] for ideals of the polynomial algebras.

In this paper, we study a class of Lie-admissible algebras. These algebras are nonassociative
algebras which satisfy the following identities: (xy)z = (yz)z,z(yz) = z(zy). Let LA(X) be
the free algebra with a generating set X of the above variety. We obtain a nonassociative
Grobner-Shirshov basis for the free algebra LA(X). Using the Composition-Diamond lemma of
nonassociative algebras, we get a monomial basis for LA(X). Let S(X) be the Lie subalgebra,
generated by X, of LA(X). We get a linear basis of S(X). As a corollary, we show that
S(X) is not a free Lie algebra when the cardinality of X is greater than 1. We also give a
characterization of the elements of S(X) among the elements of LA(X). For the completeness
of this paper, we formulate the Composition-Diamond lemma for free nonassociative algebras

in Section 2.

82. Composition-Diamond Lemma for Nonassociative Algebras

Let X be a well ordered set. Each letter z € X is a nonassociative word of degree 1. Sup-
pose that u and v are nonassociative words of degrees m and n respectively. Then uv is a
nonassociative word of degree m + n. Denoted by |uv| the degree of uv, by X* the set of all
associative words on X and by X** the set of all nonassociative word on X. If u = (p(v)q),
where p, g € X*, u,v € X** then v is called a subword of u. Denote u by ul,, if this is the case.

The set X** can be ordered by the following way: u > v if either
(1) ful > Jvf; or

(2) Ju| = |v| and u = ujug, v = v1ve, and either

(2a) uy > vy; or

(2b) u1 = vy and ug > ve.

This ordering is called degree lexicographical ordering and used throughout this paper.

Let k be a field and M (X)) be the free nonassociative algebra over k, generated by X. Then
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each nonzero element f € M(X) can be presented as
f=af+ Z Qi

where f > uj, o, € k,a # 0, u; € X**. Then f, « are called the leading term and leading
coefficient of f respectively and f is called monic if & = 1. Denote by d(f) the degree of f,
which is defined by d(f) = | f|.

Let S C M(X) be a set of monic polynomials, s € S and u € X**. We define S-word (u),

in a recursive way:

() (s)s = s is an S-word of s-length 1;

(79) If (u)s is an S-word of s-length k and v is a nonassociative word of degree I, then
(u)sv and v(u)s

are S-words of s-length k + [.

Note that for any S-word (u)s = (asb), where a,b € X*, we have (asb) = (a(5)d).
Let f,g be monic polynomials in M(X). Suppose that there exist a,b € X* such that
f = (a(g)b). Then we define the composition of inclusion

The composition (f, g) is called trivial modulo (S, f), if
(f9)7 = cilaisbi)

where each a; € k, a;,b; € X*, s5; € S, (a;s:b;) an S-word and (a;(5;)b;) < f. If this is the

case, then we write (f,g); =0 mod(S, f). In general, for p,q € M(X) and w € X**, we write
p=q mod(S,w)

which means that p — ¢ = > a;(a;8;b;), where each «; € k,a;,b; € X*, s; € S, (a;8;b;) an
S-word and (a;(5;)b;) < w.

Definition 2.1([22,24]) Let S C M(X) be a nonempty set of monic polynomials and the
ordering > defined as before. Then S is called a Grébner-Shirshov basis in M(X) if any

composition (f,g) with f,g € S is trivial modulo (S, f), i.e., (f,g)f =0 mod(S, f).

Theorem 2.2(]22,24]) (Composition-Diamond lemma for nonassociative algebras) Let S C
M(X) be a nonempty set of monic polynomials, Id(S) the ideal of M (X) generated by S and

the ordering > on X** defined as before. Then the following statements are equivalent:

(i) S is a Grobner-Shirshov basis in M (X);
(ii) f € 1d(S) = f = (a(35)b) for some s € S and a,b € X*, where (asb) is an S-word;
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(130) Irr(S) = {u € X**|u # (a(35)b) a,b € X*, s € S and (asb) is an S-word} is a linear
basis of the algebra M (X| S) = M(X)/Id(S).

§3. A Nonassociative Grobner-Shirshov Basis for the Algebra LA(X)

Let LA be the variety of nonassociative algebras which satisfy the following identities: (zy)z =
(yz)z,z(yz) = x(zy). Let LA(X) be the free algebra with a generating set X of the variety
LA. It’s clear that the free algebra LA(X) is isomorphic to M (X|(uv)w — (vu)w,w(uv) —

w(vu), u, v, w € X**).

Theorem 3.1 Let S = {(uv)w — (vu)w, w(uv) — w(vw),u > v,u,v,w € X*}. Then S is a
Grobner-Shirshov basis of the algebra M(X| (uwv)w — (vu)w, w(uwv) — w(uw),u,v,w € X**).

Proof Tt is clear that Id(S) is the same as the ideal generated by the set {(uv)w —
(vu)w, w(uwv) — wvu),u,v,w € X**} of M(X). Let fias3 = (uruz)us — (uguyi)us, gias =
v1(vav3) — w1 (vava), U > ug,v2 > vz, un,v; € X1 < i < 3. Clearly, fioz = (ujus)us

and g123 = v1(v2v3). Then all possible compositions in S are the following;:

(c1) (123, f456) (ua |y ugyug ua)us’

(f123, f456)(u1u2|(u4u5)US)ugv

(f1235 f456) (w12 )us | (uy g yug i

(123, f456) ((waus)ue)us> Y12 = (UaUs)ue;
(123, f456) (uyuz)us» (U1U2)U3 = (Ugus)ue;
(f123,9123)(711\”@2@3)712)%,
(f12379123)(711712\1,1(1,2@3))7137
(f12359123)(u1u2 Us|vy (vgvg) ?
(123, 9123) (01 (vav3) Jug > U1U2 = V1 (V203);
(1235 9123) (uyuz) (vawvs) > U1U2 = V1, U3 = V2U3;
(9123, f123)'u1|(u1u2)u3 (v2v3)3

(9123, f123)'u1(v2|(u1u2)u3v3)

(9123, f123)v1(v2v3|(u1u2)u.§)
(gl?3;f123)1)1((u1u2)u3 VU3 = (uluz)us;
(9123=9456)u1\v4@5%) (vaw3)s

(9123, 9456w ( (V20 (vg0g)V3)

( )

( )

91235 9456 )v1 (v203] 0 (v506))

(
(va(vsve))s V2U3 = 1}4(’05’06);

(9123, 9456)1)1 (vav3)s V1 (v2v3) = v4(v5vs).

9123, 9456 ) v,

The above compositions in S all are trivial module S. Here, we only prove the following

cases: (¢1), (ca), (c9), (c10), (c14), (c18). The other cases can be proved similarly.

(1285 f456) (ur |y gy g w2 ) s =201 | (g yug )3 = (U | (ususyus2) s

E(u2ull|(u5u4)ua)u3 - (ull|(u5u4)uau2)u3 =0,
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(f123, f456) ((waus yug)ugs W12 = (uats)ue =(ue(uaus))us — ((usus)ue)us

(91237 f123)v1((u1u2)u3)7v2v3 :(uluz)us = Ul(u3(ulu2)) - Ul((u2U1)U3)

=1 (ug(u2u1)) — ’Ul((’U,Q’U,l)’U,g) = 0,

(9123, 9456 ) vy (va (vsv6))» V2V3 =(V4(V5v6)) = v1((v5V6)v4) — v1(v4(V6VS5))

=v1((vevs)v4) — v1(va(v6V5)) = 0.

Therefore S is a Grobuner-Shirshov basis of the algebra M (X |(uv)w — (vu)w, w(uv) —
w(uv), u,v,w € X**). O

Definition 3.2 Fach letter x; € X is called a reqular word of degree 1. Suppose that u = vw
is a nonassociative word of degree m,m > 1. Then u = vw s called a reqular word of degree m

if it satisfies the following conditions:

(S1) both v and w are regular words;
(52) if v = v1vg, then vy < va;

(S3) if w = wiwa, then wy < ws.
Lemma 3.3 Let N(X) be the set of all regular words on X. Then Irr(S) = N(X).

Proof Suppose that u € Irr(S). If |u] = 1, then u = x € N(X). If |u| > 1 and u = vw,
then by induction v,w € N(X). If v = v1vg, then v; < v, since u € Irr(S). If w = wiws, then
wy < wa, since u € Irr(S). Therefore u € N(X).

Suppose that v € N(X). If |u| =1, then u = z € Irr(S). If u = vw, then v, w are regular
and by induction v, w € Irr(S). If v = viva, then v; < vg, since u € N(X). If w = wyws, then
w1 < wa, since u € N(X). Therefore u € Irr(S). m

From Theorems 2.2, 3.1 and Lemma 3.3, the following result follows.

Theorem 3.4 The set N(X) of all reqular words on X forms a linear basis of the free algebra
LA(X).
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84. A Characterization Theorem

Let X be a well ordered set, S(X) the Lie subalgebra, generated by X, of LA(X) under the
commutator [f,g] = fg—gf. Let T = {[z;, zj]|x; > xj, %, x; € X} where [2;, 2] = xizj — 2.

Lemma 5.1 The set X |UT forms a linear basis of the Lie algebra S(X).

Proof Let u € X JT. If u = x;, then @ = x;. If u = [x;, 2;],2; > x;, then u = x;x; — v 2;
and thus @ = z;z;. Then we may conclude that if u,v € X |JT and u # v, then % # v. Therefore
the elements in X |JT are linear independent. Since [[f,g], h] = (fg)h—(g9f)h—h(fg)+h(gf) =
0 = —[h,[f,g]], then all the Lie words with degree > 3 equal zero. Therefore, the set X |JT
forms a linear basis of the Lie algebra S(X). O

Corollary 5.2 Let |X| > 1. Then the Lie subalgebra S(X) of LA(X) is not a free Lie algebra.

Theorem 5.3 An element f(x1,22, - ,25) of the algebra LA(X) belongs to S(X) if and only

if d(f) < 3 and the relations x;); = xjxi,i,5 = 1,2,--- ,n imply the equation f(z1 + '}, 2 +

'r/27 5I5+I/s):f(xlax25"' ,.IS)—Ff(ZZ?/l,.Ié,'-' ,I;)

Proof Suppose that an element f(zq,x2,---,x5) of the algebra LA(X) belongs to S(X).
From Lemma 4.1, it follows that d(f) < 3 and it suffices to prove that if u(xy,x2,- - ,zs)
X UT, then the relations z;z) = 2/z; imply the equation u(x1 + 27,22 + 73, , Ts + %)
w(zy, 2, - ,xs) + u(zh, xh, - ,2%). This holds since d(f) < 3 and [z}, x;] = [z;,2]] = 0

Vs [

x,x5,1 <1i,j<s.

Let d; be an element of the algebra LA(X) that does not belong to S(X). If d; = x;;
where x; > x;, then let do = dq — [2;,2,]. Clearly, ds is also an element of the algebra LA(X)
that does not belong to S(X). Then after a finite number of steps of the above algorithm, we
will obtain an element d; whose leading term is u; where uy = x4, 7, < 4. It’s easy to see
that in the expression

! ! ! ! ! !
dt(xl +:E17:I:2 +:E27" s +J;S) _dt($1,$2,' o ,.’I]S) _dt($17x27' o ,.’I]S)
the element x’qxp occurs with nonzero coefficient. O
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