On the experimental determination of the one-way speed of light

Rodrigo de Abreu
Departamento de Física, Instituto Superior Técnico
Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal

Abstract

In this paper it is considered the physical meaning of the one-way speed of light. Usually in the standard Special Relativity what is considered is the Einstein one-way speed of light that has been introduced by Einstein in the 1905 paper, by definition. In the standard interpretation the one-way speed of light it is not considered since the Einstein speed of light is considered to be the speed of light. However in our previous work we have shown that this is a terminological confusion. Now we explain why this is so with a very simple example using two methods of synchronization, with rods and with light signalling, that shows the physical meaning of absolute simultaneity and also the physical meaning of Einstein simultaneity in connection with the two concepts “speed of light”. As a result of this analysis an experimental method for the determination of the one-way speed of light emerge.

Introduction

In our previous works [1-13] a broad approach of Special Theory of Relativity (SR) has been formulated. The implications of this approach in the interpretation and experimental determination of the one-way light speed will be discussed in the present paper. In Special Relativity the problem of the physical meaning and the experimental determination of the one-way speed of light has been debated since the emergence of the theory when Maxwell discovered the wave equation in his equations of the Electromagnetic Field. The similitude of the value of the speed of propagation of the waves obtained theoretically with the experimental value early obtained by Römer, Bradley, Fizeau, Foucault naturally convinced Maxwell that the speed of light must be connected with the theoretically description he obtained. This is the origin of the idea of the independence of the speed of light of the speed of the source sometimes misinterpreted as implying that the speed of light is the same in every frame. For sure one of the postulates of SR based on experience and theoretical reasoning is that the speed of light is isotropic in vacuum independently of the speed of the source in one frame that we previously designate by Einstein Frame (EF) [5]. Another postulate of special relativity based on the experience of Michelson-Morley-Miller is that the two-way speed of light in every frame is the same in every direction in vacuum with the value c obtained experimentally (although the experiment has been originally performed in air and does not give a null result, but it has been assumed initially that air does not interfere [13] (see Irvine experiment)). Therefore the value of the one-way speed of light in EF is also c. From these postulates without invoking the constancy of the one-way speed of light Special Relativity has been constructed initially by Fitzgerald, Larmor, Poincaré and Lorentz with a constructive theory based on experience interpreted with the assumption of a privileged frame where the one-way speed of light have the value c [7-11, 14, 15]. In our previous works based on these postulates we conciliate the analysis of Einstein based on a Principle theory [16] with the Lorentz-Poincaré approach [1-13]. Recently several
works points out the importance of this discussion about the foundations of Special Relativity [11-14, 17-26]

In section I we consider several configurations of three rods designated by S, S' and S'' moving relatively to each other longitudinally.

In Ia we consider the rod S' with length l_1 moving with speed v_1 in relation to EF where is located rod S with proper length l_0. The rods are moving longitudinally in the same direction defined by the rods. Since the rod S' is Lorentz contracted (S is the EF, see IB.) [1] we know l_1 when the extremities of the rods pass by each other simultaneously. This is the most primitive notion of simultaneity that Special relativity does not ruled out [1-3]. Therefore we can calculate the one-way speed of light in S' confirming that it is not c. Of course Einstein one way speed of light is c by definition since the Lorentz clock at the extremity of the rod is desynchronized of the clock synchronized, the clock has been desynchronized conveniently with the condition that light arrives to the extremity of the rod where a clock is waiting marking l_1/c. Therefore both values of the “speed of light” are true and must be observed if not the theory collapse.

In Ib we consider another rod S'' moving with speed v_2 in relation to EF (S). We obtain the length l_2 that satisfies the condition of simultaneity with bar S with length l_0 and the relation between l_2 and l_1. We previously discovered [1-3] that this relation is no more the Lorentz-Fitzgerald contraction although a relation formally identical exist [9] and originates a gap of “synchronizations” as previously pointed out by Mansouri and Sexl [27].

In section II we conceive a method to determinate the one-way speed of light using rods S' and S'' defined at IB without previous knowledge of EF. This method is based on the results obtained in section I through the discovered of the synchronization as a limit for the preservation of the condition two way-speed of light with value c.

I. One-Way Speed of Light

Ia. One of the rods is at rest in the EF

Consider a rod S' with proper length l_1 moving with speed v_1 in relation to EF where is located another bar S with proper length l_0 (Fig.1).

\[\text{A'} \quad l_1 \quad \text{B'} \quad \rightarrow v_1 \]

\[\text{A} \quad l_0 \quad \text{B} \]

Figure 1. Rod S' is moving with speed v_1 in relation to rod S at rest in EF. The extremities of the rods coincide simultaneously and therefore can synchronize clocks at A, A' and B, B'
The rod S' is moving with speed v_1. Since the bar S' is Lorentz contracted (since S is at rest in the EF) we know l_1 when the extremities of the rods pass by each other simultaneously, when A' coincide with A and B' with B as represented in the figure 1. This is the most primitive notion of simultaneity that Special Relativity does not ruled out. However standard interpretation induce to think that it is impossible to synchronize clocks because it is not possible to send a signal from A' to B' with infinite speed and since the one-way speed of light was not known in frame S' Einstein postulate that the one-way light is c. In this context this affirmation must be ruled out.

Indeed we can calculate the one-way speed of light at S'.

We have

$$l_1 = \frac{l_0}{\sqrt{1 - \frac{v_1^2}{c^2}}} \quad (1)$$

From the origin of S' (A') it is emitted a ray of light in the direction of the extremity B' of S' when A' pass by A. This ray of light moves in the EF with speed c. Therefore we can calculate the coordinate x where the ray of light intercepts the extremity B'

$$x = l_0 + v_1 t \quad (2)$$

$$x = ct \quad (3)$$

$$t = \frac{l_0}{c - v_1} \quad (4)$$

Since S' is moving with speed v_1 in relation to EF we have the Larmor time dilation [15]

$$t' = t \sqrt{\left(1 - \frac{v_1^2}{c^2}\right)} \quad (5)$$

From (4) and (5)

$$t' = \frac{l_0}{c - v_1} \sqrt{\left(1 - \frac{v_1^2}{c^2}\right)} \quad (6)$$

Therefore we obtain the one-way speed of light in S'

$$c_+ = \frac{l_0}{\sqrt{\left(1 - \frac{v_1^2}{c^2}\right)}} \times \frac{c - v_1}{l_0} \times \frac{1}{\sqrt{\left(1 - \frac{v_1^2}{c^2}\right)}} \quad (7)$$
\[c_+ = \frac{c-v_1}{\sqrt{1-v_1^2/c^2}} = \frac{c}{\sqrt{1+v_1^2/c^2}} \quad (8) \]

As expected the one-way speed of light is not \(c \). Only in a first order approximation is \(c \) and we obtain the Galileo approximation \((c-v_1)\) for a second order approximation.

Consider now Einstein’s one-way speed of light. By definition Einstein has defined “Einstein synchronization” by a clock at \(x' \) (the generic coordinate of \(B' \)) marking \(x'/c \) and awaiting the arrival of the ray of light emitted at \(x' = 0, t'_L = 0 \). This time is the Lorentzian time \(t_L \) and of course \(x'/t_L = c \), it cannot be otherwise [1-3]. Since \(t' = x'/c_+ = (x'/c)(1+v_1/c) \) we have \(t'_L = t' = (v_1/c^2) x' \). Since the clocks marking \(t' \) are synchronized the clocks marking \(t'_L \) are desynchronized. Note that the one way speed of light that preserve the value \(c \) for the two way of light is the harmonic mean of \(c_+ \) and \(c_-' \). [27] given by

\[c'_\pm = \frac{c}{1 \pm \alpha v_1/c} \quad (9) \]

with \(\alpha \in [0, 1] \).

Lorentz was right, \(t'_L \) is the local time and SR can be formulated with the synchronized time [9].

Ib. Two rods moving in relation to EF

We introduce now a third rod \(S'' \) with length \(l_2 \).

![Figure 2](image-url)

Figure 2. A third rod \(S'' \) is moving with speed \(v_2 \) in relation to EF.

The rod \(S'' \) is moving with speed \(v_2 \) in relation to EF. The rod have proper length \(l_2 \)

\[l_2 = \frac{l_0}{\sqrt{1-v_2^2/c^2}} \quad (10) \]
From (1) we have

\[l_2 = l_1 \frac{\sqrt{1-v^2}}{\sqrt{1-v^2}} \quad (11) \]

It easy to obtain from (11)

\[l_2 = \frac{l_1}{\sqrt{1-v_E^2}} \left(1 + \frac{v_1 v_E}{c^2}\right) \quad (12) \]

since Einstein’s speed of rod \(S' \) in relation to \(S \) is given by [9]

\[v_E' = \frac{v_2 - v_1}{1 - \frac{v_1 v_2}{c^2}} \quad (13) \]

The correct evaluation of the distance \(l_2 \) is crucial as we pointed out in several previous works [1, 5, 12, 13] (see also [9, 28]) and used to solve the Twin Paradox in a one-way trip [13] analysing the approach of \(\Phi \). Grøn [28].

We see from (12) that we can consider two lengths

\[l_2 = \frac{l_1}{\sqrt{1-v_E^2}} \quad (14) \]

and

\[l_2 = \frac{l_1}{\sqrt{1-v_E^2}} \left(1 + \frac{v_1 v_E}{c^2}\right) \quad (15) \]

When \(v_1 = 0 \) \(S' \) is at rest in \(EF \) we have only for \(l_2 \) the value given by (14). However there are several values of \(l_2 \) between the values given by (14) and (15). We can define these several values by

\[l_2 = \frac{l_1}{\sqrt{1-v_E^2}} \left(1 + \alpha \frac{v_1 v_E}{c^2}\right) \quad (16) \]

with \(\alpha \in [0, 1] \) and in the following figure 3 \(l_2 \) for \(\alpha = 0 \) correspond to Einstein synchronization.
Indeed when $t'_L = 0$ at B' (l_2 is given by (14)) B' coincides with B [29]. Since we know v_E we know l_2 for $\alpha = 0$. This eventually can be experimentally tested with the other method of “synchronization” by light signalling. When A’’ pass by A’ light is emitted from A’ to B’. Since B’ has been previously “synchronized” ($t'_L = 0$ at B’) by the passing of B’’ if the theory is correct the arrival of light at B’ is $t_L = x'/c$. This method of synchronization correspond to an external “synchronization” [9, 18, 19, 27-32]. Rod S’’ establish the connection with the EF, rod S, the “external synchronization” [27].

II. A method to determinate experimentally the one-way speed of light

The crucial matter is what is revealed by Fig. 4

From the previous analysis corresponding to Einstein synchronization but now by rods (figure 3) we can increment the length l_2 (for several values of $\alpha > 0$) but it has no meaning $\alpha > 1$ (figure 4). For this values the extremity B’’ pass by B’ previously to the
passing of A´´ to A´. This violates the principle of causality corresponding to a speed of signalling “superior to infinity” that has no meaning (Fig. 4). Therefore we can conceive the tentative determination of the condition \(\alpha = 1 \) and corresponding value of \(v_1 \) that satisfies the value \(c \) for the two-way of light. We can begin incrementing the length of rod S´´ from the length given by (14). The clock at B´ is set to zero and begin working when B´´ pass by B´. When A´ pass by A´´ light is emitted to B´ that measure the arrival of light with the clock previously “synchronized”. This ray of light can eventually be reflected to A´. The clock at A´ measure the time of arrival of light. When this measurements with the clocks located at A´ and B´ does not satisfy the \(c \) condition for the two-way speed of light we obtain synchronization with the corresponding measurement of the one-way speed of light.

Conclusion

It is our firm belief that physics should assume itself as the heir of natural philosophy. And thus question, with no fear nor prejudice, the postulates or hypothesis at the origin of each theory. Only in this way is it possible to claim that to understand a physical theory goes much beyond the simple knowledge of how to perform the calculations. Unfortunately, special relativity is presented in most textbooks by passing too swiftly over the discussion of its postulates [9, 17].

In section I we consider several configurations of three rods designated by S, S´ and S´´ moving relatively to each other longitudinally. The idea is that rods moving in relation to each other can reveal the movement in relation to the frame where the one-way speed of light is isotropic with value \(c \); the frame that we designate by Einstein Frame (EF) because the movement of the rods in relation to EF can affect differently each rod and this effect can be observable. A similar idea has been defended recently by Espen Haug [18] with several pertinent questions in relation to the difficulty to conceive absolute simultaneity.

In section Ia we consider a rod S´ moving with speed \(v_1 \) in relation to EF where rod S is at rest. Since S´ is Lorentz-Fitzgerald contracted it is easy to obtain the one-way speed of light in the frame of S´. The Einstein’s one-way speed of light is \(c \) by definition.

In section Ib we consider a third rod moving with speed \(v_2 \) in relation to EF and we obtain the relation between the proper lengths of rods that reveals a gap of possible “synchronizations” that preserve the value \(c \) for the two-way speed of light.

In section II based on the results obtained in Ib we describe a method of synchronization that permit to conceive the experimental determination of the one-way speed of light.

References

29. de Abreu, R. http://vixra.org/abs/1810.0452

