

The Clique Problem
A Polynomial Time and Non-Heuristic Solution

(P=NP)
John Archie Gillis

September 7, 2018

Table of contents

1 Introduction to Clique

2 Description of the New Approach

3 Finding the largest clique (Maximum Clique)

4 Listing all maximal cliques (cliques that cannot be enlarged)

5 Solving the decision problem of testing whether a graph contains a clique larger than

a given size.

6 Finding cliques of a selected size, particularly largest cliques.

7 Clique Finding Functions

Appendix

A – The Traveling Salesman Reduction

B – The Sudoku Reduction
C – Further Background

D - About the Author

E – References

1 Introduction to Clique

In computer science, the clique problem is the computational problem of finding cliques (subsets of

vertices, all adjacent to each other, also called complete subgraphs) in a graph. It has several different

formulations depending on which cliques, and what information about the cliques, should be found.

Common formulations of the clique problem include finding a maximum clique (a clique with the

largest possible number of vertices), finding a maximum weight clique in a weighted graph, listing all

maximal cliques (cliques that cannot be enlarged), and solving the decision problem of testing

whether a graph contains a clique larger than a given size.

The clique problem arises in the following real-world setting. Consider a social network, where the

graph's vertices represent people, and the graph's edges represent mutual acquaintance. Then a clique

represents a subset of people who all know each other, and algorithms for finding cliques can be

used to discover these groups of mutual friends. Along with its applications in social networks, the

clique problem also has many applications in bioinformatics and computational chemistry.

Most versions of the clique problem are hard. The clique decision problem is NP-complete (one of

Karp's 21 NP-complete problems). The problem of finding the maximum clique is stated to be both

fixed-parameter intractable and hard to approximate. Most experts in the field have concluded that

listing all maximal cliques may require exponential time as there exist graphs with exponentially many

maximal cliques.

Most, if not all experts in the field agree that to find a maximum clique, one can systematically inspect

all subsets, but this sort of brute-force search is too time-consuming to be practical for networks

comprising more than a few dozen vertices. Although (prior to the present paper), no polynomial

time algorithm is known for this problem, more efficient algorithms than the brute-force search are

known. For instance, the Bron–Kerbosch algorithm can be used to list all maximal cliques in worst-

case optimal time, and it is also possible to list them in polynomial time per clique.

While a method for computing the solutions to NP-complete problems using a reasonable amount

of time has remained undiscovered (until the publication of the present paper), computer scientists

and programmers (whom have not studied the present paper), still frequently encounter NP-

complete problems. NP-complete problems are often addressed by using heuristic methods and

approximation algorithms. This is a very poor methodology and strategy. In many instances, it could

take decades to make any real progress with these methods, especially when the polynomial solution

that is presented in this paper will have enormous impacts on human health, such as assisting with

discoveries that could aid in treatments for Alzheimer’s, Cancer and many other illnesses. We will

make enormous headway with determining how a protein’s amino acid sequence dictates its three-

dimensional atomic structure. Unfortunately, buy in from the “experts” in this field will be required

before any of these systems stand a chance of being developed, and thus anybody hoping to benefit

from these more sophisticated therapies, will need to wait until the academic community can find

the time in their busy schedules to read the present paper.

The ability to compute solutions for problems such as clique (and many others) has been deemed the

holy grail of computational complexity theory and is one of the Millennium Prize Problems. The

Millennium Prize Problems are seven problems in mathematics that were stated by the Clay

Mathematics Institute in 2000 for which a solution to any individual problem would award the solver

$1,000,000.

2 Description of the New Approach

The present paper provides a novel approach to solving the clique problem(s). The author provides

a means for greatly reducing the time that it will take a computer (or human) to solve for:

1. Maximum clique (a clique with the largest possible number of vertices),

2. Listing all maximal cliques (cliques that cannot be enlarged), and

3. Solving the decision problem of testing whether a graph contains a clique larger than a given

size.

4. Finding cliques of a selected size, particularly largest cliques.

To solve the clique problem, we must discard previous graphing methods completely and start from

scratch with a new strategy. We already know that traditional methods have not worked. Many have

tried for the last 40 years with no success. Many of these individuals were/are very intelligent. The

people are not the problem, the systems are.

Traditional data input methods simply will not work for sorting data into cliques. The present novel

method requires that the data and each of its variables be completely converted into a binary system

so that each and every permutation can be accounted for and compared to each other in a perfectly

and elegantly logical way. In our new method each variable will take on both a single binary place

value, such as 1, 2, 4, 8, 16, 32, 64 etc. and also a numerical value that shows the single variables

relationship to all other variables in the data set.

By organizing our data in this way we can account for EVERY possible permutation that might occur,

no matter what the size of the input. This being stated, the present methods run much deeper than

being a simple conversion to a Boolean Incidence Matrix.

Present methods of working with graphs as seen above, are one of the problems why finding items,

such as a largest clique, or clique(s) of a fixed size is a real problem for computational devices.

Attempting to solve a clique problem of any significant size by utilizing these methods seems a silly

(often impossible) endeavor.

I will use a social network to explain how the present system provides a better method for

communicating with computational devices for the purpose of solving this difficult problem. A system

must be employed that will allow a computer to sort and search for a requested output. Some

algorithms for certain questions and inputs (particularly NP-Class problems) can in many instances

(with many variables) take longer than the age of the universe to run. This is not acceptable.

Mathematicians generally order elements of clique in an ordered progression 1, 2, 3, 4, 5, 6, etc., but

herein lies the problem when trying to find specific size cliques or groups within the larger structure.

The present invention matches a binary place valued number to the variables, which in this example

are names prior to computation.

As an example;

John becomes 1

Sue becomes 2

Bob becomes 4

Jenn becomes 8

Colin becomes 16

Maggy becomes 32

Jim becomes 64

Kelly becomes 128

TABLE 1

The above table provides an example for only one instance of clique. It is a very simple version of

clique with a very small input of only eight individuals. Most instances will have many more variables

to be sorted, but for simplicity we will use this very basic example.

CLIQUE Kelly Jim Maggy Colin Jenn Bob Sue John
128 64 32 16 8 4 2 1

1 John 1 1 1 1 1 1 1 1 255
2 Sue 1 1 1 1 1 1 1 1 255
4 Bob 0 0 1 1 1 1 1 1 63
8 Jenn 0 0 1 1 1 1 1 1 63
16 Colin 0 0 0 1 1 1 1 1 31
32 Maggy 0 0 1 0 1 1 1 1 47
64 Jim 0 1 0 0 0 0 1 1 67
128 Kelly 1 0 0 0 0 0 1 1 131

131 67 47 31 63 63 255 255

In the provided example of Table 1; John has been assigned the binary variable 1 and Sue 2. John and

Sue are then further assigned the number 255. 255 shows their relationship to themselves, each other

and everybody else in the data set.

By following this logic, we can also see that IF an individual is assigned a number 254, 253, 251, 247,

239, 223, 191 or 127, then they will be friends with six people, themselves and enemies with one. We

can see this clearly in the binary representations. 11111110, 1111101, 11111011, 11110111, 11101111,

11011111, 10111111, 01111111. These binary numbers represent both themselves and all their

friendships within the data set. A high or low number doesn’t mean that you have more or less friends,

but it instead tells us exactly who your friends are. This will be useful when we begin sorting and

filtering for requested outputs.

Although it is a bit confusing, we must sort the binary numbers into nine specific groupings or levels

for the system to work. The groups are:

1. Binary numbers with eight 1’s and zero 0’s or Level 8 of 8.

2. Binary numbers with seven 1’s and one 0 or Level 7 of 8.

3. Binary numbers with six 1’s and two 0’s or Level 6 of 8.

4. Binary numbers with five 1’s and three 0’s or Level 5 of 8.

5. Binary numbers with four 1’s and four 0’s or Level 4 of 8.

6. Binary numbers with three 1’s and five 0’s or Level 3 of 8.

7. Binary numbers with two 1’s and six 0’s or Level 2 of 8.

8. Binary numbers with one 1’s and seven 0’s or Level 1 of 8.

9. Binary numbers with zero 1’s and eight 0’s or Level 0 of 8.

TABLE 2

8	on/0	off 7	on/1	off 6	on/2	off 5	on/3	off 4	on/4	off
255 127 63 237 31 124 211 15 85 149 204

191 95 238 47 143 213 23 86 150 209
223 111 243 55 151 214 27 89 153 210
239 119 245 59 155 217 29 90 154 212
247 123 246 61 157 218 30 92 156 216
251 125 249 62 158 220 39 99 163 225
253 126 250 79 167 227 43 101 165 226
254 159 252 87 171 229 45 102 166 228

175 91 173 230 46 105 169 232
183 93 174 233 51 106 170 240
187 94 179 234 53 108 172
189 103 181 236 54 113 177
190 107 182 241 57 114 178
207 109 185 242 58 116 180
215 110 186 244 60 120 184
219 115 188 248 71 135 195
221 117 199 75 139 197
222 118 203 77 141 198
231 121 205 78 141 201
235 122 206 83 147 202

3	on/5	off 2	on/6	off 1	on/7	off 0	on/8	off
204 7 67 140 3 96 1 0
209 11 69 145 5 129 2
210 13 70 146 6 130 4
212 14 73 148 9 132 8
216 19 74 152 10 136 16
225 21 76 161 12 144 32
226 22 81 162 17 160 64
228 25 82 164 18 192 128
232 26 84 168 20
240 28 88 176 24

35 97 193 33
37 98 194 34
38 100 196 36
41 104 200 40
42 112 208 48
44 131 224 65
49 133 66
50 134 68
52 137 72
56 138 80

TABLE 3 (Simply shows the distribution in table 2 as its bell curve).

15
23
27
29
30
39
43
45
46
51
53
54
57
58

31 60 7
47 71 11
55 75 13
59 77 14
61 78 19
62 83 21
79 85 22
87 86 25
91 89 26
93 90 28
94 92 35
103 99 37
107 101 38
109 102 41
110 105 42
115 106 44
117 108 49
118 113 50
121 114 52
122 116 56
124 120 67
143 135 69
151 139 70
155 141 73
157 141 74
158 147 76
167 149 81
171 150 82

63 173 153 84 3
95 174 154 88 5
111 179 156 97 6
119 181 163 98 9
123 182 165 100 10
125 185 166 104 12
126 186 169 112 17
159 188 170 131 18
175 199 172 133 20
183 203 177 134 24

1111 187 205 178 137 33
1111 189 206 180 138 34
0111 190 211 184 140 36
1011 207 213 195 145 40
1101 215 214 197 146 48
1110 219 217 198 148 65
1111 221 218 201 152 66
0111 222 220 202 161 68
1011 231 227 204 162 72
1101 235 229 209 164 80
1110 127 237 230 210 168 96 1
0111 191 238 233 212 176 129 2
1011 223 243 234 216 193 130 4
1101 239 245 236 225 194 132 8
1110 247 246 241 226 196 136 16
0011 251 249 242 228 200 144 32
0101 253 250 244 232 208 160 64
0110 255 254 252 248 240 224 192 128 0

For simplicity, we will break the binary system into what we will call “Levels # of #”.

As per the TABLE 2 and 3, the first column with the number 255 will be classified as a Level 8 of 8

number. The 8 simply represents the number of “1’s or ON’s” that the output number will contain,

when represented in its binary form. We could also call it an “8 ON/0 OFF” number. This means

that any individual with this number will belong to every clique, be friends with everybody and if they

share this number with another they will all have the same exact number of friends, be friends with

themselves and each other. It also means that they will belong to any grouping of smaller cliques as

well. If we are to look for groupings or cliques of three for example, anyone with the number 255

will need to be automatically included.

The second column will be classified as Level 7 of 8 numbers. There are 8 of these numbers (127,

191, 223, 239, 247, 251, 253, 254). This means that anybody with one of these numbers is friends with

six people, themselves (one) and non-friends or enemies with one. Each specific number actually tells

us exactly whom their friends and enemies are.

The third column will be classified as Level 6 of 8 numbers. There are 28 of them (63-252).

The fourth column will be classified as Level 5 of 8 numbers. There are 56 of them (31-248).

The fifth column will be classified as Level 4 of 8 numbers. There are 70 of them (15-240).

The sixth column will be classified as Level 3 of 8 numbers. There are 56 of them (7-224).

The seventh column will be classified as Level 2 of 8 numbers. There are 28 of them (3-192).

The eighth column will be classified as Level 1 of 8 numbers. There are 8 of them (8-128).

The ninth column will be classified as a Level 0 of 8 number. There is 1 of them (0).

Searching out various cliques gets more and more complicated as we get closer and closer to a 50/50%

distribution. For example, in a data set of eight people, if everyone were to have 4 different friends

and four different enemies, then we would be at our maximum complexity with 70 numbers at the

level 4 of 4. Level 5 of 8, 6 of 8, 7 of 8 and 8 of 8 might be complicated, but we can alternatively look

for enemies rather than friends if we need to, which may simplify these levels. As an example; 3 or

0000 0011 will be a sub-level number to any binary digit with two ones at the end 0000 0011. Some

examples are 7 (0000 0111), 67 (0100 0011), 15 (0000 1111), 127 (0111 1111), 256 (1111 1111) and many

more!

An individual that has four friends occur (3 friends + him/herself) would be in a LEVEL 4 of 8. Any

LEVEL 8 of 8 individuals would obviously be friends with the exact same four people, because

logically LEVEL 8 of 8 individuals are friends with everybody. Again this would hold true for the

other levels as well, but becomes slightly more complex.

The provided grouping examples will be the same for any eight variable clique, but if the data set for

input is larger or smaller then 8 people we obviously need to adjust the numbers to fit the sizes to be

input. If ten people are to be sorted into various groups for example, we will use numbers ranging

from 0-512. For example; 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512. Each individual is assigned one of

these binary numbers and in the case of a larger data set binary numbers with nine 1’s, ten 1’s, etc.,

will be required.

Additional numbers will obviously need to be added for organizing larger data sets. No matter what

size the data set, we will want to break up the data into groupings of binary numbers with equal

numbers of 1’s (or use a function to find them). Thus we may have groupings called Level 10 of 10

(11 1111 1111) or Level 8 of 10 (00 1111 1111), (11 1111 0101), (11 10011 1111) etc. We might even

have massive data sets and levels such as Level 82 of 1000 or Level 762 of 2,300,000,000 (number of

Facebook users), etc.

We then create a grid which assigns a 1 for friendships and a 0 for enemies/non-friends. We can then

create a binary representation of each individual’s relationship to every other individual, which

provides us with all the possible friend permutations, both large and small. Essentially an additional

number is assigned to each person that includes their position in the group! We can then use these

numbers to sort our data into whatever sized clique(s) that we desire. It also becomes easy to find the

largest clique, by simply sorting numbers rather than resorting to a brute force methodology.

3 Finding the largest clique (Maximum Clique)
We will order the following questions into a computer algorithm:

1. What is the largest number in the Level 8 of 8 number set?

 In the provided example our largest number is 255.
 Note:

 (It is the only number in that set)

2. Is there more than one identical largest number output?

 In the provided example this answer is Yes.

3. How many identical largest numbers are there?

 In the provided example there are two outputs of 255.

For this to have been our largest clique, we would have needed eight 255’s. We only have two

and thus this cannot be the largest clique. We did discover that John and Sue had the most

friends in common, but that was not what we were looking to find.

4. Does one or more of the output numbers belong to the “7 ON/1 OFF” (which is the

same as the Level 7 of 8) category? In the present example the answer is no. (If even just

one of these numbers were to be an output and six 255, numbers, we would have found a

largest clique of seven. This is NOT the case in this example). You can start to see however

how our system works.

5. Does one or more of the output numbers belong to the “6 ON/2 OFF” (which is the

same as the Level 6 of 8) category? We can see that we have an output of two of these

numbers. 63 (C)-Bob and 63 (D)-Jenn fall into this category.

6. Are there six of these numbers OR in the present scenario are there two of these

numbers (i.e. 63) and four “8 ON/0 OFF” numbers? If there were, we would have a

clique of six. This is not the case. There are only two numbers in the “8 ON/0 OFF”

classification, thus the largest clique that we would be able to create would be of four people

(63, 63, 255 & 255) or John, Sue, Bob & Jenn. We must thus continue the search, but we can

now see that our largest clique will consist of at least four people and thus there will be no

need to search any lower numbered cliques. (Four or five will be the answer in the present

scenario).

 (Note: Even if there were NO “6 on/2 off” numbers, but there were 6 numbers of 255 we would still have a max clique of

six, even though there are NO individuals that perfectly fit into a clique of six. It will likely be very rare to find a person

wherein they and all their friends fit perfectly into a clique, wherein they have no friends that are excluded).

7. Does one or more of the output numbers belong to the “5 ON/3 OFF” (which is the

same as the Level 5 of 8) category?

 Yes, 31 (E) Colin (00011111) and 47 (F) Maggy (00101111) both belong to this category.

8. Are there five of these numbers? No

9. Are there one or more of these numbers that share at least five of their binary 1’s or

(ON’s) with another output number? Yes! In the present scenario wherein there is only

one of each number in the “5 on/3 off” category there are four other numbers in the categories

of numbers with 6 or more 1’s that share at least the same placement of 1’s as 31 and 47. In

our present scenario we see that both 63 (00111111) and 255 (11111111) both share at least

the same number of 1’s (or ON’s) as 63 and 255. Because there are two 63’s and two 255’s

we have our required 5 numbers for a five clique! This ALSO means that there is not just one

largest clique, but that we have a tie for the largest clique. We have TWO!

4 Listing all maximal cliques (cliques that cannot be enlarged)
1. Find the maximal clique(s). (See above)

2. Ask does one or more of the output numbers belong to the “4 ON/4 OFF” category?

In the present example the answer is no and so this tells us that there is no maximal clique of

four. Essentially any four clique can be expanded to a five clique.

3. Ask does one or more of the output numbers belong to the “3 ON/5 OFF” category?

In the present example the answer is yes.

4. What are they?

In the present example we have two numbers in the “3 ON/5 OFF” category.

They are (67) Jim and (131) Kelly. WAIT! We need at least three numbers to make a three

clique!

5. Do any of the output “3 ON/5 OFF” category numbers share the same three “ON’s

or 1’s” as any of the other output numbers.

In the present example they do!

We have two cliques that do not fall into sub groups of our larger four or five cliques

1. 131 (Kelly), 255 (Sue) and 255 (John)

2. 67 (Jim), 255 (Sue) and 255 (John)

Note:

If we wanted discover all of the three cliques that are built within the other output numbers, we would have

ten that include Maggy and ten that include Colin. Four would cancel out as repeated and so we would

have sixteen three-person cliques and the two non-expandable maximal cliques, for a total of 18 three-

person cliques.

8. 47 Maggy, 63 Jenn, and 63 Bob,

9. 47 Maggy, 63 Jenn, and 255 Sue,

10. 47 Maggy, 63 Bob and 255 Sue,

11. 63 Jenn, 63 Bob and 255 Sue,

12. 47 Maggy, 63 Jenn and 255 John

13. 47 Maggy, 63 Bob, and 255 John

14. 63 Jenn, 63 Bob and 255 John

15. 47 Maggy, 255 Sue and 255 John

16. 63 Jenn, 255 Sue and 255 John

17. 63 Bob, 255 Sue and 255 John

1. 31 Colin, 63 Jenn and 63 Bob

2. 31 Colin, 63 Jenn and 255 Sue

3. 31 Colin, 63 Bob and 255 Sue

4. 31 Colin, 63 Jenn and 255 John

5. 31 Colin, 63 Bob, and 255 John

6. 31 Colin, 255 Sue and 255 John

7. 63 Jenn, 255 Sue and 255 John

8. 63 Bob, 255 Sue and 255 John

9. 63 Jenn, 63 Bob and 255 Sue

10. 63 Jenn, 63 Bob and 255 John

There are a number of easy ways to achieve our output, but for simplicity I simply found all the three combinations

of the higher categorical groupings and deleted those that were duplicate. Thus we have 16 higher categorical

groupings and two lower categorical groupings for a complete list of 18 total three cliques.

Here are the 18:

1. 47 Maggy, 63 Jenn, and 63 Bob

2. 47 Maggy, 63 Jenn, and 255 Sue

3. 47 Maggy, 63 Bob and 255 Sue

4. 63 Jenn, 63 Bob and 255 Sue

5. 47 Maggy, 63 Jenn and 255 John

6. 47 Maggy, 63 Bob, and 255 John

7. 63 Jenn, 63 Bob and 255 John

8. 47 Maggy, 255 Sue and 255 John

9. 63 Jenn, 255 Sue and 255 John

10. 63 Bob, 255 Sue and 255 John

11. 31 Colin, 63 Jenn and 63 Bob

12. 31 Colin, 63 Jenn and 255 Sue

13. 31 Colin, 63 Bob and 255 Sue

14. 31 Colin, 63 Jenn and 255 John

15. 31 Colin, 63 Bob, and 255 John

16. 31 Colin, 255 Sue and 255 John

17. 131 Kelly, 255 Sue and 255 John (Maximal)

18. 67 Jim, 255 Sue and 255 John (Maximal)

5. Ask does one or more of the output numbers belong to the “2 ON/7 OFF” category?

In the present example the answer is no and so we know that there are no maximal two-person

cliques.

6. Ask does one of the output numbers belong to the “1 ON/8 OFF” category?

In the present example the answer is no and so we know that there are no maximal one-person

cliques. A one-clique, would be a person with no friends, would just be friends with themselves

and thus cannot really be called a clique.

5 Solving the decision problem of testing whether a graph contains a

clique larger than a given size.

We will use the example question of: Is there a clique larger than four?

1. Ask does one or more of the output numbers belong to the “5 ON/3 OFF” category?

In the present example the answer is yes. 31 Colin and 47 Maggy belong to this category.

2. Do any of the output “5 ON/3 OFF” category numbers share the same three “ON’s

or 1’s” as any of the other output numbers.

 As Colin is 00011111- 31 we would need to search for only seven possible numbers

They would consist of:

• 10011111- 159

• 01011111- 95

• 00111111- 63 (we find two of these)

• 11011111- 223

• 10111111- 191

• 01111111- 127

• 11111111- 255 (we find two of these)

As Maggy is 00101111- 47 we would need to search for only seven possible numbers

They would consist of:

• 10101111- 95

• 01101111- 111

• 00111111- 63 (we find two of these)

• 11101111- 239

• 10111111- 191

• 01111111- 127

• 11111111- 255 (we find two of these)

3. Ask, when we add the numbers that fall into these categories, are there five or more

of them?

In the present example the answer is Yes. This means that the two numbers that were output

in the “5 ON/3 OFF” category each belong clique of five.

6 Finding cliques of a selected size, particularly largest cliques.
If we were to request outputs from a data set of 50 people, we would have 562,949,953,421,312

different possible numbers to represent each individual’s relationship to themselves and

everybody else in the data set. If these 50 people all lived in the same town for example, the

chances of us finding a clique of 30 might be pretty good. If we wanted to check if there was

a 30 clique, we would need to do the following. Let’s also pretend that everybody has at least

30 friends or more.
1. Ask does one or more of the output numbers belong to the Level 30 of 50

numbers category?

 If the number 1,073,741,823 or (00 0000 0000 0000 0000 0011 1111 1111 1111 1111 1111

1111 1111) in binary showed up for example, we would have a yes. Let’s pretend that

there were only one Level 30 of 50 numbers discovered.

2. We would then need to ask; Do any of the other output numbers share the same

30 binary “ON or 1” values as 1,073,741,823?

 Let’s pretend the answer is yes. An example is 2,147,483,647.

3. Are there at least 29 of these other numbers?

In this example we would only need to compare our 29 numbers to a list of 524,288

potential possibilities. This is much more practical than trying all 50! (or 3.0414093e+64)

combinations. Let’s pretend the answer is YES. We have found our clique of 30.

4. WAIT! But are there other cliques of 30?

There very well could be other cliques of 30, but not ones that include Mr. 1,073,741,823

(Let’s call him Jake). He only had 30 friends and so could ONLY belong to this specific

30 clique. No other 30 clique could possibly include Jake.

Note:

If we wanted to discover ALL of the 30 cliques, we would use a different method that would include looking for 30

cliques within our Level 31 of 50, Level 32 of 50, Level 33 of 50 categories etc. Alternatively, we could work back

from 50 down to 30.

7 Clique Finding Functions (Finding cliques of a selected size)
To take a slightly different approach then referring to a list, we can create specific computational

functions. There are many possibilities, but to provide a simple example, (again with our single Level

30 of 50 number in the above example of 1,073,741,823), if the binary digit furthest right is “ON or

1” (such as it is in 1,073,741,823, because it is obviously an odd number, then all even numbers can

be discounted and do not need to be considered when trying to determine if they are part of this

specific clique. We know that only numbers that are odd will belong to our clique. This immediately

cuts our search effort in half. So in summary, if any of the 50 output numbers are even, they do not

even need to be compared and can be deleted. (If more than 20 were deleted we would deduce that

there is no 30 clique.

To provide yet another example of the function system, if the binary place value for 2 is on we can

delete another 50% of the complete set (they will be overlap from the odd number deletion however).

The function would look like:

IF (from the output list) the second digit (from the right in the base-10 number) is zero or an even

number AND the first digit is 2, 3, 6 or 7 OR IF the second digit is odd AND the first digit is 0, 1, 4,

5, 8, 9 THEN do not delete these numbers from the 50 numbers in our list (looking for a 30 clique in

the group of 30). If a number does not fit one of these requirements then DELETE it, it is not part

of the clique. (i.e. 72 and 73 would be deleted. Thus, we can see how rules can start to be created to

narrow our 50 number list down, without the requirement of comparing it to all of the remaining

possible outputs from a list. (524,288 in our 30 of 50 example).

TABLE 4

Below provides an example if the binary 1 and binary 2 place values were required to be on in unison.

The logic might look like this:

IF digit two is odd AND digit one is 1, 5, or 9 OR IF digit two is even AND digit one is 3 or 7 THEN

delete all numbers that do not have these attributes. All the numbers below DO have these attributes.

TABLE 5

2 10 22 10110 42 101010 62 111110
3 11 23 10111 43 101011 63 111111
6 110 26 11010 46 101110 66 1000010
7 111 27 11011 47 101111 67 1000011
10 1010 30 11110 50 110010 70 1000110
11 1011 31 11111 51 110011 71 1000111
14 1110 34 100010 54 110110 74 1001010
15 1111 35 100011 55 110111 75 1001011
18 10010 38 100110 58 111010 78 1001110
19 10011 39 100111 59 111011 79 1001111

etc.

3 11 67 1000011 131 10000011 195 11000011
7 111 71 1000111 135 10000111 199 11000111
11 1011 75 1001011 139 10001011 203 11001011
15 1111 79 1001111 143 10001111 207 11001111
19 10011 83 1010011 147 10010011 211 11010011
23 10111 87 1010111 151 10010111 215 11010111
27 11011 91 1011011 155 10011011 219 11011011
31 11111 95 1011111 159 10011111 223 11011111
35 100011 99 1100011 163 10100011 227 11100011
39 100111 103 1100111 167 10100111 231 11100111
43 101011 107 1101011 171 10101011 235 11101011
47 101111 111 1101111 175 10101111 239 11101111
51 110011 115 1110011 179 10110011 243 11110011
55 110111 119 1110111 183 10110111 247 11110111
59 111011 123 1111011 187 10111011 251 11111011
63 111111 127 1111111 191 10111111 255 11111111

Going back to our eight-person example, we can see that with our novel method of finding the largest

clique we only had to find one or more numbers in the “Level 5 of 8” category, (wherein we found

two). After that, all we had to do was to search seven additional numbers of higher categories that

share at least the same five binary places as the two “Level 5 of 8” category numbers. With traditional

methods of trial and error we would have needed to make at least 1+8+28+56=93 comparisons to

achieve the same result. The present method for this example is a significant 86.72% better.

In a larger example to find a clique of 8 out of 16 wherein there is only one person of the 16 with

exactly only 8 friends but that fits into an 8 clique, we would likely have to make

1+16+120+560+1820+4368+8008+11440=26,333 (Level 1 numbers+ Level 2 numbers+ Level 3

numbers+ Level 4 numbers+ Level 5 numbers+ Level 6 numbers+ Level 7 numbers+ Level 8

numbers) at least 26,333 comparisons out of the 65,536 possible to find the correct answer as trial and

error would not be required for anybody with less than 8 friends.

Our new method requires that 16 numbers be output to find an 8 clique. If only a single person is

found with 8 friends (0000 0000 1111 1111 =255), we will need to compare their output number with

the other 15 numbers to determine if there are in fact seven other numbers that (in addition to our

0000 0000 1111 1111 = 255), will create an 8 clique. If there are seven numbers that share the same

eight binary ON digits, then we have our clique. By utilizing the present methods there are only 255

numbers that will work and thus we simply have to see if seven of our 15 numbers from the output

list match any of the 255 acceptable numbers list. Examples of these numbers include (0000 0001

1111 1111), (0000 0011 1111 1111) or (1000 1111 1111 1111), etc. Comparing these 15 numbers to a

list of 255 is much faster and more efficient then comparing the 15 numbers to 26,333 or 65,536

numbers (if everybody were to have 8+ friends). Lightning speeds faster than any trial and error

method. It is also a scalable solution.

Again we can have a computer search for these numbers from a chart or turn our search into a

computational function.

I will now provide some more in depth examples from the data set of TABLE 1, which consists of 8

people in total. It is small and simple and thus should be easy to visualize, particularly the way that it

is set up.

What if we wanted to find if/how many clique(s) of 5 friends exist in this group of 8 people?

We will begin by searching our list for numbers with five ones. 31, 47, 55, 59, 61 and 62 are all

examples of binary numbers with five ones. We then look for duplicates. In the below example, there

are no duplicates for a person with 4 friends + themselves (5) as a friend.

What we find is that any binary number that shares the same five ones, must also be included in our

5 clique. Thus if a 63, 191 or 255 happen to be in our list (which they are), then they will be part of

the 5 clique too! See TABLE 6.

TABLE 6

Notice that 47 and 31 are the only binary numbers with five ones in our TABLE 1 example. We can

now easily see that they are both sub-groups of 63 (six ones wherein 5 are shared) and 255 (eight

ones wherein 5 are shared), which are also found in our TABLE 1 list, thus we have two cliques of

five.
Note: Five is also the largest size clique.

1) 47 Maggy, 63 Jenn, 63 Bob, 255 Sue, and 255 John, and

2) 31 Colin, 63 Jenn, 63 Bob, 255 Sue, and 255 John

are both our two largest cliques and consist of 5 friends.

255 1111	1111 191 1011	1111 63 0011	1111 31 0001	1111
47 0010	1111
55 0011	0111
59 0011	1011
61 0011	1101
62 0011	1110

TABLE 7

TABLE 1 (Repeat)

In our above example we can see that John and Sue have the most friends in common and are actually

friends with everybody in the data set because their numbers are 255. They thus are friends with

themselves and each other and also share six other friends. They have no enemies and thus it is very

simple to see and visualize. The largest “clique” in this scenario wherein everybody is friends with

each other would be the clique of 5 friends consisting of John, Sue, Bob, Jenn and Colin. Colin’s

number is 31 which is a LEVEL 5 of 8 number. We can see in the figure below that 31 falls into the

sub-set class of 63, (191) and 255 and so by default 31 is friends with all 63 numbered people and both

31 and 63 fall into sub-set classes of 255 (as ALL numbers do), and so 31, 63 and 255 numbers for

which there are five, make up the largest clique of friends that are all friends with each other. The

Level	8	of	8 Level	7	of	8 Level	6	of	8 Level	5	of	8 Level	4	of	8 Level	3	of	8 Level	2	of	8 Level	1	of	8 Level	0	of	8
255 127 63 237 31 124 211 15 85 149 204 7 67 140 3 96 1 0

191 95 238 47 143 213 23 86 150 209 11 69 145 5 129 2
223 111 243 55 151 214 27 89 153 210 13 70 146 6 130 4
239 119 245 59 155 217 29 90 154 212 14 73 148 9 132 8
247 123 246 61 157 218 30 92 156 216 19 74 152 10 136 16
251 125 249 62 158 220 39 99 163 225 21 76 161 12 144 32
253 126 250 79 167 227 43 101 165 226 22 81 162 17 160 64
254 159 252 87 171 229 45 102 166 228 25 82 164 18 192 128

175 91 173 230 46 105 169 232 26 84 168 20
183 93 174 233 51 106 170 240 28 88 176 24
187 94 179 234 53 108 172 35 97 193 33
189 103 181 236 54 113 177 37 98 194 34
190 107 182 241 57 114 178 38 100 196 36
207 109 185 242 58 116 180 41 104 200 40
215 110 186 244 60 120 184 42 112 208 48
219 115 188 248 71 135 195 44 131 224 65
221 117 199 75 139 197 49 133 66
222 118 203 77 141 198 50 134 68
231 121 205 78 141 201 52 137 72
235 122 206 83 147 202 56 138 80

CLIQUE Kelly Jim Maggy Colin Jenn Bob Sue John
128 64 32 16 8 4 2 1

1 John 1 1 1 1 1 1 1 1 255
2 Sue 1 1 1 1 1 1 1 1 255
4 Bob 0 0 1 1 1 1 1 1 63
8 Jenn 0 0 1 1 1 1 1 1 63
16 Colin 0 0 0 1 1 1 1 1 31
32 Maggy 0 0 1 0 1 1 1 1 47
64 Jim 0 1 0 0 0 0 1 1 67
128 Kelly 1 0 0 0 0 0 1 1 131

131 67 47 31 63 63 255 255

diagram below shows how these numbers all share five 1’s. In this simplified scenario they are the

five 1’s justified furthest to the right.

TABLE 8

…review the next 7 pages (TABLE 8 extended) to view the connection between each category level.

LEVEL 4 of 8, LEVEL 3 of 8, LEVEL 2 of 8, LEVEL 1 of 8 and LEVEL 0 of 8 are not shown,

due to space limitations. Notice how six of every LEVEL 5 of 8 numbers shares five of the same

six “1’s or ON’s” as their corresponding LEVEL 6 of 8 numbers. Our LEVEL 6 of 8 numbers

share six of seven “1’s or ON’s” and so on.

255 1111	1111 191 1011	1111 63 0011	1111 31 0001	1111
47 0010	1111
55 0011	0111
59 0011	1011
61 0011	1101
62 0011	1110

LEVEL	8	of	8 LEVEL	7	of	8 LEVEL	6	of	8 LEVEL	5	of	8
255 1111	1111 127 0111	1111 63 0011	1111 31 0001	 1111

47 0010	 1111
55 0011	 0111
59 0011	 1011
61 0011	 1101

	 62 0011	 1110
95 0101	1111 31 0001	 1111

79 0100	 1111
87 0101	 0111
91 0101	 1011
93 0101	 1101
94 0101	 1110

111 0110	1111 47 0010	 1111
79 0100	 1111
103 0110 0111
107 0110 1011
109 0110 1101
110 0110 1110

119 0111	0111 55 0011	 0111
87 0101	 0111
103 0110 0111
115 0111 0011
117 0111 0101
118 0111 0110

123 0111	1011 59 0011	 1011
91 0101	 1011
107 0110 1011
115 0111 0011
121 0111 1001
122 0111 1010

125 0111	1101 61 0011	 1101
93 0101	 1101
109 0110 1101
117 0111 0101
121 0111 1001
124 0111 1100

126 0111	1110 62 0011	 1110
94 0101	 1110
110 0110 1110
118 0111 0110
122 0111 1010
124 0111 1100

191 1011	1111 63 0011	1111 31 0001	 1111
47 0010	 1111
55 0011	 0111
59 0011	 1011
61 0011	 1101
62 0011	 1110

62 0011	 1110
159 1001	1111 31 0001	 1111

143 1000 1111
151 1001 0111
155 1001 1011
157 1001 1101
158 1001 1110

175 1010	1111 47 0010	 1111
143 1000 1111
167 1010 0111
171 1010 1011
173 1010 1101
174 1010 1110

183 1011	0111 55 0011	 0111
151 1001 0111
167 1010 0111
179 1011 0011
181 1011 0101
182 1011 0110

187 1011	1011 59 0011	 1011
155 1001 1011
171 1010 1011
179 1011 0011
185 1011 1001
186 1011 1010

189 1011	1101 61 0011	 1101
157 1001 1101
173 1010 1101
181 1011 0101
185 1011 1001
188 1011 1100

190 1011	1110 62 0011	 1110
158 1001 1110
174 1010 1110
182 1011 0110
186 1011 1010
188 1011 1100

223 1101	1111 95 0101	1111 31 0001	 1111
79 0100	 1111
87 0101	 0111
91 0101	 1011
93 0101	 1101
94 0101	 1110

159 1001	1111 31 0001	 1111
143 1000 1111
151 1001 0111
155 1001 1011
157 1001 1101
158 1001 1110

158 1001 1110
207 1100	1111 79 0100	 1111

143 1000 1111
199 1100 0111
203 1100 1011
205 1100 1101
206 1100 1110

215 1101	0111 87 0101	 0111
151 1001 0111
199 1100 0111
211 1101 0011
213 1101 0101
214 1101 0110

219 1101	1011 91 0101	 1011
155 1001 1011
203 1100 1011
211 1101 0011
217 1101 1001
218 1101 1010

221 1101	1101 93 0101	 1101
157 1001 1101
205 1100 1101
213 1101 0101
217 1101 1001
220 1101 1100

222 1101	1110 94 0101	 1110
158 1001 1110
206 1100 1110
214 1101 0110
218 1101 1010
220 1101 1100

239 1110	1111 111 0110	1111 47 0010	 1111
79 0100	 1111
103 0110 0111
107 0110 1011
109 0110 1101
110 0110 1110

175 1010	1111 47 0010	 1111
143 1000 1111
167 1010 0111
171 1010 1011
173 1010 1101
174 1010 1110

207 1100	1111 79 0100	 1111
143 1000 1111
199 1100 0111
203 1100 1011
205 1100 1101
206 1100 1110

231 1110	0111 103 0110 0111
167 1010 0111
199 1100 0111
227 1110 0011
229 1110 0101
230 1110 0110

230 1110 0110
235 1110	1011 107 0110 1011

171 1010 1011
203 1100 1011
227 1110 0011
233 1110 1001
234 1110 1010

237 1110	1101 109 0110 1101
173 1010 1101
205 1100 1101
229 1110 0101
233 1110 1001
236 1110 1100

238 1110	1110 110 0110 1110
174 1010 1110
206 1100 1110
230 1110 0110
234 1110 1010
236 1110 1100

247 1111	0111 119 0111	0111 55 0011	 0111
87 0101	 0111
103 0110 0111
115 0111 0011
117 0111 0101
118 0111 0110

183 1011	0111 55 0011	 0111
151 1001 0111
167 1010 0111
179 1011 0011
181 1011 0101
182 1011 0110

215 1101	0111 87 0101	 0111
151 1001 0111
199 1100 0111
211 1101 0011
213 1101 0101
214 1101 0110

231 1110	0111 103 0110 0111
167 1010 0111
199 1100 0111
227 1110 0011
229 1110 0101
230 1110 0110

243 1111	0011 115 0111 0011
179 1011 0011
211 1101 0011
227 1110 0011
241 1111 0001	
242 1111 0010	

242 1111 0010	
245 1111	0101 117 0111 0101

181 1011 0101
213 1101 0101
229 1110 0101
241 1111 0001	
244 1111 0100

246 1111	0110 118 0111 0110
182 1011 0110
214 1101 0110
230 1110 0110
242 1111 0010	
244 1111 0100

251 1111	1011 123 0111	1011 59 0011	 1011
91 0101	 1011
107 0110 1011
115 0111 0011
121 0111 1001
122 0111 1010

187 1011	1011 59 0011	 1011
155 1001 1011
171 1010 1011
179 1011 0011
185 1011 1001
186 1011 1010

219 1101	1011 91 0101	 1011
155 1001 1011
203 1100 1011
211 1101 0011
217 1101 1001
218 1101 1010

235 1110	1011 107 0110 1011
171 1010 1011
203 1100 1011
227 1110 0011
233 1110 1001
234 1110 1010

243 1111	0011 115 0111 0011
179 1011 0011
211 1101 0011
227 1110 0011
241 1111 0001	
242 1111 0010	

249 1111	1001 121 0111 1001
185 1011 1001
217 1101 1001
233 1110 1001
241 1111 0001	
248 1111 1000

248 1111 1000
250 1111	1010 122 0111 1010

186 1011 1010
218 1101 1010
234 1110 1010
242 1111 0010	
248 1111 1000

253 1111	1101 125 0111	1101 61 0011	 1101
93 0101	 1101
109 0110 1101
117 0111 0101
121 0111 1001
124 0111 1100

189 1011	1101 61 0011	 1101
157 1001 1101
173 1010 1101
181 1011 0101
185 1011 1001
188 1011 1100

221 1101	1101 93 0101	 1101
157 1001 1101
205 1100 1101
213 1101 0101
217 1101 1001
220 1101 1100

237 1110	1101 109 0110 1101
173 1010 1101
205 1100 1101
229 1110 0101
233 1110 1001
236 1110 1100

245 1111	0101 117 0111 0101
181 1011 0101
213 1101 0101
229 1110 0101
241 1111 0001	
244 1111 0100

249 1111	1001 121 0111 1001
185 1011 1001
217 1101 1001
233 1110 1001
241 1111 0001	
248 1111 1000

252 1111	1100 124 0111 1100
188 1011 1100
220 1101 1100
236 1110 1100
244 1111 0100
248 1111 1000

254 1111	1110 126 0111	1110 62 0011	 1110
94 0101	 1110
110 0110 1110
118 0111 0110
122 0111 1010
124 0111 1100

Table 8 shows how our data system will work. For example, if one or more higher level numbers are

found in a request/search, but there is also a lower level number that shares ALL the same 1’s of the

higher level then we will also want the computer system to include the lower level number(s) in the

clique. There are a number of ways to approach this, but we demonstrate a small portion of an

example reference table in Table 8 extended. Table 8 extended also provides an example showing

how 31, 47, 55, 59, 61 and 62 (Level 5 numbers) would all have 4 out of 5 friends in common with 63

(a Level 6 of 8 number).

124 0111 1100
190 1011	1110 62 0011	 1110

158 1001 1110
174 1010 1110
182 1011 0110
186 1011 1010
188 1011 1100

222 1101	1110 94 0101	 1110
158 1001 1110
174 1010 1110
182 1011 0110
186 1011 1010
188 1011 1100

238 1110	1110 110 0110 1110
174 1010 1110
206 1100 1110
230 1110 0110
234 1110 1010
236 1110 1100

246 1111	0110 118 0111 0110
182 1011 0110
214 1101 0110
230 1110 0110
242 1111 0010	
244 1111 0100

250 1111	1010 122 0111 1010
186 1011 1010
218 1101 1010
234 1110 1010
242 1111 0010	
248 1111 1000

252 1111	1100 124 0111 1100
188 1011 1100
220 1101 1100
236 1110 1100
244 1111 0100
248 1111 1000

Realizing that certain numbers such as 1, 2, 4 or 128 will likely not be included in a clique, (unless we

are looking for cliques of 1), it is still important to include them in the process as their inclusion will

be required to eliminate any letters/people that are only friends with themselves. As an example, if a

woman named Gertrud signed up to Facebook, but decided to not become friends with anybody

before she abandoned the platform then she would show up as a LEVEL 1 number. LEVEL 1

numbers are not compatible with anybody except for themselves and thus will not belong to a clique.

LEVEL 0 numbers (which can’t really exist as they are 0), don’t even like themselves, so it is quite a

sad state of affairs for them and these poor people may need to seek counselling.

In an alternative embodiment of the present invention we may find it more beneficial to flip all the

zeros to ones and ones to zeros. If the majority of people were to have very few friends we may find

numbering the NOT FRIENDS as 1 a more economical method of organization rather than

numbering the WE ARE FRIENDS method. Again, if the distribution is relatively equal, then it will

not matter much as to how we organize the 0’s and 1’s.

https://jamesmccaffrey.wordpress.com/2011/06/24/the-maximum-clique-problem/

“It turns out that finding the maximum clique for graphs of even moderate size is one of the most

challenging problems in computer science. The problem is NP-complete which means, roughly, that

every possible answer must be examined. Suppose we have a graph with six nodes. First we’d try to

see if all six nodes form a clique. There is Choose (6,6) = 1 way to do this. Next we’d examine all

groups of five nodes at a time; Choose (6,5) = 6 ways. And so on, checking Choose (6,4) = 15, Choose

(6,3) = 20, Choose (6,2) = 15, and Choose(6,1) = 6 possible solutions for a total of 63 checks. (For

the maximum clique problem we can stop when we find the largest clique so let’s assume that on

average we’d have to go through about one-half of the checks).

The total number of checks increases very quickly as the size of the graph, n, increases. For n = 10

there are 1,023 total combinations. For n = 20 there are 1,048,575 combinations. But for n = 1,000

there are

10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,

503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,

251,871,452,856,923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,

074,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,165,543,

946,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,

375

combinations. Even if you could perform one trillion checks per second it would take you 3.4 x 10^281

years which is insanely longer than the estimated age of the universe (about 1.0 x 10^10 = 14 billion

years).”

- James McCaffrey

Note:

In appendix A, I will provide a strategy for using smaller numbers for our methods as working with very large numbers

can be difficult for computers with limited resources.

Appendix

A – The Traveling Salesman Reduction
 (Optimization)

The travelling salesman problem (TSP) asks the following question: "Given a list of cities and the

distances between each pair of cities, what is the shortest possible route that visits each city and returns

to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations

research and theoretical computer science.

The problem was first formulated in 1930 and is one of the most intensively studied problems in

optimization. It is used as a benchmark for many optimization methods. Even though the problem is

computationally difficult, a large number of heuristics and exact algorithms are known, so that some

instances with tens of thousands of cities can be solved completely and even problems with millions

of cities can be approximated within a small fraction of 1%.

The TSP has several applications even in its purest formulation, such as planning, logistics, and the

manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA

sequencing. In these applications, the concept city represents, for example, customers, soldering

points, or DNA fragments, and the concept distance represents travelling times or cost, or a similarity

measure between DNA fragments. The TSP also appears in astronomy, as astronomers observing

many sources will want to minimize the time spent moving the telescope between the sources. In

many applications, additional constraints such as limited resources or time windows may be imposed.

TABLE 9

Note:

The above TSP example is from:

http://people.ku.edu/~jlmartin/courses/math105-F11/Lectures/chapter6-part3.pdf

Sabrina has the following list of errands and needs to find the shortest route:

(H) Home (The start and finish of her route).

(P) Pet store

(G) Greenhouse

(C) Cleaners

(D) Drugstore

(T) Target Store

The present invention can attack the TSP in a variety of ways! I will describe a couple of examples

out of many possibilities with the present system. I begin by making sure that if there is a distance

that is the same as another distance, that I can distinguish them. I do this by adding A or B etc., to

the number. In the example provided we will see 36A and 36B and 54A and 54B. This is a critical

step.

Each unique value is then assigned a binary number based on its size. The shortest path element

receives the smallest binary number and vice versa. In the example provided we see that length 20

(the shortest) is linked to binary digit 1 and that length 92 (the longest) is linked to binary digit 16384.

We then need to create a situation wherein we can produce a number of logical “NOT” scenarios. To

do this (in this example) we will use two or more variables together (collaborative variable). For

example, 22 and 32 are connected at G and thus can become a single larger variable with a number of

NOT’s. We can also call this HGP as these are the nodes that they are connected to. HPG can also

double as PGH. We know that H stands for HOME and thus it will be the beginning and the end

point of the journey. This tells us that in the necessary six-point journey (travel to each place once

from home and also end at home via the shortest route), that we will require two different collaborative

variables from TABLE 10 and one from TABLE 11. All three will work together to create our shortest

path(s). (Not in the present example, but in some instances there could potentially be two different

shortest paths of the same length).

Using this logic, we can start taking notes of our logical NOT’s. Looking at our first collaborative

variable we can see that it is comprised of nodes HGP (32 & 22). Of course HGP reversed is also

PGH (22 & 32). Being the same, neither can include 36A in its path from or to home because it would

make the person on the journey visit the same place twice, which is not allowed in the TSP problem.

If we look at the G node in this first collaborative variable, we can see that 32 and 22 are already used

and 71, 36B and 42 can NOT be used because G has to go to P and H and thus these values are

scratched or deleted as possibilities. Any value from P (22 already being used), is also scratched (67,

36A, 54A and 58), because logic states that we will need to use a number from Table 11 (with no H)

for our middle collaborative variable and because any number from Table 10 would want to go straight

home in two steps, which is NOT allowed.

TABLE 10

We know that the green number 6 (the top number of the 2nd column from the right) of TABLE 10

must be 4 and 2 as binary numbers 4 and 2 are the only ones that will work to make 6. We also know

that the white numbers are the ONLY compatible areas where the last two numbers for the journey

can be found. TABLE 10 needs to provide both the first two and last two steps of the journey, due

to the fact that the journey is six steps long. The middle two steps (two collaborative or added

variables) will be provided from TABLE 11. In the present example we see that 6 and 129 are

compatible and add up to 135. 6 (a green number composed of two binary numbers 4 and 2) is a sub-

group of 3102 (a white number composed of six binary numbers that also includes 4 and 2) and thus

there is no conflict. They are compatible. Perhaps we can call them friends, like in the clique

problem.

A computer program can easily determine this by consulting a list or program with the necessary

elements. We can for example provide the software program with a list of compatible numbers.

Rather than brute force however, the computer can simply look at the one number sums provided by

our system to do its sorting, which will be much more efficient. Although it may seem like (and it is)

a lot of work when dealing with only 6 travel points, we must remember that our system does not get

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20

H G P 1 1 1 1 1 1 1 1 6 17825
H P G 1 1 1 1 1 1 1 1 10 17825
H G C 1 1 1 1 1 1 1 1 20 4777
H D G 1 1 1 1 1 1 1 1 65 23592
H G D 1 1 1 1 1 1 1 1 68 23592
H D T 1 1 1 1 1 1 1 1 129 3102
H T D 1 1 1 1 1 1 1 1 160 3102
H D C 1 1 1 1 1 1 1 1 257 12334
H D P 1 1 1 1 1 1 1 1 513 25652
H P D 1 1 1 1 1 1 1 1 520 25652
H C G 1 1 1 1 1 1 1 1 1040 4777
H C D 1 1 1 1 1 1 1 1280 12334
H P C 1 1 1 1 1 1 1 2056 8421
H C P 1 1 1 1 1 1 1 1 3072 8421
H P T 1 1 1 1 1 1 1 1 4104 1365
H T P 1 1 1 1 1 1 1 1 4128 1365
H G T 1 1 1 1 1 1 1 1 8196 3849
H T G 1 1 1 1 1 1 1 1 8224 3849
H T C 1 1 1 1 1 1 1 1 16416 591
H C T 1 1 1 1 1 1 1 1 17408 591

much more complicated as we begin to add new data points, whereas the presently used brute force

method gets exponentially more difficult. For a small number of cities, the present methods may seem

slower than brute force, but as the number of cities or data points grows larger, our methods become

dramatically better and faster than other available methods.

For example:

6 = 4, 2

7 = 4, 2, 1

14 = 4, 2, 8

22 = 4, 2, 16

15 = 4, 2, 8, 1

31 = 4, 2, 1, 8, 16

3102 = 4, 2, 2048, 1024, 16, 8

…all belong to a family of binary numbers that contain 4 and 2. This will dramatically assist a

computing device with its sorting and searching methods.

6 and 160 are also compatible, which add up to 166. 10 and 129 are compatible and add up to 139. 10

and 160 are also compatible and add up to 170. We will need to find their compatibility with Table

11 before we can make a determination of which will be the shortest path however.

…go to next page…

TABLE 11

We can then look at TABLE 11 to determine our shortest path!

TABLE 12 (example with more constraints/NOT’s)

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20

C G P 1 1 1 1 1 18
D G P 1 1 1 1 1 66
D G C 1 1 1 1 1 80
T D G 1 1 1 1 1 192
D C G 1 1 1 1 1 272
C D G 1 1 1 1 1 320
T D C 1 1 1 1 1 384
D P G 1 1 1 1 1 514
T D P 1 1 1 1 1 640
C D P 1 1 1 1 1 768
C P G 1 1 1 1 1 2050
G C P 1 1 1 1 1 2064
D C P 1 1 1 1 1 2304
D P C 1 1 1 1 1 2560
T P G 1 1 1 1 1 4098
G D P 1 1 1 1 1 4160
D T P 1 1 1 1 1 4224
T P D 1 1 1 1 1 4608
T P C 1 1 1 1 1 6144
T G P 1 1 1 1 1 8194
T G C 1 1 1 1 1 8208
T G D 1 1 1 1 1 8256
D T G 1 1 1 1 1 8320
G T P 1 1 1 1 1 12288
T C G 1 1 1 1 1 16400
D T C 1 1 1 1 1 16512
T C D 1 1 1 1 1 16640
T C P 1 1 1 1 1 18432
C T P 1 1 1 1 1 20480
C T G 1 1 1 1 1 24576

16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20

C G P 1 1 1 1 1 1 1 1 1 1 18
D G P 1 1 1 1 1 1 1 1 66
D G C 1 1 1 1 1 1 1 1 1 1 80
T D G 1 1 1 1 1 1 1 1 1 1 192
D C G 1 1 1 1 1 1 1 1 1 272
C D G 1 1 1 1 1 1 1 1 1 320
e t c. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc.

… … … … … … … … … … … … … … … …

TABLE 13

In this example of the TSP, the example provided states that the traveler must begin at Home (H) and

end at Home (H). This information actually provides us with information that allows us to make a

number of logical assumptions straight away. If we did not know the starting and ending points we

would have needed 60 groupings (HTD, HPG, etc.), but because we have this information we only

required 50. For example, we know that we will never see a THD or a CHG or the like, because H

can never be in the middle, no matter what the situation. This eliminated its permutation as a

possibility that the computational device will no longer need to check.

In an alternative embodiment to the examples just explained above in Tables 10-13 and to demonstrate

why the present system, method and computing device that utilizes such a system is far superior than

present day systems, (and to keep it simple), I will provide an alternative example wherein we do not

288
320 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
384 92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20
513 H G P 1 1 1 1 1 1 1 1 1 6 32+22+
516 H D T 1 1 1 1 1 1 1 1 1 129 45+20+
528 T C P 1 1 1 1 1 18432 92+58=
544 18567 269
576 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
640 92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20
768 H G P 1 1 1 1 1 1 1 1 1 6 32+22+
1025 H T D 1 1 1 1 1 1 1 1 1 160 45+40+
1028 D C P 1 1 1 1 1 2304 58+54=
1040 2470 261
1056 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
1088 92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20
1152 H P G 1 1 1 1 1 1 1 1 1 10 36+22+
1280 H D T 1 1 1 1 1 1 1 1 1 129 45+20+
1536 T C G 1 1 1 1 1 16400 92+36=
2049 16539 251
2052 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
2064 92 71 67 58 54B 54A 50 45 42 40 36B 36A 32 22 20
2080 H P G 1 1 1 1 1 1 1 1 1 10 36+22+
2112 H T D 1 1 1 1 1 1 1 1 1 160 45+40+
2176 D C G 1 1 1 1 1 272 50+36=
2304 442 229

know our starting point. As described below we can see that the standard brute force method would

require checking 120 different paths for 6 cities.

http://www.businessinsider.com/p-vs-np-millennium-prize-problems-2014-9

“If we have a Traveling Salesman Problem with five cities, we have 4 × 3 × 2 × 1 = 24 paths to look

at. If we have six cities, we have 5 × 4 × 3 × 2 × 1 = 120 paths.

As we can already see with these small numbers of cities, the number of paths grows extremely quickly

as we add more cities. While it's still easy to take a given path and find its length, the sheer number of

possible paths makes our brute-force approach untenable. By the time we have 30 cities, the number

of possible paths is about a 9 followed by 30 zeros. A computer that could check a trillion paths per

second would take about 280 billion years to check every path, about 20 times the current age of the

universe.

There are algorithms for the Traveling Salesman Problem that are much more efficient than this brute-

force approach, but they all either provide some kind of approximate "good enough" solution that

might not be the actual shortest path, or still have the number of needed calculations grow

exponentially with the number of cities, taking an unacceptably long time for large numbers of cities.

There is no efficient, polynomial time algorithm known for the problem.”

---Andy Kiersz

The present invention initially cuts this in half thus requiring only 60 variables to be analyzed, sorted

and ordered into paths that satisfy the needed constraints of the TSP problem. For these small

numbers the brute force system is likely better and faster, but as these numbers grow we can see how

the present system becomes dramatically superior.

TABLE 14

Whereas the numbers in the brute force approach get exponentially larger, our numbers actually get

comparatively smaller. As the example in the chart above shows; for 6 cities we require 120 groupings,

but for 7, we only require 210 and so on, which is less than double. The number of variables does

obviously grow, but in smaller and smaller ratios. Here is the pattern from 6 cities. From 6 to 7 cities

we 2x our number. From 7 cities to 8 cities we 1.75x our number and from 8 to 9 we 1.6x, etc. Notice

how the ratios get smaller and smaller! How awesome is that!

TABLE 15

Cities	 Variables	
x	

factors	
6	 60	 2.0000	
7	 120	 1.7500	
8	 210	 1.6000	
9	 336	 1.5000	
10	 504	 1.4286	

Number	of	Cities Brute	Force	Paths	to	Check Varibles	in	the	present	system
6 120																																																																													 5	x 4	x 3 EQUALS 60
7 720																																																																													 6	x 5	x 4 EQUALS 120
8 5,040																																																																										 7	x 6	x 5 EQUALS 210
9 40,320																																																																							 8	x 7	x 6 EQUALS 336
10 362,880																																																																					 9	x 8	x 7 EQUALS 504
11 3,628,800																																																																		 10	x 9	x 8 EQUALS 720
12 39,916,800																																																																 11	x 10	x 9 EQUALS 990
13 479,001,600																																																													 12	x 11	x 10 EQUALS 1320
14 6,227,020,800																																																										 13	x 12	x 11 EQUALS 1716
15 87,178,291,200																																																								 14	x 13	x 12 EQUALS 2184
16 1,307,674,368,000																																																		 15	x 14	x 13 EQUALS 2730
17 20,922,789,888,000																																																 16	x 15	x 14 EQUALS 3360
18 355,687,428,096,000																																														 17	x 16	x 15 EQUALS 4080
19 6,402,373,705,728,000																																										 18	x 17	x 16 EQUALS 4896
20 121,645,100,408,832,000																																						 19	x 18	x 17 EQUALS 5814

etc… etc… etc…
30 8,841,761,993,739,700,000,000,000,000,000			 30	x 29x 28 EQUALS 24,360

11	 720	 1.3750	
12	 990	 1.3333	
13	 1320	 1.3000	
14	 1716	 1.2727	
15	 2184	 1.2500	
16	 2730	 1.2308	
17	 3360	 1.2143	
18	 4080	 1.2000	
19	 4896	 1.1875	
		 		 etc…	

For the TSP problem we will need to check a number of the satisfied lower numbers as the smallest

number may not be the shortest path. A low number is likely to be one of the satisfied lower paths,

but recognize from the example provided that the second shortest path was actually the third lowest

number.

As soon as one of our low numbered satisfied paths add up to a number lower than higher numbered

potential paths (or potential partial paths), we then know that we can eliminate the upper numbers

from our search! This can literally save billions of years of searching! For example; As 442 gave us a

nice short path that was satisfied, then any number above this need not be investigated any further for

our shortest path query. Only seven numbers were smaller than 442 in our example. Twenty-three

partial paths were longer that our completely satisfied full path. Thus we can exclude these from the

search, which is awesome because the computer can save an enormous amount of time.

Sorting the partial paths from smallest to largest was the key this success! The other essential and

novel element of the present invention is that rather than trying to determine the shortest path by

analyzing the system via its individual parts, (for which in this example there are 15), we instead

combine two or more single elements, which then provide us with a number of impossible options

for each selected path. This creates a NOT in logic terms, that we would not have had access to, if

dealing with our variables individually. The system is made larger, but this seems like a necessity to

create the necessary constrained environment.

50 partial paths (or collaborative variables), each with two variables (connected to three letters) are

required if the start and end points are known. 60 partial paths are required if no starting and ending

point are known. Our Sudoku example also benefited from this strategy.

SOME OTHER NP-COMPLETE PROBLEMS

Karp's 21 problems are shown below, many with their original names. The nesting indicates the

direction of the reductions used. For example, Knapsack was shown to be NP-complete by reducing

Exact cover to Knapsack. The methods of the present invention can be modified and transposed to

solve all of these problems (and many more) in a much shorter time than is presently available.

Satisfiability: The Boolean satisfiability problem for formulas in conjunctive normal form (often

referred to as SAT)

0–1 integer programming (A variation in which only the restrictions must be satisfied, with no

optimization)

Clique (see also independent set problem)

Set packing

Vertex cover

Set covering

Feedback node set

Feedback arc set

Directed Hamilton circuit (Karp's name, now usually called Directed Hamiltonian cycle)

Undirected Hamilton circuit (Karp's name, now usually called Undirected Hamiltonian cycle)

Satisfiability with at most 3 literals per clause (equivalent to 3-SAT)

Chromatic number (also called the Graph Coloring Problem)

Clique cover

Exact cover

Hitting set

Steiner tree

3-dimensional matching

Knapsack (Karp's definition of Knapsack is closer to Subset sum)

Job sequencing

Partition

Factoring

Max cut

…and many more

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

B - SUDOKU

Sudoku is a logic-based, combinatorial number-placement puzzle. The objective is to fill a 9×9 grid

with digits so that each column, each row, and each of the nine 3×3 sub grids that compose the grid

(also called "boxes", "blocks", or "regions") contains all of the digits from 1 to 9. The puzzle setter

provides a partially completed grid, which for a well-posed puzzle has a single solution.

Completed games are always a type of Latin square with an additional constraint on the contents of

individual regions. For example, the same single integer may not appear twice in the same row, column,

or any of the nine 3×3 sub regions of the 9x9 playing board.

French newspapers featured variations of the puzzles in the 19th century, and the puzzle has appeared

since 1979 in puzzle books under the name Number Place. However, the modern Sudoku only started

to become mainstream in 1986 by the Japanese puzzle company Nikoli, under the name Sudoku,

meaning "single number". It first appeared in a US newspaper and then The Times (London) in 2004,

from the efforts of Wayne Gould, who devised a computer program to rapidly produce distinct

puzzles.

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states

that the Boolean satisfiability problem is NP-complete. That is, any problem in NP can be reduced in

polynomial time by a deterministic Turing machine to the problem of determining whether a Boolean

formula is satisfiable. The theorem is named after Stephen Cook and Leonid Levin.

An important consequence of this theorem is that if there exists a deterministic polynomial time

algorithm for solving a problem that can be reduced to Boolean satisfiability, then every NP problem

can be solved by a deterministic polynomial time algorithm. The question of whether such an

algorithm exists to solve a problem that has been reduced to Boolean satisfiability in deterministic

polynomial time is thus equivalent to the P versus NP problem, which is widely considered the most

important unsolved (until the publication of this paper) problem in theoretical computer science.

We will now provide an example of Sudoku, but this is in no way meant to limit the present methods

to this or any single problem. Any NP-Complete problem may be addressed with variations of the

present invention as can be seen in the Cook-Levine papers or the proof based on the one given

by Garey and Johnson[8]. Every NP problem can be reduced to an instance of a SAT problem by

a polynomial-time many-one reduction.

First we will take an example of a standard 9x9 Sudoku puzzle.

TABLE 5

Transposing our clique solving process for Sudoku will require that we transform the Sudoku numbers

into binary values. Sudoku numbers 1-2-3-4-5-6-7-8-9 will now become 1-2-4-8-16-32-64-128-256.

This will better allow for yes/no answers for our collaborative variables and simplify our solving

process. The present method will SEEM QUITE COMPLICATED, but the process will be much

more efficient then presently available methods of brute force or single variable constraint

programming.

Why?

Because rather than having 81 individual variables, that need to be considered, we have created a

system wherein two sets of 27 variables (54 variables in total) can be used instead. In a 16x16 grid

with 256 variables, the present system will only require two sets of 64 variables (128 in total). As chart

1 below shows, traditional methods grow extremely rapidly, wherein the present method (although

the variables DO grow), the variables grow at a much smaller rate! The variables of the present

invention in the 100x100 grid have only one-fifth the variables of traditional constraint methods.

As we will see in the upcoming explanation of how to solve TSP we will be using what I call

collaborative constraints for Sudoku. If we now focus on A1 we will notice that it will be provided

with constraining elements from A2 and A3 (the horizontal constraints) and also constraints from A4

and A7 (the 3x3 constraint). Any numbers (or collaborative sum) in any of these areas will affect the

available options for numbers which can be input into A1. If A1 already has a number in its area, this

will also limit available options.

It is essential that we keep in mind that A1, A4 and A7 share the same 3x3 block as D1, D2 and D3.

This is one of the elements that will allow our logic to work. They share a commonality, but also are

provided with differing constraints. This holds true for all the other 3x3 blocks as well. For example,

B2, B5 and B8 share many constraints with E4, E5 and E6, but each also have unique ones that make

our system function.

Thus, if we create a number of logic statements, we can solve the Sudoku. For example, in the Sudoku

example provided in Table 5, IF E1 is a three-variable number (which it is) and IF I know that F2,

B2 and B9 all contain a variable that contains an identical value (which it does), (32 in binary and 6 in

Sudoku), THEN B4 and E3 must contain that same number. (For visualization purposes B4Z is

equal to E3Y).

Grid	Size Traditional	Number	of	Variables	 					Variables	of	the	present	invention Sum
9x9	 81 27 27 54
16x16 256 64 64 128
25x25 625 125 125 250
36x36 1296 216 216 432
49x49 2401 343 343 686
100x100 10000 1000 1000 2000

TABLE 6

TABLE 7 (not really necessary)

Table 7 shows further breakdown into xyz zones, but realistically we may not require these in the

preferred embodiment as for example, if we were to say that A1 and D1 shared a number, the only

possible place that they can share that number is in the top space of D1 or furthest left of A1. No

other location is possible.

After we name our independent sections we turn the Sudoku numbers 1-2-3-4-5-6-7-8-9 into binary

place values 1-2-4-8-16-32-64-128-256. This will make everything much easier for a computational

device to comprehend. An essential part and novel aspect of the present solution that has been

missing from the art is the ability to assist a computational device with fully understanding what

variables do NOT need to be looked at during a searching effort. This will hold true in our next

example (TSP) as well. The searching effort seems to be what takes up the computational devices

time. The more possibilities that can be eliminated from the searching efforts the faster the output or

answers will be found.

TABLE 8

We will need to list what I will call our number levels for Sudoku. There are three variations. Level 1

numbers are single variables and will include 1, 2, 4, 8, 32, 64, 128, and 256. Once the Sudoku has

been solved by our algorithm three of these unique numbers will add up to a larger collaborative

variable (Level 3 number) and will reside in one of the 3x1 or 1x3 sections (i.e. A1, A2, D1, D2, etc.).

Level 2 numbers are collaborative variables and will be the sum of any two different level one numbers.

Again, Level 3 numbers are also collaborative variables and will be the sum of any three different level

1 numbers. This strategy better provides a computer with the ability to answer yes or no questions,

as is a requirement in Boolean logic. For example, if A1=7 then we will logically know that A1 consists

of a 4, 2 and a 1. By utilizing a binary number system, we allow only the one possibility, no matter

what the numbers. This also tells us that the sum of A2 and A3 must be 249.

This is not the case when we use 1-9 numbering. If for example, we were to use 1-9 integer values

and A1 equaled 15. This would not really tell us ANYTHING! The 15 in this scenario could be

comprised of 456, 951, 942, 861, 852, 834, 762, or 753. By Utilizing binary digits rather than 1-9

integers we can dramatically reduce the time required to find a solution to the Sudoku via faster and

better method of constraint programming that have not prior to the present invention been utilized.

LEVEL 1 (one variable numbers) = 1, 2, 4, 8, 16, 32, 64, 128, or 256

LEVEL 2 (two variable numbers) = Any one of --- 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36,

40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320,

or 384

LEVEL 3 (three variable numbers) = Any one of --- 7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37,

38, 41, 42, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 131, 133, 134,

137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168, 176, 193, 194, 196, 200, 208, 224, 259, 261, 262,

265, 266, 268, 273, 274, 276, 280, 289, 290, 292, 296, 304, 321, 322,, 324, 328, 336, 352, 385, 386, 388,

392, 400, 416, or 448

We can now simply run a program with a number of logic steps again and again until the Sudoku is

fully solved. It can be modelled as a much simpler and faster constraint satisfaction problem that

would likely use many less lines of code.

Here are some examples of logic steps that may be applied recursively as numbers get filled in and

the constraints increase. This type of program should be effective at solving any Sudoku that would

be input into it without the requirement of backtracking or brute force methods.

• IF A1 and A2 both = a Level 3 (3 variables added) number AND IF A3 = a Level 2 number

THEN the one empty box (the x, y or z) of A3 must = 256 minus the sum of A1, A2 and

A3. A3 must then be modified from a Level 2 number to a Level 3 number and the new

addition placed in the one empty x, y or z space that is available. The full horizontal line would

now in this scenario be complete.

• IF E1 contains a Level 3 (3 variables added) number AND IF (F2 OR D2) AND (B2 AND

B9) contain the same Level 1 number THEN E3 and B4 should share that number (in the only

place they can, which is the z location).

• We can also be more specific and even use the xyz variables if desired. IF (D3 and E1) and

(C3 and C8) contain the sum 128 (a Level 1 variable), or the sum 129, 130, 132, 136, 144, 160,

192, or 384 (a Level 2) or 131, 133, 134, 137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168,

176, 193, 194, 196, 200, 208, 224, 385, 386, 388, 392, 400, 416 or 448 (a Level 3), THEN

C4(Y) is 128 (8 in Sudoku).

• We can also make generalized family systems. For example, IF B3 and B5 contain a same

number (such as binary 4) or contain a higher level number that includes binary 4, (by binary

necessity to acquire its sum such as 5 (4,1) or 13 (1, 8, 4), AND (E1 and E3) contain Level 3

numbers THEN E2(Z) should be filled with that number. The (example 4) number is then

converted to the Sudoku number 3. (Note: the pictured examples, do not provide this example).

• MANY more logic operators can be created and will guarantee a solution to even the most

complicated Sudoku. Brute force methods will no longer be required to solve these types of

problems, but they may be used in collaboration. We can design a complete system utilizing

only a portion of all possible logic operators. The simpler the Sudoku, the less operators that

will likely be required.

The key to the Sudoku solution seems to be in breaking the puzzle down into a variety of smaller

units, each of which share two unique logic systems. By logic systems I am referring to our 3x1 units

which each belong to both a 9x1 horizontal and a 3x3 group and our 1x3 units which belong to 1x9

vertical and 3x3 groups. When logic operators make these two groups talk to each other, every blank

in a satisfiable Sudoku can easily be found. Each Sudoku number is assigned a binary digit (1, 2, 4, 8,

16, 32, 64, 128 or 256). We can apply the logic operators recursively (again and again as more blank

spaces are filled with numbers) to fill in the puzzle. Once it is complete and everything is satisfied

logically, we can convert our numbers back to 1-9 and our puzzle is solved in polynomial time.

This method can also be utilized for larger puzzles, we simple need to increase our numbers. A 16x16

Sudoku would require 1x4 and 4x4 logic groupings and our binary numbers would go to 65536.

Note:

A similar approach can be used to solve the “Eight Queens Puzzle”. If the chess board has an even length (i.e. 8x8)

it is easy to visualize, but if it is an odd length (i.e. 9x9), we need to adjust the strategy wherein we have two 5x5’s with

some crossover between each sub-group…but that’s for another paper.

C – Further Background
The present invention takes a novel approach to solving NP-Complete problems and provides steps

that a computational device and software program can follow to accurately solve NP-class problems

without the use of heuristics or brute force methods. The present invention (methods and

computational devices) provides methods that are fast and accurate if utilized properly.

The present inventor states that the solution to solving the “Does P=NP?” question (and our ability

to design algorithms to solve such problems efficiently) lies in a novel method presented for searching,

filtering, combining and structuring data. Those skilled in the art seem to have failed to recognize the

power of representing data variables as specific unique binary place values and/or their sums

(collaborative variables), prior to searching or filtering selected data sets. By binary place values, the

present inventor is referring to the selected place values for 1 or 0 in the binary numbering system.

The numbers 1, 2, 4, 8, 16, 32, 64, etc., are all examples.

What the inventor refers to when stating “their summations” is the unique value that each grouping

of two or more of these numbers can create when added together. For instance, if we take the number

7 and state that it must consists of unique binary numbers, then there is only one possible outcome.

The numbers to create a 7, must be 1, 2 and 4. If we take the number 255 and state that it must

consists of unique binary numbers, then there is also only one possible outcome. If (again) no

number is allowed to repeat, then 255 must be created from 1, 2, 4, 8, 16, 32, 64 and 128.

By constraining the binary system to unique values (meaning that no number can be used or added

more than once in any collaborative variable) a number such as 255 can store a tremendous amount

of information. In the described system 255 will thus state that there are eight different numbers that

are required to create the sum 255 and that the eight numbers required to fulfill its creation successfully

are required to be 1, 2, 4, 8, 16, 32, 64 and 128. It can also indirectly provide us with a number of

sub-groups that will be described in more detail, in the Clique Problem example provided further on

in this paper. As another example, if we are specifically looking for two-digit variables, the numbers

3, 5, 6, 7, 9 etc., will all be options, but 1, 2, 4 and 8 will not.

Note: Please remember that the number 5 MUST consist of (4 and 1) as (2, 2 and 1) are not allowed, because the 2

would be duplicated. The avoidance of duplicated variables is a key to the success of the present system as these

duplicate variables seem to be one of the difficulties that make certain questions in computational complexity theory

very difficult to answer.

The present invention also describes a novel method for breaking specific problems into logical

groupings that the present inventor (John Archie Gillis) has defined as collaborative variables. They

utilize novel binary representations/conversions, so that one can more easily and quickly determine

selected and desired informational outputs. In a number of instances for the present system to work,

we must organize two or more variables into larger variables (collaborative), so that we can determine

logical NOT’s. It seems that in many cases that finding constraints by looking at a problem as single

variable data points in insufficient. This seems specifically true as will be seen in the TSP problem, as

constraints or NOT’s are difficult to come by unless two or more variables are joined as one. We can

then utilize a system of permutations, logic and searching to find fast and accurate answers.

Numbers are organized into various groups, levels and hierarchies as will be shown in the three

different NP-Complete examples provided below. In the present system the higher value of each

number does not necessarily mean that it has prominence over any other number. The numbers are

instead listed into values that assist with sorting specific things into selected and specific groupings.

The present invention provides a number of methods for solving NP-class problems. NP-class

problems include many pattern-matching and optimization problems that are of great practical

interest, such as determining the optimal arrangement of transistors on a silicon chip, developing

accurate financial-forecasting models, or analyzing protein-folding behavior in a cell. Since all the NP-

complete optimization problems become easy with the present methods, everything will be much

more efficient. Transportation of all forms can now also be scheduled optimally to move people and

goods around quicker and cheaper. Manufacturers can improve their production to increase speed

and create less waste.

Developments in vision recognition, language comprehension, translation and many other learning

tasks will now become much simpler. The present inventor feels that by utilizing the systems of the

present invention in numerous fields, that the invention will have profound implications for

mathematics, cryptography, algorithm research, artificial intelligence, game theory, internet packet

routing, multimedia processing, philosophy, economics and many other fields.

D - About the Author
John Archie Gillis is from Halifax, NS, Canada. This is his solution to the P versus NP problem. He

is presently working on a number of interesting inventions that he believes many people could benefit

from provided the concepts can be brought to light. He is particularly interested in applying the

present strategies to biological systems, genetic therapies and cancer research. A number of his other

inventions can be found via a Google Patent search or at https://archiegillis.com/inventions/

If you have any questions/comments or are interested in the companies I am building that will host

this IP, please don’t hesitate to contact me at johnarchiegillis@gmail.com

E - References
1. Cook, S.A. (1971). "The complexity of theorem proving procedures". Proceedings, Third

Annual ACM Symposium on the Theory of Computing, ACM, New York. pp. 151–158.

doi:10.1145/800157.805047.

2. Wikipedia contributors. (2018, June 19). Clique problem. In Wikipedia, The Free Encyclopedia.

Retrieved 13:57, June 28, 2018,

from https://en.wikipedia.org/w/index.php?title=Clique_problem&oldid=846513850

3. Wikipedia contributors. (2018, May 14). NP-completeness. In Wikipedia, The Free Encyclopedia.

Retrieved 14:00, June 28, 2018, from https://en.wikipedia.org/w/index.php?title=NP-

completeness&oldid=841292328

4. Wikipedia contributors. (2018, June 20). Travelling salesman problem. In Wikipedia, The Free

Encyclopedia. Retrieved 14:01, June 28, 2018,

from https://en.wikipedia.org/w/index.php?title=Travelling_salesman_problem&oldid=84

6797001

5. Wikipedia contributors. (2018, June 22). Sudoku. In Wikipedia, The Free Encyclopedia. Retrieved

14:02, June 28, 2018,

from https://en.wikipedia.org/w/index.php?title=Sudoku&oldid=847081582

6. The Traveling Saleswitch Problem. http://people.ku.edu/~jlmartin/courses/math105-

F11/Lectures/chapter6-part3.pdf

7. Gödel’s Lost Letter and P=NP https://rjlipton.wordpress.com/the-gdel-letter/

8. Garey, Michael R.; David S. Johnson (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman. ISBN 0-7167-1045-5

