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Abstract 

 
     We develop two different polynomial-time integer factorization algorith- 

ms. 

     We reduce integer factorization problem to equivalent problem of minim- 

izing a quadratic polynomial with integer coefficients over the integer points 

in a quadratically constrained two-dimensional region. 

      Next, we reduce those minimization problem to the polynomial-time mi- 

nimizing a quadratic   polynomial with  integer  coefficients  over the integer 

points in a special two-dimensional rational polyhedron. 

      Next, we reduce integer factorization problem to the problem of enumer- 

ation of vertices of integer hull of a special two-dimensional rational polyhe-  

dron, solvable in time polynomial by Hartmann's algorithm. 

      Finally, as we show that there exists an   NP-hard minimization problem, 

equivalent to the original minimization problem, we conclude that P = NP.  

                                                                                            

Keywords: integer factorization, integer programming, polynomial-time, NP-

hard, rational polyhedron, integer hull 

 

1.  Introduction 
 

   Cryptography, elliptic curves,  algebraic number theory have been brought 

to bear on integer factorization problem. 

   Until now, no algorithm has been published that can factor in deterministic 

polynomial time. For an ordinary computer the best published asymptotic ru- 

nning time is for the general number field sieve (GNFS) algorithm(see,  e.g.,  

A. K. Lenstra and H. W. Jr. Lenstra [11],  P. Stevenhagen [13]).    

   The purpose of this paper is to develop a polynomial-time integer factoriz- 

ation algorithm, factoring in deterministic polynomial time, and, then,  make 

more general conclusion: P = NP(see, e.g., Cormen et al. [4]).  
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    The plan of this paper is as follows.  In Section 2 we reduce integer facto- 

rization   problem to some   two-dimensional   integer minimization problem 

and show that if there exists a nontrivial divisor of  N,  those divisor is a  mi- 

nimizer of those two-dimensional integer minimization problem, and any m- 

inimizer of those integer minimization  problem is a nontrivial divisor of  N.        

    We analyze complexity of obtained integer minimization problem. 

    In Section 3 we consider equivalent minimization problems with transfor- 

med target functions. 

    In Section 4 we construct  a   special two-dimensional rational polyhedron 

and  reduce those integer minimization problem to the integer   minimization  

problem over  the integer  points in that rational polyhedron and show  that it 

can be solved in time polynomial. 

   We develop a polynomial-time algorithm for integer factorization by   enu- 

meration of vertices of integer hull of that  two-dimensional rational polyhe- 

dron using M. Hartmann's algorithm and selection of the integer points.    

   In Section 5 we show that there exists an NP-hard problem,    equivalent to 

to the original two-dimensional integer minimization problem and since   the 

original problem is equivalent to integer factorization, which is in P, we con- 

clude that P = NP. 

   In Section 6 we make conclusions. 
    

2.  Reduction to the Integer Programming problem.  

     Minimum Principle. Equivalence 
 

     Let us reduce integer factorization problem to some integer  minimization 

problem, so that any minimizer that is found solves integer factorization pro- 

blem.     

     The key idea is to construct the objective function and constraints  so that  

any minimizer satisfies the equation:  xy =  N, and, therefore, is a solution of 

the integer factorization problem. 

      Let us consider the following integer minimization problem: 

 

             minimize     xy 

 

                  subject to    xy  ≥   N,                                                                      (1)                                       

 

                                 2  ≤  x  ≤   N – 1,      

 

                                 N/(N – 1)  ≤  y  ≤   N/2, 



 3

 

                                 x ∈ N,  y ∈ N,  N ∈ N. 

 

     Let Ω := { (x, y) ∈ R
2
  |  xy  ≥  N,  2  ≤  x  ≤  N – 1, N/(N – 1) ≤  y ≤  N/2,  

x ∈ R,  y ∈ R }  for a given N ∈ N. 

     Hence,  Ω
I
  :=  Ω ∩ Z

2
  is a feasible set of the problem (1). 

     It is clear that if there exists a nontrivial solution  of   integer factorization  

problem xy = N, the objective function: f(x, y) = xy  reaches minimum at the 

integer point of the border  xy  =  N of the region Ω and if there exists a non- 

trivial  solution of integer factorization problem, any minimizer of  the prob- 

lem (1) provides a (nontrivial) solution of integer factorization problem. 

     Thus, in this case, any minimizer of the problem  (1)   guarantees solution 

of integer factorization problem and there exists at least one such minimizer. 

 

Theorem 1(Minimum Principle).  If there exists a nontrivial solution of in- 

teger factorization problem,   that solution is a minimizer of problem (1) and 

if there exists a nontrivial solution of integer factorization problem, any min- 

imizer of problem (1) is a nontrivial solution of integer factorization. 

 

Corollary 1(Equivalence).   Problem (1) and integer factorization are equi- 

valent. 

 

    As a result, we obtain the following Integer Factorization Algorithm. 

 

  Algorithm 1(Integer Factorization Algorithm). 

  Input:      A positive integer number N.      

  Output:   A nontrivial divisor of N(if it exists). 

                    Solve the problem (1):  

                    Based on the input data compute a minimizer ( x min,  y min )  

                    of the problem (1).  

                    if (x min y  min   =   N) 

                    then 

                          Return  a nontrivial divisor x min of  N 

                    else         

                          Return  “N is a prime”        
        

    Let us determine the complexity of the problem (1). 

    Despite in general, integer programming is NP-hard or even incomputable   
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(see, e.g., Hemmecke et al. [8]),   for some subclasses of target functions and 

constraints it can be computed in time polynomial.   

    Note that the dimension of the problem (1) is fixed and is equal to 2. 

    A  fixed-dimensional polynomial minimization in integer variables, where 

the objective function is a  convex polynomial and the  convex feasible set is 

described by arbitrary polynomials can be solved in time polynomial(see, e.g 

., Khachiyan and Porkolab [9]). 

    A  fixed-dimensional  polynomial minimization over the integer variables,  

where the objective function  f0(x)    is a quasiconvex polynomial with integer 

coefficients  and where the constraints are inequalities fi (x)  ≤ 0,  i = 1, … , k  

with  quasiconvex polynomials fi(x) with  integer coefficients,  fi :    R
n
 → R, 

fi(x), i = 0, … , k  are polynomials of degree at most  p ≥ 2, can be solved  in  

time polynomial in the degrees and the binary encoding of the coefficients(s-    

ee, e.g., Heinz [7], Hemmecke et al. [8], Lee [10]).  Note that the degrees are 

unary encoded here as well as the number of the constraints. 

    A mixed-integer minimization of a convex function in a  convex, bounded 

feasible set can be done in time polynomial, according to Baes et al. [2], Oe- 

rtel et al. [12].    

    Since  the objective function  f(x, y) = xy  of the problem (1) is a quasico- 

ncave function in the feasible set Ω  of the problem (1), we cannot use the re- 

sults described in Baes et al. [2], Heinz [7], Hemmecke et al. [8], Khachiyan  

and Porkolab  [9], Oertel et al.  [12] in order to solve the problem (1) in time  

polynomial in log(N).   Note that  Ω
I 

  is described by quasiconvex polynomi- 

als, since (– xy  +  N) is a quasiconvex function for x > 0, y > 0.      

    The epigraph form(see e.g., Boyd and Vandenberghe [3], section 4.2.4) of 

the original problem (1) includes a new non-convex constraint, so it does not 

improve complexity as well.  

     In general, since variables x ∈ N, y ∈ N are bounded by the finite bounds  

2  ≤  x  ≤  N –  1, N/(N – 1)  ≤  y  ≤   N/2 , the problem (1) and the respective 

Algorithm 1 are computable  (see, e.g., Hemmecke et al.  [8]),  but rather are  

NP-hard, since the problem (1) is a two-dimensional non-convex quadratica- 

lly constrained quadratic integer minimization problem(see, e.g., Del Pia and 

Weismantel [5], Del Pia et al. [6]).   

      

3.  U-equivalent minimization  
 

      The following results give us a possibility to change the properties of the  

objective function with preservation of the set of minimizers of the   original 

problem.  



 5

 

      Recall that a function U:  R → R,   U = U(u)  is called strictly increasing, if 

for all u1 ∈ R and  u2 ∈ R such that u1 < u2  one has U(u1) < U(u2). 

 

      We give a comprehensive proof of the fact that a conversion of the target 

function using any monotonic strictly increasing function U: R → R, U =  U( 

u) preserves the original set of minimizers.    The idea itself, is given, e.g., in  

Boyd and Vandenberghe [3], section 4.1.3. 

 

Theorem 2.  Let  O  be  the minimization problem:  

 

                     O  = {minimize   g(x)  subject  to  x ∈ G},  g:  X → R,  G ⊆  X. 

 

                     Let  E  be  the minimization problem:  

 

                     E  = {minimize   U(g(x))  subject  to  x ∈ G},  G ⊆  X, 

 

where   U:    R → R,  U = U(u)  is any strictly increasing  function. 

 

                     Let  MO  be a set of minimizers of problem O and  

 

                     let   ME  be a set of minimizers of problem E.   

 

                     Then: 

 

                     MO  =  ME (argmin(O) = argmin(E)) .   

 

Proof.              If     x0  ∈ MO  then    g(x0)  ≤  g(x)   for any    x ∈ G.  Hence,  

U(g(x0))  ≤  U(g(x))  for any x ∈ G, since function U is strictly increasing fu- 

nction, and, therefore: x0 ∈ ME and MO  ⊆  ME.   If   x0 ∈ ME  then  we have: 

U(g(x0))  ≤  U(g(x))   for any x ∈ G, and,  therefore:   g(x0)  ≤  g(x)    for any  

x ∈ G, as otherwise  there exists  y0 ∈ G  such that   g(x0)  >  g(y0)  and since 

function  U  is strictly increasing function, it would mean that      U(g(x0))   > 

U(g(y0)) in contradiction to the original supposition that U(g(x0))  ≤  U(g(x))  

for any x ∈ G.  So, since g(x0)  ≤  g(x) for any  x ∈ G, then x0 ∈ MO and  ME  

⊆  MO and finally: MO  =  ME.                                                                          

                                                                          

Definition 1.   We say that the minimization problem: 
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                       E  = {minimize   U(g(x))  subject  to  x ∈  G} 

 

is  U–equivalent to the minimization problem: 

 

                       O = {minimize   g(x)  subject  to  x ∈ G},  

                        

                       g:  X → R,  G ⊆  X, 

 

where   U:  R → R,  U = U(u)  is some strictly increasing  function. 

 

Corollary 2.   If   E  is U-equivalent to O then E and O  have the same set of 

minimizers: argmin(O) = argmin(E). 

 

Proof.      It follows from Theorem 2 and Definition 1.                                   

 

    Note that monotonic strictly increasing function U:  R → R, U =  U(u) can 

be not continuous. 

 

    Thus, using  U-equivalence we can convert original minimization problem 

into  minimization problem that has objective function with desired properti- 

es, so that both problems, - the original one, and U-equivalent have the same 

set of minimizers and share the same feasible set. 

     Hence, as a result of the  U-equivalent conversion the original feasible set  

and the original set of minimizers remain unchanged,  whereas the  objective 

function is being changed to obtain desired properties (e.g.,  faster minimiza- 

tion), which can consider it(U-equivalence) as a flexible and effective tool. 

 

     U-equivalent conversion can be considered as unary operation defined on    

the set of minimization problems, having the same feasible set. 

 

Example 1. 

 

     O = { Minimize  ax subject to   x ≥ 0,  a > 0, x ∈ R, a ∈ R }, 

     U(u) = bu, ,  b > 0, u ≥ 0, u ∈ R, b ∈ R, 

     E = { Minimize abx subject to x ≥ 0,  a > 0, b > 0, x ∈ R, a ∈ R, b ∈ R }, 

     E is bu-equivalent to O, 

     argmin(O) = argmin(E) =  0, O = E = 0. 

 

Example 2. 
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     O = { Minimize  ax  subject to x ≥ 0,  a > 0, x ∈ R, a ∈ R }, 

     U(u) = bsin(u), ,  b > 0,  0 ≤ u ≤ π/2, u ∈ R, b ∈ R, 

     E = { Minimize bsin(ax) s. t.  x ≥ 0, a > 0, b > 0, x ∈ R, a ∈ R, b ∈ R }, 

     E is bsin(u)-equivalent to O, 

     argmin(O) = argmin(E) =  0, O = E = 0. 

 

Example 3. 

 

     O = { Minimize x
2 
 +  y

2
 + 1  subject to x ∈ R, y ∈ R }, 

     U(u) = log(u), ,  u > 0, u ∈ R, 

     E = { Minimize   log(x
2 
 +  y

2
 + 1 ) subject to x ∈ R, y ∈ R }, 

     E is log(u)-equivalent to O, 

     argmin(O) = argmin(E) =  (0, 0), O = 1, E = 0. 

      

Example 4.                 Suppose, the  problem (1) is the original minimization 

problem.    Let q be  e
u
-equivalent to the problem (1). The objective function 

of the problem (1) is xy, whereas the objective function of q is f(x, y)   =  e
xy

. 

Both problems, due to  the Theorem 2  have the same set of minimizers  (and 

each such minimizer is a solution of the integer factorization problem, accor-

ding to the Theorem 1).  Note that if  N  is not a prime, minimum q =  e
N
.   

 

     Similar example: 

 

     O = { Minimize  xy subject to xy ≥ 6, 2 ≤ x ≤ 5, 3 ≤ y ≤ 5, x ∈ Z, y ∈ Z}, 

     U(u) = e
u
, u ∈ R,  

     E = { Minimize  e
xy

 subject to xy ≥ 6, 2 ≤ x ≤ 5, 3 ≤ y ≤ 5, x ∈ Z, y ∈ Z}, 

     E is e
u
-equivalent to O, 

     argmin(O) = argmin(E) =  (2,3), O = 6, E = e
6
, 

     e = 2.71828...(Euler's number).    

 

     More complicated example: a u
u
-equivalent problem to the problem (1). 

    

     However, no  U-equivalent conversion applied to the original problem (1) 

in order to get a  quasiconvex objective function exists, since if  a function  g  

is quasiconcave and a function U is increasing, then a function  f,  defined as  

f (x) = U(g(x))  is still quasiconcave. 
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     We will use  U-equivalence and results obtained in Section 2 at the end of  

Section 5, in order to prove that P = NP.  

     

4.  Linearization. Polynomial-time Integer Factorization 
 

    It was shown in Del Pia and Weismantel [5] that problem of minimizing a 

quadratic polynomial with integer coefficients over the integer points in a g-  

eneral two-dimensional rational polyhedron is solvable in time bounded by a  

polynomial in the input size and it was further extended to cubic and homog- 

eneous polynomials in Del Pia et al. [6]. 

     

    Del Pia and Weismantel [5] consider the following  problem: 

 

    min{ f
k
 (z) : z ∈ P ∩ Z

n
  }, where  f

k   
is a polynomial function of degree at  

most k with integer coefficients, and P is a rational polyhedron in R
n
. We re- 

call that a rational polyhedron is the set of points that satisfy a system of lin- 

ear inequalities with rational data. According to Del Pia and Weismantel [5], 

this problem can be solved in time polynomial for n = k = 2. 

 

Theorem 3(Theorem 1.1 in Del Pia and Weismantel [5]).   If n = k = 2, pro- 

blem  min{ f
k
 (z) : z ∈  P ∩ Z

n
 }  can be solved in polynomial time.  

 

    Recall that Theorem 3 is given(Theorem 1.1) in generalized form in afore- 

mentioned  Del Pia et al. [6] as well as the following standard definitions are 

clearly mentioned there. 

    For a rational polyhedron P  := {x ∈ R
n
 : Ax ≤ b}, with A∈ Z

mxn
 , b ∈ Z

m
  

the following is defined in Del Pia et al. [6]: "...We use the words size and b- 

inary encoding length synonymously. The size of P is the sum of the sizes of 

A and b. We say that problem can be solved in polynomial time if in time b-  

ounded by a polynomial in the size of A, b and M we can either determine t- 

hat the problem is infeasible, find a feasible minimizer...". (M = 1 in our  ca- 

se).  We use here exactly the same definitions.  We emphasize that according 

to Theorem 3, for a general rational polyhedron,    the only conditions for the 

polynomial-time minimization are the following conditions: "n" and "k" mu- 

st be fixed and n = k = 2: the number of linear inequalities, "m"  (the number 

of facets of P), is not supposed to be fixed to provide the fact of polynomial-

ity in time, and, "m" doesn't belong to the binary encoded input:    it is unary  

encoded. 
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    We are going now to reformulate the original problem  (1)  by replacing it    

with the equivalent problem, having the same target function, but feasible set 

as the integer points in some two-dimensional rational polyhedron(polygon), 

which therefore would be solved in polynomial time according to Theorem 3 

(Theorem 1.1 in Del Pia and Weismantel [5]). 

 

     Let  us  construct the corresponding polyhedron  G,   as  having the edges  

MiMi+1, where the vertex Mi is a point on the portion xy = N of the boundary   

of region Ω of (1), the point, corresponding to x = i,  2 ≤  i  ≤ N – 2, so Mi := 

(i, N/i),  plus edges M2A and  MN-1A, along two other portions(parallel to the  

x  axis and y axis correspondingly) of three portions of the boundary of regi- 

on  Ω, where the vertex A := (N – 1, N/2). Polyhedron G can be described as 

a set of points that satisfy the corresponding system of linear inequalities wi-  

th rational data, each inequality corresponds to one edge of G and can be de- 

scribed in the form:  x + ai y ≤ bi , wherein ai =  – (i + 1)i,   bi =  i(1 – N) – N,  

2 ≤  i  ≤ N – 2, and wherein (x, y) ∈ R
2
,  plus inequalities for edges M2A and 

MN-1A. Thus, m = N – 3 + 2 = N – 1. 

 

     Discrete nature of the problem provides the following advantage. 

  

Theorem 4.     Ω ∩ Z
2

  =  G ∩ Z
2

 . 

 

Proof.   It follows from definitions of  Ω and G and their convexity and con- 

vexity of G follows from the convexity of  Ω.                                                

 

Theorem 5.     Problem (1) is equivalent to the problem: 

 

                        min{ xy :  (x,y)  ∈  G ∩ Z
2

  }                                             (2) 
 

Proof.   It follows from Theorem 4 and problems (1) and (2).                                 

 

Theorem 6(Minimum Principle).  If  N is not a prime, any minimizer of (2)  

is a solution of integer factorization problem for  N and any solution of inte- 

ger factorization problem for N is a minimizer of  (2).   

 

Proof.   It follows from Theorem 1 and Theorem 5.                                        

 

     Note that rational polyhedron G can be constructed e.g. so that it contains 

edge M2MN-1 instead of edges M2A and MN-1A. 
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     Recall that the fact of polynomiality in Theorem 3 does not require that " 

m"(the number of inequalities) must be fixed: just "n" and "k" must be fixed 

in Theorem 3, wherein "m", "n" and "k" are unary encoded.     

     Problem (2) completely satisfies Theorem 3 (Theorem 1.1 in  Del Pia and 

Weismantel [5]), because target function of (2) is a quadratic polynomial wi- 

th integer coefficients, G is a two-dimensional rational polyhedron, and, the- 

refore, (2), (1) and integer factorization problem would be solved in time po-   

lynomial, according to the Theorem 3 (Theorem 1.1 in  Del Pia and Weisma- 

ntel [5]).   It means, according to aforementioned definitions that it would be 

solved in time, bounded by a polynomial in the size of A and b. In fact,  as it 

was mentioned above, according to the clear definition, given in Del Pia et al 

. [6]: "...We say that problem can be solved in polynomial time if in time bo-  

unded by a polynomial in the size of A, b we can either determine that the p- 

roblem is infeasible, find a feasible minimizer...". Thus, the fact of polynom- 

iality in time of problem  (2)  means that it can be solved in time bounded by 

a polynomial in the size of coefficients of the inequalities, describing our po- 

yhedron G, and according to the Theorem 3(Theorem 1.1 in Del Pia and We-

ismantel [5], Theorem 1.1 in Del Pia et al. [6]), this is the case(it is polynom- 

ial in time). As a result, problems (2),  (1) can be solved in time bounded by 

a polynomial in the size of coefficients of the inequalities, describing our po- 

lyhedron G . Thus, polynomiality in time of (2) and (1) is guaranteed by Th- 

eorem 3(n = k =2 in our case), Theorem 5, aforementioned standard definiti- 

ons and by the encoding unarity of the "m". It is important to note that  since 

m =  N – 1, those running time, bounded by   a  polynomial, comprises unary 

encoding, depended on N, parameter  m = N – 1 and binary encoding length, 

depended on N as well.  

 

    The following example demonstrates a fixed-dimensional algorithm,   that 

can be done in time polynomial in unary variables,  including "m", as well as 

in the binary encoding length. In fact, for  aforementioned in section 2 quasi- 

convex polynomial integer minimization problem, similarly, it can be solved 

in time polynomial in the degrees and the binary encoding of the coefficients  

when the dimension is fixed, as well as in "m" (in the number  of constraints, 

see, e,g., Theorem 1.5 in Lee [10], Heinz [7], section 3.1, Theorem 10 in He- 

mmecke et al.  [8].   In another example, again, the corresponding  algorithm 

is polynomial in "m"(in the number of constraints) and in the binary  encodi- 

ng of the coefficients, see, e.g., section 2.1, Theorem 5 in    Hemmecke et al. 

[8].    
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    In both examples, the degrees and the number of constraints are unary  en- 

coded and are not fixed, nevertheless, they can be solved in time polynomial. 

 

     Thus, we obtain the following algorithm: 

 

  Algorithm 2(Integer Factorization Algorithm). 

  Input:      A positive integer number N.                                  

  Output:   A nontrivial divisor of N(if it exists).       

            

                     Solve the problem (2) using algorithms [5]:  

                     Based on the input data compute  

                     a minimizer  ( x min,  ymin )  

                     of the problem (2).  

                     if (x min ymin   =   N) 

                     then 

                          Return  a nontrivial divisor x min of  N 

                     else         

                          Return  “N is a prime”              
   

    Now we are going to make final conclusions about the complexity of Alg- 

orithm 2. 

 

   Three fundamental facts, considered above in full details would lead to the 

fact of polynomiality of the Algorithm 2. 

 

    First, as we mentioned above, according to the standard definition the fact 

of polynomiality in time of problem   (2)  means that it can be solved in time  

bounded by a polynomial in the size of coefficients of the inequalities, descr-  

ibing our polyhedron G and according to the Theorem 3 (Theorem 1.1 in Del 

Pia and Weismantel [5], Theorem 1.1 in Del Pia et al. [6]) this is the case:   it  

is polynomial in time.  

 

    Thus, binary input only is important in making a decision about the fact of 

polynomiality. 

 

     Second, two examples, described above in full details, demonstrate a role 

of unary encoded unfixed parameters, which provide, nevertheless, algorith- 

ms that are not exponential, they are polynomial. 

 

    Third, all coefficients of the inequalities, describing our polyhedron  G are 
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polynomial integer functions of N(Recall them: x + ai y ≤ bi , wherein  ai =  – 

(i + 1)i,   bi =  i(1 – N) – N,  2 ≤  i  ≤ N – 2, (x, y) ∈ R
2
,  plus inequalities for 

edges M2A and MN-1A) of the degree, not greater than two. 

 

    Since the fact of polynomiality in time of problem (2) means that it can be 

solved in time, bounded by a polynomial in the size of G, so in the sum of si-  

zes of A and b(according to the definition, given in Del Pia et al. [6]), Algor-   

ithm 2 does not run in time polynomial in log(N). 

 

    However, it is well known to define the size of rational polyhedron, descr- 

ibed as  G := {x ∈ R
n
 : Ax ≤ b}  as the largest binary encoding size of any of 

the rows of the system Ax ≤ b (see, e.g., section   2.1, Theorem 5 in Hemme- 

cke et al. [8]).  It is clear that under such definition, Algorithm 2 runs in time 

polynomial in log(N) as well, because each such row in our case consist of 2 

coefficients of the corresponding matrix A and one coefficient of b, each co- 

efficient is a polynomial integer functions of N of the degree, not greater  th- 

an two(see aforementioned third fundamental fact). 

 

   Algorithm 2 can be modified to serve the decision problem version as well 

- given an integer N and an integer q with 1 ≤   q   ≤  N, does N have a factor 

d with 1 < d < q? 

   Let   Ωq  := { (x, y) ∈ R
2
 |    xy ≥  N,     2  ≤  x  ≤   q – 1 ,  N/( q  – 1 ) ≤  y  

≤   N/2,  x ∈ R,  y ∈ R } for a given q, 3  ≤  q  ≤  N,  N ∈ N. 

   Let Gq rational polyhedron, corresponding to Ωq. Let  Gq
I   

:
 
=   Gq  ∩ Z

2
.  

   Let us replace (2) by the problem over the feasible set  Gq
I   

and
   
denote the 

modified minimization problem (corresponding to the problem (2)) 
 
as  (3). 

  

  Algorithm 3(Integer Factorization Algorithm). 

  Input:       Positive integer numbers N,  q < N.                               

  Output:    Existence of a factor d with 1 <  d  <  q.   

              

Solve the problem (3) using algorithms [5]:  

                     Based on the input data compute  

                     a minimizer  ( x min,  ymin )  

                     of the problem (3) 

                     if (x min y min   =   N) 

                     then 

                          Return  “The corresponding factor exists”    
                     else         



 13

                          Return  “The corresponding factor does not exist”                              
 

Hence, Algorithm 3 runs in time polynomial in log(N) as well.                          

                               

     Let us develop another integer factorization algorithms that use our  ratio- 

nal  polyhedron G, constructed above by us. 

          

     Note that any solution of integer factorization problem for a non-prime  N  

corresponds to the certain vertex M := (p, d) of G, where both p and d are in- 

tegers.  

 

     Here and further we use rational polyhedron G that contains edge M2MN-1 

instead of edges M2A and MN-1A, so it has inequality description: cix + ai y ≤ 

bi, wherein ci = 1, ai =  – (i + 1)i,  bi =  i(1 – N) – N,  2 ≤  i  ≤ N –  2, cN-1 = N, 

aN-1 = 2(N – 1), bN-1  = N(N + 1),  (x, y) ∈ R
2
. 

 

     We will use the following Theorem 7(aforementioned section   2.1, Theo- 

rem 5 in Hemmecke et al. [8]:  "... when the dimension is fixed, there is only 

a polynomial number of vertices, as Cook et al. [38] showed ..."). 

 

Theorem 7.           Let P = {x ∈ R
n
 : Ax ≤ b} be a rational polyhedron with  

A ∈ Q
mxn  

and let  φ be the largest binary encoding size of any of the rows of 

the system Ax ≤ b.  Let P
I
 =  conv(P∩ Z

n
) be the integer hull of P.   Then the 

number of vertices of P
I
  is at most 2m

n
(6 n

2
φ)

n-1.     

 
     Note that integer hull  P

I  
is a polyhedron: see aforementioned section 2.1   

in Hemmecke et al. [8]:   " ... Maximizing a convex function over the integer 

points in a polytope in fixed dimension can be done in polynomial time.   To 

see this, note that the optimal value is taken on at a vertex of the convex hull 

of all feasible integer points...".  Note as well that all the vertices of P
I 
are the 

integer points. 

 

     Let us apply Theorem 7 to our rational polyhedron G( Let P : = G,   n = 2, 

m = N – 3 + 1 =  N – 2). 

 

     According to it's definition, each vertex  (p, d)  of the set of vertices V(G) 

of our rational polyhedron G includes rational  p  and rational  d, and if  N  is 

not a prime, some of them, corresponding to the solution of integer  factoriz- 

ation problem, includes both integer p and integer d: the integer points. 
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     Due to convexity of our rational polyhedron(polygon) G, its clear that all 

the vertices  V
I
 (G) of G, corresponding to the solution of integer factorizati- 

on problem for a non-prime N, since they all  belong to the boundary of con-  

vex polygon G and since G
I
 ⊆ G, they all belong to the set of vertices V(G

I
 ) 

of the integer hull G
I 
 of G, and regarding complexity of V(G

I
 ), according to 

the mentioned above section 2.1 in Hemmecke et al. [8]:  "... when the dime- 

nsion is fixed there is only a polynomial number of vertices,     as Cook et al. 

[38] showed...". As a result, we get the following Theorem 8. 

 

Theorem 8.  VI
 (G) ⊂ V(G

I
 ). 

 

     On the other hand, as its mentioned in those section   2.1 in Hemmecke et 

al. [8]: "...  Moreover,  Hartmann [64]  gave an algorithm for enumerating all 

the vertices, which runs in polynomial time in fixed dimension...".   

 

     That is why, due to Theorems 7 and 8, by applying aforementioned  Hart-  

mann's  algorithm  for  enumeration of the vertices V(G
I
 ) of  the integer hull  

of our polyhedron G and further selection of points, satisfying integer factor-  

ization condition, we get a polynomial-time algorithm for integer factorizati- 

on, polynomial in log(N), since similar to the aforementioned  theory, descr-  

ribed in   Del Pia and Weismantel [5],   Del Pia et al. [6], the input size cons- 

idered here, according to the Theorem 7 is "... the largest binary encoding si- 

ze of any of the rows of the system  Ax  ≤ b ...",  not   "... the sum of sizes of  

A and b", as its defined in Del Pia and Weismantel [5], Del Pia et al. [6].  

 

   Algorithm 4(Integer Factorization Algorithm). 

   Input:      A positive integer number N.                                  

   Output:   A nontrivial divisor of N(if it exists).   

    

                    while(next vertex) 

                    { 

                    Enumerate vertices V(G
I
 ) of the corresponding 

                    integer hull G
I
 of the polyhedron G by using  

                    Hartmann's algorithm and when a 

                    vertex (p, d) is enumerated, issue verification: 

                    if (pd   =   N) 

                          Return  a nontrivial divisor d of  N 

                    }           

                          Return  “N is a prime”     
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   For clear understanding of  Algorithm 4 we strongly  recommend to under- 

stand all the details given in aforementioned Cook et al. and Hartmann's  pa-  

pers. 

 

   So, the key fact, leading to solution, is the definition of binary input,  given 

in the Theorem 7 as:  "...   the largest binary encoding size of any of the rows  

of the system Ax ≤ b ..." together with aforementioned three fundamental fa- 

cts. 

 

   Recall that according to the standard definition,   the fact of  polynomiality  

means, that the problem can be solved in time,   bounded by a  polynomial in   

the size of  coefficients of the inequalities, describing our polyhedron G,    so 

according to the binary input size only. 

 

   That is why the fact of polynomiality is preserved this time as well and the 

Algorithm 4 runs in time polynomial in log(N) as well.  

     

    Ones again, its extremely important to understand that "N"  is in use in the   

coefficients of the system Ax ≤ b, describing our rational polyhedron G, and, 

on the other hand, "N" means the number of facets of G (the number of ineq- 

ualities of the system  Ax ≤ b).   As a number of facets of G,  "N"  is linearly 

transformed into "m" parameter ("dressed into clothes" of "m",   is inside the 

"m"), "m" is unfixed unary (not a binary!) encoded and the complexity of b- 

oth our algorithms is polynomial-time in unary encoded "m".  
 

     So "N" facets must be treated here as unary encoded "m", and,  again, the 

complexity is polynomial in "m" as its clearly stated in aforementioned pap- 

ers. 

 

      Recall again, that binary input only is important in making a decision ab-  

out the fact of polynomiality in time. 

 

    Thus, factoring is in FP.  The class FP is the set of function problems whi- 

ch can be solved by a deterministic Turing machine in polynomial time (see, 

e.g., Cormen et al. [4]). 

 

Theorem 9.   Integer factorization is in FP. 

          

   Algorithm 4 can be modified to serve the decision problem version as well 
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- given an integer N and an integer q with 1 ≤   q   ≤  N, does N have a factor 

d with 1 < d < q?  

   Let   Ωq  := { (x, y) ∈ R
2
 |    xy ≥  N,   2  ≤  x  ≤   q – 1 ,  N/( q  – 1 ) ≤  y  ≤   

N/2,  x ∈ R,  y ∈ R } for a given q, 3  ≤  q  ≤  N,  N ∈ N. 

   Let Gq rational polyhedron like G, but corresponding to Ωq. 

                                                                              

Algorithm 5(Integer Factorization Algorithm). 

   Input:      A positive integer numbers N,  q < N.                                

   Output:   Existence of a factor d with 1 <  d  <  q.   

    

                    while(next vertex) 

                    { 

                    Enumerate vertices of the corresponding 

                    integer hull of the polyhedron Gq by using  

                    Hartmann's algorithm and when a 

                    vertex (p, d) is enumerated, issue verification: 

                    if (pd   =   N) 

                          Return  "The corresponding factor exists" 

                    }           

                          Return  “The corresponding factor does not exist”              
 

   Hence, Algorithm 5 runs in time polynomial in log(N) as well.         

                  

   Thus, factoring is in P. The class  P  is the class of sets accepted by a deter- 

ministic polynomial-time Turing machines (see, e.g., Cormen et al. [4]). 

 

Theorem 10.   Integer factorization is in P. 

     

    Note that algorithms 2 – 5 can be considered as polynomial-time primality 

tests and the only provably polynomial-time primality test was developed by 

Agrawal et al. [1].     

 

5.  NP-hard Equivalence. P = NP 

    

Theorem 11.  P = NP.      

 

Proof.  Recall that problem (1) is a two-dimensional, non-convex, quadratic- 

ally  constrained  quadratic  integer minimization problem(see, e.g.,   Del Pia 

and Weismantel [5], Del Pia et al. [6]).   
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    If problem (1) is NP-hard, then due to the Theorem 1(Minimum Principle) 

, Corollary 1, it is equivalent to the integer factorization, which is in P, acco- 

rding to the Theorem 10.    Therefore, P = NP, since if there is a polynomial-

time algorithm for any NP-hard problem  then there are polynomial-time  al- 

gorithms for all problems in NP. 

 

    Let us suppose that problem (1) is not an NP-hard problem. 

 

    Note that according to Hemmecke et al.   [8]:  "...    as soon as we add just  

two integer variables, we get a hard problem again: Theorem 2. The problem 

of minimizing a degree-4 polynomial over the lattice points of a  convex po- 

lygon is NP-hard...       This is based on the NP-completeness of the problem  

whether there exists a positive integer x < c with x
2  

≡ a (mod b); see [53, 41] 

..." and note that according to Del Pia et al. [6]: "... Using the same reduction            

as Lemma 1.2, it is possible to show that problem (1) is NP-hard  even when 

n = d = 2, P is a bounded, rational polyhedron, and we add a single quadratic 

inequality constraint (see [18]) ...". 

 

 

   These two fundamental facts would provide a ground to use a degree of ta- 

rget integer polynomials as a parameter, causing guaranteed  NP-hardness of 

at least one of considering two-dimensional, non-convex integer minimizati- 

on problems(therefore, P = NP, since if there is a polynomial-time algorithm 

for any NP-hard problem  then there are polynomial-time  algorithms for  all 

problems in NP).  

 

   Note that of course, it doesn't mean that any quartic  minimization problem 

or problem with a larger exponent is also NP-hard,    and it doesn't mean that 

any quadratic optimization with one quadratic constraint is NP-hard. 

 

   We are going to use U-equivalences' methods, described in Section 3. 

 

   Let us consider the following class of    polynomial   functions with integer  

coefficients: Pn(u) :=  anu
n

  + an-1u
n-1

 + ... + a1u + a0 ,  ai ∈ Z, u > 0, u ∈ R, 

n ∈ N.  Suppose that ai ∈ Z are chosen so that  Pn(u)  is a monotone, strictly 

increasing function. In trivial cases, all ai ≥ 0. 

 

   There exists such a number, n = n0  ≥ 2 that some the following Pn(u)-equ- 
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ivalent problem  (see   Section 3,  Corollary 2) to the original problem (1)   is 

NP-hard (otherwise, for all  n  ≥  2, any such problem is not NP-hard,  which 

cannot be true for unbounded n ∈ N, due to aforementioned two  fundament- 

al facts): 

 

             minimize  Pn(u),  u = xy,  
 

 

                subject to  (x,y) ∈ Ω
I
. 

 

    In simplest case:  Pn(u) := un
, u = xy, . n ∈ N. 

 

      Thus, if problem (1) is NP-hard, then due to the Theorem 1 (Minimum Pr- 

inciple), Corollary 1, it is equivalent to the integer factorization,   which is in 

P, according to the Theorem 10. Therefore,  P = NP, since if there is a polyn- 

omial-time algorithm for any NP-hard problem, then there are polynomial-ti- 

me algorithms for all problems in NP. 

 

    If problem (1) is not NP-hard, then for some n = n0 ≥  2, there exists some 

NP-hard problem, Pn (u)-equivalent to the problem (1), which in its turn, due 

to the Theorem 1(Minimum Principle), Corollary 1, is equivalent to the inte- 

ger factorization, which is in  P, according to the Theorem 10.       Therefore, 

P=NP, since, again, if there is a polynomial-time algorithm for any  NP-hard 

problem, then  there are polynomial-time algorithms for all problems in NP.    
 
    More complicated U-equivalences to the original problem (1): 

 

             a.  A non-convex, non-polynomial target of e
u
-equivalence, conside- 

                  red in Section 3, Example 4. 

             b.  A non-convex, non-polynomial target of Pn (u
u
)-equivalence.     

 

    It is clear that we could construct unlimited number of more and more so- 

phisticated non-convex, non-polynomial problems, U-equivalent to the origi- 

nal problem (1). For example: 

 

              minimize  e
u
,  u = (xy)

z
, z = (xy)

v
, v = xy, 

 

                  subject to  (x,y) ∈ Ω
I
.        
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       Again, since for sure at least one such U-equivalent problem is NP-hard   

then P = NP,    since if there is a polynomial-time algorithm for any NP-hard 

problem then there are polynomial-time  algorithms for all problems in NP. 

 

6.  Conclusions 

 
   We developed two different polynomial-time algorithms for integer  facto- 

rization. 

 
    We associated the problem of factorization of integer number N with a ra- 

tional polygon, given as a list of vertices:   

 

     Mi :=  (i, N/i),  2 ≤  i  ≤ N – 1. 

 

     We considered the corresponding inequality description of that   polygon: 

cix + ai y ≤ bi, wherein ci = 1, ai =  – (i + 1)i,  bi =  i(1 – N) – N,   2 ≤  i  ≤ N –  

2,  cN-1 = N, aN-1 = 2(N – 1), bN-1  = N(N + 1),  (x, y) ∈ R
2
 and applied a poly- 

nomial-time Hartmann's algorithm for enumeration of vertices of the corres- 

ponding integer hull of that polygon and further testing them for  satisfiabili- 

ty to the integer factorization of N. 

 

     We reduced integer factorization problem to equivalent problem of mini- 

mizing a quadratic polynomial with integer coefficients over the integer poi- 

nts in a quadratically constrained two-dimensional region and then to the po- 

lynomial-time minimization over the integer points in the corresponding, sp- 

ecially constructed aforementioned rational polyhedron Mi. 

 

     Since either those original minimization problem or  U-equivalent  probl- 

em is NP-hard problem we concluded that P = NP.    
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