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Abstract 

Following worries that the entropy functions of classical thermodynamics and statistical 

thermodynamics were not equivalent, attention is drawn here to work by Lazar Mayants 

indicating that this is not the case and the two are, in fact, equivalent. 

 

 

 

Introduction 

 

Entropy has proved to present problems for physicists, both professionals and students, 

almost from the moment the idea was introduced. At least part of the problem has been 

associated with the question of what precisely entropy is physically. This is a question which 

has never been answered. However, an added issue has been the existence of something 

called ‘entropy’ in classical physics, where it’s change is directly related to a change of heat, 

and in both statistical thermodynamics and information theory where entropy itself is defined 

in terms of probabilities. Seemingly, the first must be different from the other two and the 

question has been raised [1] as to whether all three may be thought the same, since the basis 

of the first is so different from that of the other two. However, just as studying the ideas of 

relatively unknown people, Wesley [2] and Mandelker [3], has led to a new approach to 

deriving the useful results normally associated with special relativity [4] and the study of the 

ideas of Lazar Mayants [5] has led to a different understanding of the nature of photons and 

light, so further study of the writing of Lazar Mayants [6] leads to a realisation that at least 

the first two functions referred to as entropy – those of classical and statistical 

thermodynamics – are seemingly one and the same. This seems an important point to 

publicise, particularly since it could well lead to a lessening of confusion about the whole 

idea of entropy as far as students especially are concerned. Note though that the new ideas 

presented here originate in the work of Lazar Mayants. 

 

Some Useful Thermodynamic Preliminaries 
 

The starting point for many discussions in classical thermodynamics is usually either the First 

Law or one of the traditional statements of the Second Law – either that due to Clausius or 

that due to Kelvin. It should be remembered from the outset that these two forms of the 

Second Law are at the heart of the subject; any other so-called forms of the Second Law – 
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apart from that due to Carathéodory - are, at best, derivations from one or other of these basic 

statements.  

 

It often proves useful to consider the equation 

d'Q=dU - d'W 

which is a mathematical statement of the First Law and where dU is the difference in internal 

energy between two states and d'Q and d'W are increments of heat and work respectively. If 

an increment of purely mechanical work is considered then d'W = -pdV, where p represents 

pressure and V volume. The dashes indicate that d'Q and d'W are mathematically inexact 

differentials. 

 

After some detailed argument [7], the Second Law may be used to show that the absolute 

temperature, T, is an integrating factor for the inexact differential d'Q and the result is 

normally written symbolically as 

dS = d'Q/T. 

It is this new function S which is termed the entropy in classical thermodynamics although, as 

may be noted from this basic equation, only changes in entropy are introduced in classical 

thermodynamics, not an absolute value. Also, it is clear that this new function is totally 

dependent on a heat change for its existence. 

 

It is straightforward to note that combining the above two equations symbolising the First and 

Second Laws leads to 

TdS = dU + pdV 

provided attention is restricted to cases where the increment of work considered is of the 

purely mechanical kind. 

  

Another function which often crops up in thermodynamics is the Helmholtz Free Energy 

which is defined by 

F = U – TS 

from which may be derived the incremental form 

dF = dU – TdS – SdT. 

Eliminating dU between this equation and that representing the combined First and Second 

Laws leads to 

dF = -pdV – SdT, 

from which it is seen that 
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This is one of the neat steps introduced by Mayants [6] in his discussion of the point to be 

highlighted here. Up to this point, all the formulae and manipulations have been well-known; 
it is the introduction of this relationship which makes what follows feasible.  

 

Relevant Results in Statistical Mechanics 

 

If attention is restricted to the canonical ensemble, the equilibrium value of the probability p 

that the system of the ensemble has energy ε is given by 

𝑝 = 𝑍−1exp(−𝛽𝜀) 
where 



 

 

𝑍 =∑exp(−𝛽𝜀) 

is the partition function. 

It follows that the average or internal energy is given by 

𝑈 =∑
1

𝑍
𝜀𝑒−𝛽𝜀 

and it readily follows [8] that 
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Comparing with the last equation of the previous section, it is seen that 
𝐹 = −𝑘𝑇𝑙𝑛𝑍 

Then 
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Again, from the expression for the probability that the system of the ensemble has energy ε , 

it follows that 

𝑙𝑛𝑝 = −
𝜀

𝑘𝑇
− 𝑙𝑛𝑍 

Therefore, the mathematical expectation of lnp is easily seen to be 

𝑙𝑛𝑝̅̅̅̅̅ = −
𝑈

𝑘𝑇
− 𝑙𝑛𝑍 

Hence, it follows that 

S = klnW 

where 

𝑙𝑛𝑊 = −𝑙𝑛𝑝̅̅̅̅̅ 
These two final equations give a probabilistic interpretation of the entropy normally 

associated with classical thermodynamics and hence with that entropy whose change is 

irrevocably associated with a change in heat at some specified value of the absolute 

temperature. 

 

Conclusion 
It does seem from the above considerations that the entropies of classical thermodynamics 

and of statistical thermodynamics are the same even though their backgrounds are seemingly 

totally different. Although not considered here, the entropy associated with information 

theory would seem to be the same also since it and that of statistical thermodynamics are so 

similar. However, this final point possibly deserves further, more specific, examination.  
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