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Abstract: Let G be an undirected graph with n vertices in which a robot is placed at a

vertex say v, and a hole at vertex u and in all other (n − 2) vertices are obstacles. We refer

to this assignment of robot and obstacles as a configuration Cv
u of G. Suppose we have a one

player game in which the robot or obstacle can be slide to an adjacent vertex if it is empty

i.e. if it has a hole. The goal is to take the robot to a particular destination vertex using

minimum number of moves. In this article, we give the minimum number of moves required

for the motion planning problem in Lexicographic products of some graphs. In addition,

we proved the necessary and sufficient condition for the connectivity of the lexicographic

product of two graphs.
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§1. Introduction

Given a graph G, with a robot placed at one of it’s vertices and movable obstacles at some

other vertices. Assuming that we are allowed to slide the robot and obstacles to an adjacent

vertex if it is empty. Let u, v ∈ V (G), and suppose that the robot is at v and the hole at u and

obstacles at other vertices we refer to this as a configuration Cv
u. Now we use u

r←− v and u
o←− v

to denote respectively, the robot move and the obstacle move from vertex v to an adjacent

vertex u where u, v ∈ E(G). A simple move is referred to as moving an obstacle or the robot

to an adjacent empty vertex while a graph G is k-reachable if there exists a k-configuration

such that the robot can reach any vertex of the graph in a finite number of simple moves. The

objective is to find a minimum sequence of moves that takes the robot from (source) vertex p

to a (destination) vertex t.

For two vertices u, v ∈ V (G), let dG(u, v) denotes the distance between u and v in G. Most

of the distances used in this article are in G so we use d(u, v) instead of dG(u, v) to represent

the distance between the vertices u and v in G. We denote the complete, complement of a

complete, cycle, path graph and complete graph minus one factor on n vertices by Kn, Kn, Cn,

Pn and Kn − I respectively.

The motion planning problem in graph was proposed by Papadimitriou et al [9] where it

was shown that with arbitrary number of holes, the decision version of such problem is NP-
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complete and that the problem is complex even when it is restricted to planar graphs. They

also gave time algorithm for trees. The result in [9] was improve in [2]. Robot motion planning

on graphs (RMPG) is a graph with a robot placed at one of its vertices and movable obstacle at

some of the other vertices while generalization of RMPG problem is the Multiple robot motion

planning in graph (MRMPG) whereby we have k different robots with respective destinations.

Ellips and Azadeh [5] studied MRMPG on trees and introduced the concept of minimal solvable

trees. Auletta et al [1] also studied the feasibility of MRMPG problem on trees and gave an

algorithm that, on input of two arrangements of k robots on a tree of order n, decides in

time O(n) whether the two arrangements are reachable from one another. Parberry [8] worked

on grid of order n2 with multiple robots while Deb and Kapoor [4,3] generalized and apply

the technique used in [8] to calculate the minimum number of moves for the motion planning

problem for the cartesian product of two given graphs.

The MRMPG problem of grid graph of order n2 with n2 − 1 robots is known as (n2 − 1)-

puzzle. The objective of (n2− 1)-puzzle is to verify whether two given configuration of the grid

graph of order n2 are reachable from each other and if they are reachable then to provide a

sequence of minimum number of moves that takes one configuration to the other. The (n2−1)-

puzzle have been studied extensively in [7, 8, 10, 11].

Our work was motivated by Deb and Kapoor [3] whereby they gave minimum sequence

of moves required for the motion planning problem in Cartesian product of two graphs having

girth 6 or more. They also proved that the path traced by the robot coincides with a shortest

path in case of Cartesian product graphs of graphs. In this paper, we consider the case of

lexicographic product graphs. Here we give the minimum number of moves required for the

motion planning problem in the Lexicographic product of two graphs say G and H , where G

and H are specified in each of our cases.

1.1 Lexicographic Product of Graphs

Definition 1.1 The lexicographic product G ◦H of two graphs G and H is a graph with vertex

set V (G) × V (H) in which (ui, vj) and (up, vq) are adjacent if one of the following condition

holds:

(i) {ui, up} ∈ E(G);

(ii) ui = up and {vj , vq} ∈ E(H).

The graphs G and H are known as the factors of G◦H . Now onwards G and H are simple

graphs with V (G) = {1, 2, 3, · · · ,m} unless otherwise stated.

Suppose we are dealing with p-copies of a graph G and we are denoting these p-copies of G

by Gi, where i = {1, 2, 3, · · · , p}. Then for each vertex u ∈ V (G) we denote the corresponding

vertex in the ith copy Gi by ui. The girth of a graph G, denoted by g(G) is the length of the

shortest cycle contained in graph G.

Example 1.2 Let G = P2 and H = C4. The graph G ◦H is shown in Figure 1 below.
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Figure 1 P2 ◦C4

Remark 1.3 The Lexicographic product G ◦H , of graphs G and H , is the graph obtained by

replacing each vertex of G by a copy of H and every edge of G by the complete bipartite graph

K[H],[H].

1.2 Connectivity of Lexicographic Product of Two Graphs

Here we aim at proving a corollary which Deb and Kapoor [3] mentioned as concerning the

condition for which the lexicographic product G ◦H is connected.

Proposition 1.4 (See [6]) Suppose that ui and vj are two vertices in G ◦H. Then

d(G◦H)(u
i, vj) =






dH(u, v), if i = j and dG(i) = 0

min{dH(u, v), 2}, if i = j and dG(i) 6= 0

dG(i, j), if i 6= j

Theorem 1.5 Let G and H be two non-trivial graphs. Then G ◦H is connected if and only if

G is connected.

Proof Assume that G ◦H is connected. We only need to show that graph G is connected.

Given that u, v ∈ V (H) and i, j ∈ V (G). Let ui be an arbitrary vertex in G ◦ H . Since

G ◦ H is connected it means that the vertex ui has an edge with at least a vertex in G ◦ H
(especially in one of the factors in the product graph), let this vertex be vj . Next, by definition

of the lexicographic product graph, for ui and vj to have an edge in G ◦H then {i, j} ∈ E(G).

Which implies that there is a path between i and j in G. But ui is an arbitrary vertex in

G ◦ H we conclude that there is a path between each pair of vertices in graph G. Therefore

G is connected. Conversely, suppose that graph G is connected. It suffices us to show that

G ◦H is connected. Since G is connected it implies that for all i, j ∈ V (G) where i and j are

distinct d(i, j) 6= 0. We shall prove this by contradiction. Assume that the graph G ◦ H is

disconnected. If G ◦H is disconnected it means that there exist an arbitrary pair of vertices
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(ui, vj) in G ◦H such that dG◦H(ui, vj) = 0 for all i, j ∈ V (G) and u, v ∈ V (H). Since i and

j are distinct then by Proposition 1.4 we have that dG◦H(ui, vj) = dG(i, j). But dG(i, j) 6= 0

therefore dG◦H(ui, vj) 6= 0 a contradiction. Since the pair (ui, vj) is arbitrary we conclude that

the product graph G ◦H is connected. This completes the proof. 2
§2. Robot Moves in Lexicographic Product of a Graph and Complement of

Complete Graph

Definition 2.1 An edge up, vq in G ◦H is said to be a G-edge if u = v and {p, q} ∈ E(G).

Definition 2.2 Given two graphs G and H. For any up, vq ∈ V (G ◦H),we call the distance

between u and v in H to be the H-distance between up and vq in G ◦H. We use dG(up, vq) and

dH(up, vq) to denote the G-distance and H-distance between up, vq in G ◦H, respectively.

Now when there is no confusion about the graph in question G, we use d(u, v) instead of

dG(u, v) to represent the distance between u and v in G.

In view of the above definition, we now have this proposition.

Proposition 2.3 Given two graphs G and H. Let {i, j}, {j, k} ∈ E(G) and u, v ∈ V (H). Then

dG◦H−ui(vi, uj) = dG◦H(vi, uj).

Proof To prove this, notice that dG◦H−ui(vi, uj) = 1 which is same as dG◦H(vi, uj).

Each vertex set of copy Hi is adjacent to all other vertices in copy Hj for all {i, j} ∈ E(G)

in Lexicographic product graphs. 2
The following two results was given in [4].

Lemma 2.4([4]) Given two graphs G and H. Let {i, j}, {j, k} ∈ E(G) such that {i, k} /∈ E(G)

and u, v, w ∈ V (H). Consider the configuration Cvj

ui of G ◦H. Then we require at least three

moves to move the robot from vj to wk.

Lemma 2.5([4]) Given two graphs G and H. Let u, v, w ∈ V (H) such that {u, v}, {v, w} ∈
E(H) and {u,w} /∈ E(H). For some i ∈ V (G), consider the configuration Cvi

ui of G ◦H. Then

minimum of three moves are required to move the robot from vi to wi.

Proposition 2.6 Let G be a graph and H a complement of a complete graph on n vertices.

Let {i, j}, {j, k} ∈ E(G) and u, v ∈ V (H). Then starting from the configuration Cui

vi we need

at least two moves to move the robot to uj.

Proof To move the robot from ui to uj before it, the hole is required to move from vi to

uj . This takes just a move since dG◦H−ui(vi, uj) = 1. Then the move uj r←− ui takes the robot

to uj . Hence the result follows. 2
Corollary 2.7 Let G be any graph and H a complement of a complete graph on n vertices.

Let {i, j}, {j, k} ∈ E(G) and u, v ∈ V (H), where u and v are distinct. Then starting from the

configuration Cvj

vi we need at least three moves to move the robot to vk.
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Proof Observe that {vi, vj}, {vj, vk} ∈ E(G ◦H). For the robot to move to vk before it,

the hole must move from vi to vk. This takes dG◦H(vi, vk) = 2. Then the move vk r←− vj moves

the robot from vj to vk. Hence the result follows. 2
Definition 2.8 A robot move in G ◦H is called a G-move if the edge along which the move

take place is a G-edge.

Definition 2.9 Let T be a sequence of moves that take the robot from up to vq in G◦H. An H-

move (respectively G-move) in T of the robot is said to be a secondary H-move (respectively G-

move) if it is preceded by an H-move (respectively G-move). An H-move (respectively G-move)

in T of the robot is said to be a primary H-move (respectively G-move) if it is preceded by a

G-move (respectively H-move). Also the edge corresponding to a primary G-move (respectively

H-move) in T is said to be a primary G-edge (respectively H-edge). In view of the above

definitions we have the following remark.

Remark 2.10 Given graph G and H a complement of a complete graph on n vertices.

(i) In view of Proposition 2.6, to perform the first move of the robot we require at least 2

moves;

(ii) In view of Corollary 2.7, to perform each secondary move of the robot we require at

least 3 moves.

Theorem 2.11 Let G be a graph and H a complement of a complete graph on n vertices. Let

i, j, k ∈ V (G) and u, v, w ∈ V (H). Then each robot and obstacle moves in a minimum sequence

of moves that takes Cvi

ui to Cwj

uj in G ◦H is a G-move. Also such a minimum sequence involves

exactly a number of G-moves of the robot and 3a moves in total, where a = d(i, j) ≥ 1.

Proof Since {u, v}, {v, w} /∈ E(H) it means dH(ui, vi) = dH(vi, wi) = 0. The first part of

this lemma follows. Now, let T be a sequence of moves that takes Cvi

ui to Cwj

uj in G ◦H . First,

let z be the number of robot moves in T . By Proposition 2.6, we need at least two moves to

accomplish the first move of the robot. Observe that each remaining z − 1 robot moves in T is

a secondary G-move. So by Remark 2.10, we need minimum of 3(z − 1) moves to accomplish

the z − 1 secondary G-moves (since the first robot move places the hole at a preceding copy of

the robot). Now, if wj r←− wa is the zth robot move in T , it will leave the graph G ◦H with the

configuration Cwj

wa . Since dG◦H(wa, uj) = 1, so we need minimum of one more move to take the

hole from wa to uj. Hence T involves minimum 3z moves. Notice that, the expression 3z takes

the minimum value when z is minimum.

Next, let d(i, j) = a and [i = i0, i1, i2, ..., ia = j] be a path of length a connecting i and

j in G. Then [vi = vi0 , vi1 , vi2 , · · · , via = wj ] is a path of length a in G ◦H joining vi to wj .

So the sequence of moves ui o∗

←− vi1 r←− vi0 o∗

←− vi2 r←− vi1 o∗

←− vi3 r←− vi2 o∗

←− vi4 · · · vi
a−2

o∗

←−
via

r←− vi
a−1

o∗

←− uj takes the robot from vi to wj along this path. Also it involves exactly a

number of G-moves of the robot. Furthermore, from the given sequence above obstacle moves

involves exactly 2 + 2(a− 1) moves. Therefore a minimum sequence of moves T that takes the

configuration Cvi

ui to Cwj

uj involves exactly 3a moves. 2
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Theorem 2.12 Let G be a graph and H a complement of a complete graph on n vertices. Let

{i, j} ∈ E(G) and u, v, w ∈ V (H). Then each robot move in a minimum sequence of moves

that takes Cvi

ui to Cwi

wj in G ◦H involves exactly 5 moves.

Proof Combining Proposition 2.6 and Corollary 2.7 gives the result. 2
The above Lemma gives the minimum number of moves required to take the robot from a

given factor to itself and to another factor G ◦H . The proof of this lemma is immediate from

Theorems 2.11 and 2.12.

Lemma 2.13 Consider the graph G ◦H. Let u, v ∈ V (H) with the initial configuration Cvi

ui ,

where G is any graph and H a complement of a complete graph on n vertices. Then

(i) to move the robot from Hi to Hi we require at least 5 G-moves;

(ii) to move the robot from Hi to Hj we require at least 1 + 2(a− 1) + a G-moves. Where

a = d(i, j) ≥ 1.

Corollary 2.14 Let G be a path and H a complement of a complete graph on n vertices. Let

i, j, k ∈ V (G) and u, v, w ∈ V (H). Then each robot and obstacle moves in a minimum sequence

of moves that takes Cvi

ui to Cuj

wj in G ◦H is a G-move. Also such a minimum sequence involves

exactly 3a moves in total, where a = d(i, j) ≥ 1.

Proof The proof of this corollary is immediate from Lemma 2.13. 2
Corollary 2.15 Let G be a path and H a complement of a complete graph on n vertices. Let

i, j ∈ V (G) and u, v, w ∈ V (H). Then each robot move in a minimum sequence of moves that

takes Cvi

ui to Cwi

wj in G ◦H involves exactly 5 moves.

proof The proof of this corollary is immediate from Lemma 2.13. 2
Note that for such a product (Corollaries 2.14 and 2.15) there is no shortest path. Next,

we consider the case when graph G is a complete graph. We would do this by stating the lemma

below without proof.

Lemma 2.16 Let G be complete and H a complement of a complete graph on n vertices. Let

i, j ∈ V (G) and u, v, w ∈ V (H). Then starting from configuration Cvi

ui ,

(i) we require at least 5 moves to move the robot to wi;

(ii) we require a minimum of 2 moves to move the robot to wk.

§3. Robot Moves in Kn − I ◦H

In this section we investigate a case where graph G is a complete graph minus a 1-factor and

H a complete graph or it’s complement.

Lemma 3.1 Let G be a complete graph minus a 1-factor and H a complete graph (or it’s

complement). Let i, j ∈ V (G) but {i, j} /∈ E(G) and u, v ∈ V (H). Then each robot move in a
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minimum sequence of moves that takes Cui

vi to Cuj

vj is a G-move. Also such a minimum sequence

involves exactly 6 moves.

Proof let T be a sequence of moves that takes Cui

vi to Cuj

vj . By Proposition 2.6, two moves is

required to move the robot to an adjacent vertex. Next by Corollary 2.7, four additional moves

is required to take the robot and hole to their required destination, while the remaining move is

the last move of the hole. So, the sequence T of moves vi o∗

←− uk r←− ui o∗

←− vk o∗

←− uj r←− uk o∗

←− vj

takes the robot and the hole to the required destination, and each move in this sequence is a

G-move. Also T involves exactly six moves. 2
Lemma 3.2 Let G be a complete graph minus a 1-factor and H a complete graph (or it’s

complement). Let i, j ∈ V (G) but {i, j} /∈ E(G) and u, v ∈ V (H). Then each robot move in a

minimum sequence of moves that takes Cui

vj to Cuj

vi is a G-move. Also such a minimum sequence

involves exactly 6 moves.

Proof The proof can be drawn in the same line as that of Lemma 3.1. 2
Lemma 3.3 Let G be a complete graph minus a 1-factor and H a complement of a complete

graph with n vertices. Let i, j ∈ V (G) but {i, j} /∈ E(G) and u, v ∈ V (H). Then each robot move

in a minimum sequence of moves that takes Cui

vj to Cvi

vj is a G-move. Also such a minimum

sequence involves exactly 6 moves.

Proof Let T be a sequence of moves that takes Cui

vj to Cvi

vj . By Proposition 2.6, we need

at least 2 moves to accomplish the first G-move of the robot. Notice that the last move of the

robot is also a G-move. Now if vi r←− vm is the last move of the robot, it will leave the graph

G ◦ H with the configuration Cvi

vm and this would require 3 moves. Since dG◦H(vm, vj) = 1

so we need minimum of one more move to take the hole from vm to vj . Therefore T involves

exactly 6 moves. 2
Lemma 3.4 Let G be a complete graph minus a 1-factor and H a complete graph. Let i, j ∈
V (G) but {i, j} /∈ E(G) and u, v ∈ V (H). Then starting from the configuration Cui

uj of G ◦H,

we require at least 3 moves to move the robot to vi.

Proof For the robot to move to vi before it, the hole must be moved from uj to vi. This

takes 2 moves since dG◦H(uj , vi) = 2. Then the move vi r←− ui takes the robot from ui to vi.

Hence the result follows 2
In view of Lemmas 3.1, 3.2 and 3.3 we have the following theorem.

Theorem 3.5 Consider the graph G ◦H. Let G be a complete graph minus a 1-factor and H

a graph. Let i, j ∈ V (G) where {i, j} /∈ E(G) and u, v ∈ V (H). According as the hole is either

at the ith or jth copy of G ◦H. Then to move the robot from

(i) Hi to Hj we require 5 moves if H is either Kn or Kn;

(ii) Hi to Hi we require 5 moves if H is Kn.
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Finally, we have the corollary below which is as a result of Lemma 3.4.

Corollary 3.6 Consider the graph G ◦H. Let G be a complete graph minus a 1-factor and H

a complete graph. Let i, j ∈ V (G) but {i, j} /∈ E(G) and u, v ∈ V (H). Then to move the robot

from Hi to Hi we require 3 moves according as the hole is either at the jth or ith copy of G◦H
respectively.
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