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Abstract 

In this article, we postulate and demonstrate mathematically that the acceleration of an electric charge 

generates new N and M fields. The equations of the N and M fields obtained are derived from pure 

mathematic formulas and Maxwell equations. Therefore, the new fields should exist and need to be tested 

experimentally. The new field equations have the similar forms as that of Maxwell equations, and are 

supplement to Maxwell equations. The effects of new fields are to vary the Lorentz force with time. The 

new fields propagate as waves. We suggest that those new fields are worth to be systematically studied 

experimentally. The study of those new fields might open a new window.   
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1. Introduction 

Physics laws describing phenomena that relate with uniform motion include: 

(1) Maxwell equations govern electromagnetic fields generated by uniform motion of charges. 

(2) Special Relativity postulates that physics laws are invariant in all inertial frames of reference. 

(3) de Broglie wavelength λ = h p of uniformly moving particles. 

In the 1998, scientists reported a revolutionary discovery that the expansion of the universe is 

accelerating [1], which implies that everything in the universe is accelerating. 

A task is: modify physics laws to describe accelerating motion related phenomena, namely, to include 

the terms of acceleration in physics laws. Recently Hubble’s law and Doppler’s law have been extended to 

contain terms of acceleration for describing phenomena caused by acceleration [2]. Indeed the acceleration 

does cause significant differences in those phenomena.  

Galileo transformation and Lorentz transformation are between inertial frames with low and high 

velocity respectively. For accelerating frames, both transformations no long hold. There is no appropriate 

transformation either between an inertial frame and a non-inertial frame or between non-inertial systems. 

At quantum level, the phenomenon of wavefunction collapse is explained as due to the acceleration of 

particle [3].  

In this article, we study what effect/field will the acceleration of an electric charge induce. We 

demonstrate mathematically: (1) the acceleration of a charge generates new fields; (2) those new fields 

affect stationary, uniformly moving, and accelerating test charges, differently; (3) new fields generated by 

the acceleration and jerk of charge propagate as wave. 

 

2. Review of Electrodynamics 

First let’s review Maxwell equations and the Lorentz force. Maxwell equations are invariant under 

Lorentz transformation and describe the fields generated by stationary charge and uniform motion of 

charges. There is an interesting phenomenon: When a charge is at rest, it generates an electric field, and 

doesn't generate a magnetic field. However, when the same charge moves uniformly, the velocity of the 

charge generates a magneto-static field. The magnetic field is completely different from electric field in the 

following senses: (1) the way the fields generated; (2) the nature of the fields; (3) effects of the fields on 

charges. 

Many physics students have a question: Why the uniform velocity of a charge generates such different 

magnetic field? A teacher will explain to them that magnetism is the combination of electric field with 

special relativity.  

Table 1: Fields generated by stationary charge and the motion of charges 

 
Generated Field Force 

Stationary Charge: 

𝐯 = 𝟎 

Electro-static field 

𝐄 
𝐅 = q𝐄 

Constant velocity of charge: 𝐯 ≠

𝟎, 𝐯 = 𝟎 

Magneto-static field 

𝐁 
𝐅 = q𝐮×𝐁 

Acceleration of charge: 

𝐯 ≠ 𝟎, 𝐯 ≠ 𝟎 
? ? 



Now we ask further questions: What new fields will the acceleration, instead of the velocity, of a 

charge generate? What are the effects of new fields on stationary, uniformly moving, and accelerating test 

charges (Table 1)?  

The non-uniform motion of a charge is characterized by velocity and acceleration. Thus, at any given 

instant, the non-uniform motion can be considered as uniform, and the instant velocity will generate 

magnetic field. The question is: are there new fields generated by the acceleration? Further more, for an 

accelerating charge, one needs to explain why the non-uniform motion of charge generates the magnetic 

field and new fields. The term “acceleration” means either acceleration or deceleration. 

 

3. New Fields Generated by Non-uniform Motion of Charge 

Maxwell equations, except the displacement current, were established based on series experiments. 

Up to now, as I know of, there is no experiment (s) to study systematically the effects of the acceleration of 

charges.  

To answer those questions, we propose a mathematic approach.  

We postulate that the acceleration of a charge generates new effects on testing charges. There are new 

fields mediating those effects. Moreover, we postulate that the acceleration of a charge generates new fields 

in the same way as that either the velocity of a charge generates magnetic field or the time-varying 

electric/magnetic field generates the induced magnetic/electric field. 

The basic concept is that, since the uniform velocity of a charge generates magnetic field that is curl 

field, the acceleration of a charge should generates curl fields like magnetic field. The new field equations 

should be supplement to Maxwell equations and can be utilized to investigate electromagnetic phenomena 

caused by the acceleration of a charge at the level of the field strengths. The issue is that those new field 

equations don’t obey Lorentz transformation. 

 

3.1.  Magnetic-type N Field 

Thus let’s start with a mathematic approach.  

There is a formula in vector analysis, 

 ∇× 𝐒×𝐓 = 𝐒 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐒 + 𝐓 ∙ ∇ 𝐒 − 𝐒 ∙ ∇ 𝐓.      (1) 

What is significant of this formula is that the combinations of the divergence and the gradient of two either 

non-curl or curl vectors, S and T, induce inevitable a curl vector, 𝐒×𝐓. Namely a curl vector is inevitable 

born of any two vectors.  

Combining the vector analysis formula with the postulations, let’s 𝐒 = 𝐯 , 𝐓 = 𝐄 , where 𝐯  is 

acceleration; 𝐄 is the electric field. The “dot” on the top of velocity v represents the time derivative of the 

velocity. Eq. (1) gives  

 ∇× 𝐯×𝐄 = 𝐯 ∇ ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐄.      (2) 

Define a new field, 𝐍, 

 𝐍 ≡ 𝐯×𝐄,               (3) 

Note the N field is an acceleration correspondence of magnetic field B,  

𝐁 ≡ 𝐯×𝐄.               (4) 

Therefore we call the N field the magnetic-type field.  

Combining Eq. (2 and 3), we obtain, 



 ∇×𝐍 = 4πQ𝐯 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐄,       (5) 

where Maxwell equation, 𝛁 ∙ 𝐄 = 4πQ, has been applied.  

For non-spatially-varying acceleration, 𝐄 ∇ ∙ 𝐯 = 𝐄 ∙ ∇ 𝐯 = 𝟎, Eq. (5) can be simplified as 

    ∇×𝐍 = 4πQ𝐯 − 𝐯 ∙ ∇ 𝐄.            (6) 

The acceleration of a charge generates inevitablely a curl field N like the velocity of a charge 

generates a curl field B. Eq. (6) show that the N field, acceleration 𝐯, and electric field E correlate. 

 

3.2.  Electric-type M field 

Based on symmetry, it is nature to expect that the acceleration of charges generate an electric-type 

field as well. For this aim, let’s apply the formula, Eq. (1), again. Set 𝐒 = 𝐯, 𝐓 = 𝐁, where 𝐁 is magnetic 

field, we obtain, 

∇× 𝐯×𝐁 = −𝐁 ∇ ∙ 𝐯 + 𝐁 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐁,        (7) 

where Maxwell equation, 𝛁 ∙ 𝐁 = 0, has been utilized. 

Define a new curl field, 𝐌, 

 𝐌 ≡ −𝐯×𝐁.              (8) 

Note the M field is an acceleration correspondence of electric field E, 

   𝐄 ≡ −𝐯×𝐁.              (9) 

Thus call the M field the electric-type field. Substituting the M field into Eq. (7), we obtain, 

∇×𝐌 = 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯 + 𝐯 ∙ ∇ 𝐁.         (10) 

For non-spatially-varying acceleration, 𝐄 ∇ ∙ 𝐯 = 𝐄 ∙ ∇ 𝐯 = 𝟎, we obtain the M field equation, 

∇×𝐌 = 𝐯 ∙ ∇ 𝐁.             (11) 

The acceleration 𝐯 of a charge indeed generates a curl field M. Eq. (11) relates the M field, 

acceleration 𝐯, and magnetic field B. 

 

3.3. Interpretation of the N and M Fields 

The physical meaning of the N and M fields can be interpreted as the following. 

Consider a charge Q and an observer O. when the charge is at rest relative to the observer, it generates an 

electro-static field; when the charge is moving with a constant velocity relative to the observer, beside the 

electric field, the observer also observes a magnetic field generated by the uniform motion, 𝐁 = 𝐯×𝐄; 

when the charge is moving with acceleration 𝐯, beside the electric and magnetic field, the observer will 

observe both a curl N field, 𝐍 = 𝐯×𝐄, and a curl M field, 𝐌 = −𝐯×𝐁. Namely, the constant velocity of a 

charge generates one curl field; the acceleration of a charge generates two additional curl fields (Table 2). 

Table 2: Fields generated by stationary charge and the motion of charges 

 
Generated Field 

Stationary Charge: 

𝐯 = 𝟎 

Electro-static field 

𝐄 

Constant velocity of charge: 

 𝐯 ≠ 𝟎, 𝐯 = 𝟎 
𝐁 = 𝐯×𝐄 

Non-uniform motion of charge: 

𝐯(t) ≠ 𝟎, 𝐯 ≠ 0, or 𝐯(t) ≠ 𝟎 

𝐍 = 𝐯×𝐄 

𝐌 = −𝐯×𝐁 



3.3. Correlation between the N and M Fields 

3.4.1. Ampere-law-type Correlation 

 Eq. (6) and (11) shows the correlations between the N field, acceleration 𝐯, and electric field E and 

between the M field, acceleration 𝐯, and magnetic field B, respectively. Now we need to find the 

correlation between the N and M fields. For this aim, we need to re-express the term of 𝐯 ∙ ∇ 𝐄 in Eq. (6) 

and 𝐯 ∙ ∇ 𝐁 in Eq. (11). 

 Applying another vector analysis formula, 

𝛁 𝐒 ∙ 𝐓 = 𝐒 ∙ 𝛁 𝐓 + 𝐓 ∙ 𝛁 𝐒 + 𝐒× 𝛁×𝐓 + 𝐓×(𝛁×𝐒).     (12) 

Let’s 𝐒 = 𝐯 and 𝐓 = 𝐄, where E is electric field, Eq. (12) gives 

𝛁 𝐯 ∙ 𝐄 = 𝐯 ∙ 𝛁 𝐄 + 𝐄 ∙ 𝛁 𝐯 + 𝐯× 𝛁×𝐄 + 𝐄×(𝛁×𝐯).     (13) 

Or rewrite as 

 𝐯 ∙ 𝛁 𝐄 = 𝛁 𝐯 ∙ 𝐄 − 𝐄 ∙ 𝛁 𝐯 − 𝐯× 𝛁×𝐄 − 𝐄×(𝛁×𝐯).     (14) 

Substituting Eq. (14) into Eq. (5) and Eq. (6) respectively, we obtain 

 ∇×𝐍 = 4πQ𝐯 − 𝐄 ∇ ∙ 𝐯 + 2 𝐄 ∙ ∇ 𝐯 − 𝛁 𝐯 ∙ 𝐄 + 𝐯× 𝛁×𝐄 + 𝐄× 𝛁×𝐯 .  (15) 

For non-spatially-varying acceleration, 𝐄 ∙ 𝛁 𝐯 = 𝐄 ∙ ∇ 𝐯 = 𝐄× 𝛁×𝐯 = 𝟎, Eq. (15) becomes,  

    ∇×𝐍 = 4πQ𝐯 − 𝛁 𝐯 ∙ 𝐄 + 𝐯× 𝛁×𝐄 .         (16) 

Next let’s find 𝐯× 𝛁×𝐄  in term of the M field. For this aim, taking time derivative of the M field, 

we obtain, 
!𝐌
!!
= − !

!!
𝐯×𝐁 = −𝐯×𝐁 − 𝐯× !𝐁

!!
= −𝐯×𝐁 + 𝐯× ∇×𝐄 .     (17) 

Where Maxwell equation, ∇×𝐄 = − !𝐁
!!

, is used; “ 𝐯 ” is jerk and has four cases: (1) accelerating the 

acceleration; (2) decelerating the acceleration; (3) accelerating the deceleration; and (4) decelerating the 

deceleration. In this article we just use letter “ 𝐯 ” to represent all of four cases.  

Substituting Eq. (17) into Eq. (15) and (16), respectively, we obtain Ampere-law-type correlation, 

   ∇×𝐍 = 4πQ𝐯 + !𝐌
!!
+ 𝐯×𝐁 − 𝛁 𝐯 ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 2 𝐄 ∙ ∇ 𝐯 + 𝐄× 𝛁×𝐯 ,  

(18) 

and 

 ∇×𝐍 = 4πQ𝐯 + !𝐌
!!
+ 𝐯×𝐁 − ∇ 𝐯 ∙ 𝐄 ,         (19)  

which is the acceleration correspondence of the Ampere’s law, 

 ∇×𝐁 = 4πQ𝐯 + !𝐄
!!

.             (20) 

Eq. (18) and (19) are the Ampere-law-type correlation of the N and M fields. 

 

3.4.2. Faraday-law-type Correlation 

Based on symmetry, we postulate another correlation between the N and M fields.  

Let’s 𝐒 = 𝐯 and 𝐓 = 𝐁, where B is magnetic field. Substituting into Eq. (12), gives 

𝛁 𝐯 ∙ 𝐁 = 𝐯 ∙ 𝛁 𝐁 + 𝐁 ∙ 𝛁 𝐯 + 𝐯× 𝛁×𝐁 + 𝐁×(𝛁×𝐯).     (21) 

Or rewrite as 

 𝐯 ∙ 𝛁 𝐁 = 𝛁 𝐯 ∙ 𝐁 − 𝐁 ∙ 𝛁 𝐯 − 𝐯× 𝛁×𝐁 − 𝐁×(𝛁×𝐯).     (22)  

Substituting Eq. (22) into Eq. (10), we obtain,  

 ∇×𝐌 = 𝐁 ∇ ∙ 𝐯 − 2 𝐁 ∙ ∇ 𝐯 + 𝛁 𝐯 ∙ 𝐁 − 𝐯× 𝛁×𝐁 − 𝐁×(𝛁×𝐯).    (23) 

For non-spatially-varying acceleration, 𝐁 ∇ ∙ 𝐯 = 𝐁 ∙ 𝛁 𝐯 = 𝐁× 𝛁×𝐯 = 𝟎, Eq. (23) becomes,  

    ∇×𝐌 = 𝛁 𝐯 ∙ 𝐁 − 𝐯× 𝛁×𝐁 .           (24) 



Next let’s find 𝐯× 𝛁×𝐁  in term of N field. Taking time derivative of the N field, we obtain, 

    !𝐍
!!
= !

!!
𝐯×𝐄 = 𝐯×𝐄 + 𝐯× ∇×𝐁 − 4πQ𝐯×𝐯,       (25) 

Substituting Eq. (25) into Eq. (23) and (24), respectively, we obtain the correlation equation of the N and 

M fields,   

    ∇×𝐌 = − !𝐍
!!
+ 𝐁 ∇ ∙ 𝐯 − 2 𝐁 ∙ ∇ 𝐯 + 𝛁 𝐯 ∙ 𝐁 + 𝐯×𝐄 − 4πQ𝐯×𝐯 − 𝐁×(𝛁×𝐯). (26) 

 ∇×𝐌 = − !𝐍
!!
+ 𝐯×𝐄 + 𝛁 𝐯 ∙ 𝐁 − 4πQ𝐯×𝐯.        (27) 

For the case of 𝐯//𝐯, E. (26) and (27) give, respectively,  

 ∇×𝐌 = − !𝐍
!!
+ 𝐁 ∇ ∙ 𝐯 − 2 𝐁 ∙ ∇ 𝐯 + 𝛁 𝐯 ∙ 𝐁 + 𝐯×𝐄 − 𝐁×(𝛁×𝐯). 

(28) 

    ∇×𝐌 = − !𝐍
!!
+ 𝐯×𝐄 + 𝛁 𝐯 ∙ 𝐁 .          (29) 

which is the acceleration correspondence of the Faraday’s law, 

 ∇×𝐄 = − !𝐁
!!

.              (30) 

Eq. (26)-(29) are the Faraday-law-type Correlation of the N and M fields. 

 The equations of the N and M fields obtained above are derived from pure mathematic formulas and 

Maxwell equations. Therefore, the new fields should exist and need to be tested experimentally. 

 

3.4. Comparison Between Maxwell Equation and the N and M field Equation 

Now let’s summarize the N and M field equations and compare with Maxwell equations (Table 3). 

Table 3: Comparision between Maxwell equation and N and M Field equation 

Maxwell Equation  

𝐯 ≠ 0, 𝐯 = 0 

N Field 

𝐯 ≠ 0, 𝐯 ≠ 0, 𝐯 ≠ 0 

M Field 

𝐯 ≠ 0, 𝐯 ≠ 0, 𝐯 ≠ 0 

∇×𝐁 = 4πQ𝐯 +
∂𝐄
∂t
	

	

∇×𝐍 = 4πQ𝐯 +
∂𝐌
∂t

−	

−𝛁 𝐯 ∙ 𝐄 + 𝐯×𝐁 

 

∇×𝐄 = −
∂𝐁
∂t
	

	

	 ∇×𝐌 = −
∂𝐍
∂t
+	

+𝛁 𝐯 ∙ 𝐁 + 𝐯×𝐄	

The combination of Maxwell equations and the N and M field equations is a complete set of equations 

to describe fields generated by non-uniform motion of charges. 

  

4. Equation of Motion 

In this section, we study effects of the N and M fields. We postulate that the effects of the N and M 

fields are to change the Lorentz force with the time. For demonstration, let’s start with Lorentz force, 

𝐅 = q𝐄 + q𝐮×𝐁.             (31) 

Considering two frames of reference, S and S’. The sources of electric field 𝐄′ and magnetic field 𝐁′ 

are in S’ frame. An observer and a test charge q are in S frame. The S’ frame moves relative to the S frame 

with velocity v and acceleration 𝐯. We assume: (1) speed is slow; (2) at a given instant, the S’ frame is 

approximately an inertial frame. Thus we have transformation, 

 𝐄 ≈ 𝐄! − 𝐯×𝐁′,             (32a) 



 𝐁 ≈ 𝐁! + 𝐯×𝐄′.             (32b) 

The 𝐄 and 𝐁 are measured in the S frame. The 𝐮 is the velocity of the test charge q. The	 force	varies	

with	time	as 

 𝐅 = q𝐄 + q !(𝐮×𝐁)
!"

= q𝐄 + q𝐮×𝐁 + q𝐮×𝐁.        (33) 

Next let’s calculate !𝐄
!"

 and !(𝐮×𝐁)
!"

, respectively. Taking time derivative of Eq. (32a) and (32b) 

respectively, we have,  

 𝐄 = 𝐄′ − 𝐯×𝐁′ − 𝐯×𝐁′,            (34a) 

 𝐁 = 𝐁! + 𝐯×𝐄! + 𝐯×𝐄′.            (34b) 

Without losing generality, assume that in the S’ frame, the electric and magnetic fields are static, 

𝐄! = 𝐁! = 0.  Eq. (34a) and (34b) become, 

	 𝐄 = −𝐯×𝐁′,              (35) 

 𝐁 = 𝐯×𝐄′.              (36) 

Substituting Eq. (32a) and (32b) into Eq. (35a) and (35b), we obtain 

 𝐄 = −𝐯× 𝐁 − 𝐄!×𝐯 = −𝐯×𝐁 + 𝐯× 𝐄!×𝐯 = 𝐌 + 𝐯× 𝐄!×𝐯 ,    (37) 

 𝐁 = 𝐯× 𝐄 + 𝐁!×𝐯 = 𝐯×E + 𝐯× 𝐁!×𝐯 = 𝐍 + 𝐯× 𝐁!×𝐯 .     (38) 

Substituting Eq. (36a and 36b) into Eq. (33), we obtain 

 𝐅 = q𝐌 + q𝐯× 𝐄!×𝐯 + q𝐮×𝐁 + q𝐮×𝐍 + q𝐮×[𝐯× 𝐁!×𝐯 ],     (39) 

or 

 𝐅 = q𝐌 + q𝐮×𝐍 + q𝐮×𝐁 + q𝐮×[𝐯× 𝐁!×𝐯 ] + q𝐯× 𝐄!×𝐯 ,     (40) 

The acceleration of the source charge generates new N and M fields. The effect of the N and M fields 

is to change the Lorentz force with time on a test charge. Eq. (40) shows that the N and M fields affect 

stationary test charge via [q𝐌 + q𝐯× 𝐄!×𝐯 ] , uniformly moving test charge via q𝐌 + q𝐮×𝐍 +

q𝐮×[𝐯× 𝐁!×𝐯 ] + q𝐯× 𝐄!×𝐯 , and accelerating test charge via all terms on the right hand side of Eq. (40), 

differently.  

At a given instant, the non-uniform motions of a source charge can be considered as uniform motions, 

and generate regular electromagnetic fields. At the same instant, a non-uniformly moving test charge can be 

considered as a uniformly moving charge and under the influence of the electromagnetic fields, which is 

govern by Lorentz force law. Eq. (40) is a supplement formula to the Lorentz force Eq. (31). We need both 

Eq. (31) and Eq. (40) to describe the motion of an accelerating test charge under the influence of the E, B, 

N, and M fields generated by accelerating source charges.  

There is correspondence between Eq. (40) and Eq. (31) (Table 4): 

 𝐅 →  !𝐅
!"

, 𝐄 → 𝐌, 𝐁 → 𝐍. 

 Table 4: Comparison of Effects of E, B, M, and N Fields 

 
Electromagnetic fields: E, B N and M fields 

Effects 
Force on test charge 

𝐅 = q𝐄 + q𝐮×𝐁 

Time-varying of force on test charge 

d𝐅
dt
≈ q𝐌 + q𝐮×𝐍 + q𝐮×𝐁 +⋯ 

 



5. Wave Equations of N and M Fields 

We postulate that the N and M fields propagate as wave. Let’s derive wave equations of the new fields 

N and M.  

5.1. Wave Equation of N field 

For simplicity and without loss generality, we start with Eq. (20 and 30) instead Eq. (19 and 29). 

Taking curl of Eq. (20), 

∇×∇×𝐍 = 4πQ𝛁×𝐯 + !∇×𝐌
!!

− 𝛁×𝛁 𝐯 ∙ 𝐄 + ∇×(𝐯×𝐁).      (41) 

and substituting Eq. (30) into Eq. (41), we obtain 

∇!𝐍 = −4πQ𝛁×𝐯 − !
!!

− !𝐍
!!
+ 𝐯×𝐄 + 𝛁 𝐯 ∙ 𝐁 − ∇×(𝐯×𝐁).    (42) 

Where 𝛁×𝛁 𝐯 ∙ 𝐄 = 𝟎. For the case of acceleration having the same direction as velocity, but velocity is 

perpendicular to B field, so 𝐯 ∙ 𝐁 = 𝟎. We have 

 ∇!𝐍 − 𝛛𝟐𝐍
𝛛𝐭𝟐

= −4πQ𝛁×𝐯 − !
!!
𝐯×𝐄 − ∇× 𝐯×𝐁 .       (43) 

which implies that the 𝐯, 𝐯 and 𝐯 generate the N wave. As a comparison, the acceleration of charges is 

the source of E wave,  

 ∇!𝐄 − 𝛛𝟐𝐄
𝛛𝐭𝟐

= 4πρ𝐯.             

For constant and non-spatially-varying acceleration, Eq. (43) becomes 

   𝛛
𝟐𝐍
𝛛𝐭𝟐

− ∇!𝐍 = 𝟎,              (44) 

Eq. (43) and (44) are the wave equations of the N field with and without a source. 

 

5.2. Wave Equation of M field 

For simplicity and without loss generality, we start with Eq. (30). Let’s take curl of Eq. (30), 

∇×∇×𝐌 = − !∇×𝐍
!!

+ ∇× 𝐯×𝐄 .          (45) 

Where ∇×𝛁 𝐯 ∙ 𝐁 = 0 and 𝐯 ∙ 𝐁 = 0 have be used. Substituting Eq. (20) into Eq. (45), we obtain, 

∇!𝐌 − !!𝐌
!!!

= 4πQ𝐯 − !
!!
𝛁 𝐯 ∙ 𝐄 − 𝐯×𝐁 − ∇× 𝐯×𝐄 ,      (46) 

which is the M wave equation and implies that the 𝐯, 𝐯 and 𝐯 are the sour of the M wave. 

Without the source terms, Eq. (46) becomes 

   𝛛
𝟐𝐌
𝛛𝐭𝟐

− ∇!𝐌 = 𝟎.              (47) 

Table 5: Comparision between Wave Equations of E, B, N, M fields 

E Wave 

𝐯 ≠ 0, 𝐯 ≠ 0 
∇!𝐄 −

∂!𝐄
∂t!

= 4πQ𝐯 

M Wave 

𝐯 ≠ 0, 𝐯 ≠ 0, 𝐯 ≠ 0	
∇!𝐌 −

∂!𝐌
∂t!

= 4πQ𝐯 −
∂
∂t

𝛁 𝐯 ∙ 𝐄 − 𝐯×𝐁 − ∇× 𝐯×𝐄  

B Wave 

𝐯 ≠ 0, 𝐯 = 0 
∇!𝐁 −

∂!𝐁
∂t!

= 4πQ∇×𝐯	

N Wave 

𝐯 ≠ 0, 𝐯 ≠ 0, 𝐯 ≠ 0	
∇!𝐍 −

∂!𝐍
∂t!

= −4πQ𝛁×𝐯 −
∂
∂t

𝐯×𝐄 − ∇× 𝐯×𝐁  

 

6. Summary and Discussion 



We postulate and demonstrate mathematically that the acceleration of an electric charge generates new 

fields. The new field equations have the similar forms as that of Maxwell equations, and are supplement to 

Maxwell equations. The combination of Maxwell equations and the N and M field equations is a complete 

set of field equations to describe fields generated by accelerating charges.  

The new fields vary the Lorentz force with time.  

The new fields generated by acceleration and jerk of charges propagate as waves.  

We suggest that those new fields are worth to be systematically studied experimentally.  
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